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The effects of the D state of the deuteron wave function and of the pickup scattering on elastic nucleon-
deuteron scattering are investigated within the framework of the impulse approximation and with the
neglect of the multiple scattering. A detailed examination is made of the various terms which arise from the
identity of the incident nucleon with the target nucleons, and of these only the so-called pickup term is re-
tained in the calculation. The latter term is treated only in Born approximation; the validity of this approxi-
mation is discussed. The computations which are carried out at 40 and 150 MeV indicate that the eGects of
the D state and of the pickup scattering are quite large for scattering in the backward hemisphere.

I. INTRODUCTION

~~ IJITK recently, several works have appeared which~ deal with the consistent mathematical formula-
tion of the integral equations for three-body scattering
problems as well as some schemes for solving these
equations in an approximate fashion. ' It seems evident
that further work along these lines will permit calcu-
lations of moderately high-energy' ' JV' (nucleon)-d
(deuteron) scattering, in particular, which are superior
to those existing at the present time.

The standard"" impulse-approximation (IA) cal-
culations have yielded a fair description of Ã-d differ-
ential cross sections and polarizations for small scatter-
ing angles in the energy range from 40 to 150 MeV. ' "
Those quantitative discrepancies which do exist in this

*This work was supported in part by the U. S. Atomic Energy
Commission.

'L. D. Faddeev, Zh. Eksperim. i Teor. Fix. 39, 1459 (1960)
[English transl. : Soviet Phys. —JETP 12, 1014 (1961)]; S.
Weinberg, Phys. Rev. 1'33, B232 (1964); L. Rosenberg, ibid.
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4 J. Ashkin and G. C. Wick, Phys. Rev. 85, 686 (1952).
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Verlag, Berlin, 1957), Vol. 39, p. 142.
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Power (Pergamon Press, Inc. , London, 1960) Vol. 1.

' T. Fulton and P. Schwed, Phys. Rev. 11,973 (1959).
"L. Favella and M. Olivetti, Nuovo Cimento 11, 6/9 (1959).
"A. K. Kerman, H. McManus, and R. M. Thaler, Ann. Phys.

(N. Y.) 8, 551 (1959)."J.Sawicki and S. Watanabe, Nucl. Phys. 1,0, 151 (1959).
'3 Y. Sakamoto and T. Sasakawa, Progr. Theoret. Phys.

(Kyoto) 21, 879 (1954).
"H. Postma and R. Wilson, Phys. Rev. 121, 1229 (1961).
"L.Castillejo and L. S. Singh, Nuovo Cimento 11, 131 (1959).

See also Ref. 8, p. 193.
"N. M. Queen, Nucl. Phys. 55, 177 (1964).
"By "standard" we mean those calculations which neglect

the multiple scattering. Queen (Ref. 16) has carried out an ap-
proximate partial summation of the Watson (Ref. 18) multiple-
scattering expansion with some improvement over the single-
scattering approximations."K. M. Watson, Phys. Rev. 89, 575 (1953).

range of angles and energies perhaps can be largely
accounted for by a somewhat more reined evaluation
of the single-scattering integrals as well as by the use
of more accurate deuteron wave functions.

However, for large scattering angles and in the same
energy range all existing calculations of elastic 3l-d
scattering are at best only in qualitative agreement
with the observed cross sections and polarizations and
at worst in complete disagreement with experiment. '9

In view of this, it would seem that the need for more
reined calculational techniques such as those alluded
to above is now manifest.

Nevertheless, it cannot be said that the entire content
of the simple IA approach to X-d scattering with the
neglect of multiple scattering has been fully exploited.
We have in mind here the fact that the combined con-
tributions of the (so-called) off-the-energy-shell effects,
the pickup scattering, and the D state of the deuteron
have never been properly examined. The object of the
present investigation is to estimate just how the pre-
dictions for the cross sections and polarizations, par-
ticularly at large scattering angles, are modified when
these effects are considered simultaneously. It is quite
conceivable that such estimates will be useful in con-
structing approximation procedures within the context
of more sophisticated formalisms.

II. IMPULSE AND SINGLE-SCATTERING
APPROXIMATIONS

If we employ the (IA) and neglect the multiple
scattering the transition operator T for g-d scattering
can be written as the sum"

in which

Ts —=P t(n),

T= Ts+ T„+T„ (2 1)

(2.2a)

T = sPt(n) P Pop (2.2b)

T,= ', P t(n)(E —He+is') —'L—P—sp,Vs,j, (2.2c)

"H. E. Conzett, H. S. Goldberg, E. Shield, R. I. Slobodrian,
and S. Yamabe, Phys. Letters, 11, 68 (1964)."K.L. Kowalski, Nuovo Cimento 30, 266 (1963).
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and
V, (a)= Vo (1—Po,)

Ho= Eo+&, '

where Vo (= V o) represents the interaction between
the incident projectile (0) and the target nucleon
n (n= 1, 2), H„ is the deuteron Hamiltonian, and Eo,
E are kinetic-energy operators for the indicated par-
ticles. The exchange operator for all the variables of
particles 0 and o, is denoted by Po . Finally, we remark
that in the formulation of Eqs. (2.1) and (2.2) an
isotopic spin convention has been employed so that
all nucleons are regarded as identical. "

The physical transition probability amplitudes are
obtained from the matrix elements of T with respect
to the unperturbed states Ig) which satisfy

where
E=Eo+o,

Eo is the energy of the incident particle, and e is the
energy of the target including its c.m. motion. The
particular value of E which occurs in Eq. (2.2c) corre-
sponds to the initial values of Eo and e. The states

lp& are presumed to be completely antisymmetrized
with respect to all the target-nucleon variables.

III. KINEMATIC AND ISOSPIN STRUCTURE

In this section we will study the kinematic and
isospin structure of the matrix elements (prlT~I&, ),
where A =d, p, e for the specific case of elastic nucleon-
deuteron scattering. "Parts of this material are readily
available in the literature' "but are reproduced for the
sake of continuity as well as to indicate clearly the
particular features and limitations of the present
calculation.

The initial (final) states lp;) (lpr&) of the nucleon
and the deuteron (in its ground state) will be written as

I e', r&
= Ik', r»', r,l ', r& I

x', ~&.

Here k, (k~) and P; (Pr) are the initial (final) wave
vectors of the projectile and the c.m. of the deuteron,
respectively. The index l refers to a three-nucleon
ordinary-spin state which is symmetric in the deuteron
variables and

I x;)= I &&) represents the isospin state of
the free nucleon and the isosinglet deuteron. We will

"G. Takeda and K. M. Watson, Phys. Rev. 97, 1336 (1955).
"We will neglect any possible electromagnetic effects. At the

energies and angles with which we will be concerned this is
certainly a valid approximation.

represent the contributions of the direct, the pickup,
and the target-exchange' "scattering processes, respec-
tively. Here t(o) is the two-body transition operator
which satisfies

i(u) = V, (n)+-,' V, (n) (Eo —Ko—E' +io')-'t(a), (2.3)

with Eo a two-body energy which will be specified
later. Also,

A. Direct Terms

The direct amplitude is given by"

(&~l T'~l&'&= o(kf Pf~lfl3&"&(~)+&"&(~)Ik', P', l'& (3 2)

The matrix elements of 3&'&(n) are'

(k„P,,l., l«&lk, ,P;,i.;)
=&(Kr—I')Grl4" (k~', k'') ll, ), (33)

with

~"'(k&',k'') = de'(q —~)(-'4'+l~

and

——,'q
I
~.& &

I
—,'k,'——;q)y(q),

K=k+P,
k'= o(k —oP),
x=-,'(k~' —k,').

The deuteron ground-state wave function in momen-
tum space p(q) and the matrix element of t,&'& which
appears in (3.4) are regarded as operators in ordinary
spin space. The c.m. motion of the deuteron has been
separated out of p(q).

The operator t, i'(n) is defined in terms of t&'& (n) by

(kr, kg lt&'(n) lk, ,k,')
= i&(kg+k~ —k;—k,')(k&,kI"

I t, &'& (n) I k;,k, ) (3.5)

which is permissible provided the two-nucleon inter-
action is translationally invariant. '4 In Eq. (3.5) k
denotes the wave vector of the relevant target nucleon.

"Equation (3.2) is, of course, independent of the particle
index a. When no confusion is likely to arise we will, for simplicity
of notation, write t(') instead of t(')(a, ) and similarly for related
operators.

'4 We suppose, in addition, that the interactions are Galilean
invariant.

adhere throughout this paper to the normalization
conventions of Ref. 6.

It will prove convenient to express Uo explicitly in
terms of the isosinglet Vio& (a) and the isotriplet
V&'&(u) parts of the nucleon-nucleon potential:

Vo-= V"'( )~o( )+V"'( )I' ( &

The projection operators on the isosinglet (v=0) and
the isotriplet (v=1) states of particles 0 and n are
denoted by E,(n).

Similarly, t(n) can be written in terms of the two-
nucleon transition operators 3&'&(n) which correspond
to scattering in each of the two isospin states:

$ (a) = 3 (n)Pp (n)+ 3 (n)Pi(n) . (3.1)

The operators 3'&(n) satisfy Eq. (2.3) with V, (n) re-
placed by V, &'&(a) which is defined by

V.& &()=«.&()L1+(—1) ~o.7,
where (Po is the exchange operator in all the variables
of particles 0 and 0. excepting isospin.



NUCLEON —DEUTERON SCATTERI NG

In order to specify the energy Es in Eq. (2.3), let us

suppose that both h; and kf refer to the laboratory
system. Then it is consistent with the introduction of
the (IA) to take Es as Es, namely, the lab energy of
the incident particle. ith this agreed upon, thc
integral equation in the space of relative coordinates
satisfied by the operator f,&'&(n) appropriate to the
matrix element in (3.4) is

$ 1~) (1r)= V (r) (rr}+1V (rl (~)
&((E,—Es +is') —lf &'&(rr) (3.6)

E,=E ——,
' (i's'/2M) q',

E = (i'I'/2M) (-,'k;——,'q)'

Rnd Ko 1s thc kinetic-energy opcI'RtoI' for thc I'clRtlvc
motion of particles 0 and e. The reduced two-nucleon
mass is denoted by M. The extent of the condensation
in the notation used in Eqs. (3.3) and (3.4) should now
be evident.

Several methods for evaluating the integral (3.4)
were discussed in Ref. 6. Ke will employ only one of
these techniques, namely, we will set q=2x in the
matrix element of t, &' which appears in (3.4) and, in
addition, we take E,=E .'~ Then the momentum inte-
gration in (3.4) involves only the deuteron wave
functions and, moreover, the only matrix elements of
t, &'& which appear are related to the two-nucleon transi-
'tloll GtllpP4ÃrI8$. Tlils appl'oxlIIlatloll was founds to
yield results not appreciably different from those ob-
tained with a more refined evaluation of the so-called
off-the-energy-shell eRects.

B. Pickup Terms

It is clear for the case at hand that

Thus, the simple pickup scattering involves only the
isosinglet part of the nucleon-nucleon interaction as
one might expect.

One finds that

(kI»l bl &"'(~)epos lk'P'1')
=s(K&—K,)g-, lf, (k,',k, ') ll, ),

2~ The choIce of the two-body energy m Eq. (2.3) Is not unIquely
determined in the course of invoking the (IA) at least within the
context of the Watson (Ref. 18) form of multiple-scattering
theory. The procedure followed here seems reasonable enough for
the single-scattering terms. However, owing to the recoil of the
target during the intermediate scatterings, the use of E0 in (2.3)
is not free from contradiction. Indeed, in general the proper two-
body energy would appear to be the consequence of some sort of
self-consistency requirement. (See, for example, Ref. 26.) These
considerations merely reflect the well-known lack of a precise
characterization of the (IA} in a multiple-scattering theory
except under certain additional restrictions."K. M. Watson, Phys. Rev. 105, j.388 (1957)."In Ref. 6 this prescription was termed the linear approxima-
tion. Strictly speakIng, the name does not apply when the D state
of the deuteron is included.

f,(kr', k )=yt(-,'kf'+k ) dtl(kr'+-,'k, 'I f,&ol (n)

&& Ill)~od(tl), (~&l3) (3 7)

whcI'c Sop ls thc ord1nary spin-cxchangc opcI"RtoI'. If wc
adopt the previous definition of the two-body operator
t(n) which satisfies (2.3) then one finds that the integral
equation satisfied by f,&'&(n) appropriate to the matrix
element in (3.7) is just Eq. (3.6) with E, replaced by
Eo, namely, the incident-particle energy in the lab
system.

In contrast to the direct terms, the factorization of
the integral (3.7) by somehow extracting some average
value of the matrix element of f,&'&(n) is not possible
owing to the divergence of the residual integral. How-
ever, the fact that the Green's function in the integral
equation for t, l'(n) is defined with respect to the
energy Eo rather than to an energy on the order of
—',Es Lcf. Eq. (3.6)j suggests that when Es is large a
reasonable first approximation to (3.7) can be achieved

by employing the Born approximation for f, lsl (n), viz. ,

f,&'&(n) = V."&(u). (3.8)

Then, if we use the wave equation for the deuteron,
Eq. (3.7) becomes simply

f„(k,',k,') = —2LI.„I+(a'/m)(k, '+-', k ) j
&&4 t(-:kr'+k'')Iw4 (kf'+-,'k''), (3 9)

where
I e&l is the deuteron binding energy. We have

recovered in (3.9) the usual Born-approximation result
for the pickup scattering. ~ "

Naturally, it is of interest to inquire how much an
improved approximation to f,&s&(n) will change the
result (3.9). If Es is large enough, then in accord with
the philosophy which led to (3.8), it seems reasonable
to obtain a correction to (3.9) by considering f, ts&(cr)

in second Born approximation,

],&s) (rr) = V, ls) (n)+XV (s) (rr)

X (Es I:op+Ie')-'V —"'(n) (3 10)

rather than (3.8).
In order to estimate the contribution of the second

term in (3.10) to (3.7) we employed a simple, pure
5-state Hulthen deuteron wave function and an ap-
propriate exponential isosinglet potential. "All integrals
involved can then be evaluated in closed form. For
Eo=40 MeV the magnitude of the correction to (3.7)
was about 70%%u~ of the magnitude of (3.7) with the
predominant contribution arising from the imaginary
part of the second Born term. At 1.50 MCV the magni-
tude of the corrections was about one-third of the
magnitude of (3.7). In this case the real and imaginary
parts of the corrections were roughly the same.

"G. F. Chew and M. L. Goldherger, Phys. Rev. 77, 470 (1950).
'9 J. Blatt and V. Weisskopf, Theoretk(J/ Nuclear Physics (John

Wiley 8z Sons, Inc. , New York, 1952), p. 201.
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It is well known, of course, that for energies below
100 MeV the Born series is quite unreliable particularly
for the isosinglet part of the nucleon-nucleon potential. "
The preceding results at 40 MeV are therefore not too
surprising. " The very large differences between the
observed and the calculated cross sections" obtained
using (3.9) for backward scattering, where the pickup
term is expected to dominate, ~ ~8 also tend to indicate
that (3.9) is a poor approximation at this energy.

Dcsplfe tile spill'ious Ilaflll'c of (3.9) at 40 MCV we

will, nevertheless, employ it in our own calculations
and thus our results at this energy and large-scattering
angles are only of qualitative interest. "At 150 MeV
the situation ls somewhat improved, and in fact there
is reason to suspect that the Born series for t, ~o& con-
verges rather rapidly at this energy. " The apparent
approximate validity of (3.9) at 150 MCV and the lack
of it at 40 MeV will be seen to be rejected roughly in
our calculations.

The integral (3.7) does not appear to possess any
simplifying feature which would lend itself to the sort
of analysis carried out in Ref. 6. In particular, any
relation between the matrix element of t, "& in (3.7) to
the nucleon-nucleon scattering amplitudes seems singu-
larly remote. Possibly the most consistent way by
which to evaluate (3.7) is by the use of a formalism
developed previously specihcally for the sort of highly
o8-shell two-body matrix elements which appear there. "
One simplifying feature of such a calculation, in con-
trast to the direct terms, ' is the circumstance that only
those terms in the partial-wave expansion of t, &'& with
total angular momentum J such that J&3.0 con-
tribute to (3.7).

C. Target-Exchange Terms

%'e next consider, briefly, the matrix elements of
T,. Let us state at the outset, however, that we do not
intend to calculate these matrix elements in any degree
of approximation. Our primary motivation for including
this material in this paper arises from the lack of
explicit mention of these terms in most works on g-d
scattering.

The states ~P;.q) are to be completely antisym-
metrized with respect to the target nucleon variables.
Therefore, the sum over intermediate states in Kq.
(2.2c) will involve only such target states. With this
in mind, one finds using the same techniques which

30 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).The argu-
ments of R. Aaron, R. D. Amado, and IIl. W. Lee, ibid. 121, 319
(1961),are also certainly relevant here.

» +le recall, however, that owing to the peculiar structure of
the pickup transition term, 40 MeV for the Ã-d problem corre-
sponds to a two-body lab energy of 80 MeV. Similarly, 150 Me&
for Ã-d scattering will correspond to 300 MeV for the two-body
case.

"The same remark applies to the calculation of Ref. 16.
»K. L. Kowalski and D. Feldman, J. Math. Phys. 4, 50$

(1963).

were employed for the direct and pickup terms that

Q& (
T'. (y;}=&(K,—K,)

X Q Q dk„'t ~'(kr', k„'; p)

XL&u"8& '+k'') jf&opt(& '+. kk')

~'"'(kx', k.';1)= ~q0f(q —~)(4k''+l~. —lq

X ~t."~-,'k '——,'q}P,~'&{q), (3.11)

&."=-,'P(—1)'f, "+(1+2 )t,"j,
x„=—,

' {kg'—k„') .
The sum over y in (3.11) refers to an integration over

the intermediate continuum states and a discrete con-
tribution from the deuteron ground state for g= 0. The
continuum two-nucleon wave functions in momentum
space $~1'&(q) correspond to excited states of the
target with (relative) energy (A'/2M)p' and an isospin
state v.

The fact that the energy denominator in (2.2c) has
disappeared upon evaluating the matrix element is a
result peculiar to the deuteron target. A similar remark
applies to the form of the pickup terms in Born
approximation.

Physically, one may think of (3.11) as representing
the distortion of the initial state of a free nucleon and
the deuteron target due to identity effects. This term
then gives rise to the so-called "polarization" eGects
which are important in Ã-d scattering at low energies.

There e ist quite plausible physical reasons~02' to
expect the target-exchange scattering to be negligible
at energies for which the (IA) is expected to be valid,
and these constitute our justi6cation for not consider-
ing (3.11) in our calculations. Nonetheless, it is not at
all obvious from Eq. (3.11) when this term is small
compared to the direct and pickup matrix elements. ""
Clearly the difEculty in obtaining such an estimate
arises from the sum over the continuum two-nucleon
states. It would appear that some more quantitative
investigation of the target-exchange scattering is neces-
sary before including such supposed higher order effects
as multiple scattering particularly at moderate energies
and large-scattering angles.

Iv. SPIN STRUCTURE

We will now address ourselves to the problem of
evaluating the matrix elements of the operators (3.4)
and (3.9) with respect to the three-nucleon spin states
~f'). The target-exchange terms (3.11) will not be
considered.

34 Compare the interpretation given in Ref. 21.
'~ It should be pointed out that the rough estimates of Refs.

21 and 36 are not relevant to Eq. (3.11).
3' J. Sawicki, Nuovo Cimento 15, 606 (1960).
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e(q) =
(2s)si'

dr exp( i—q r)lt (r),

The deuteron wave function lt (r) in coordinate space
is related to it (q) by

deuteron form-factor integral when the D state is
neglected. ' We note that

i p; l

=
i pr i

.
For computational purposes the integrals (4.5) are

more convenient when expressed in terms of the co-
ordinate-space wave functions, viz. ,

where r is the relative position vector. Here lf (r) is
also an operator in the two-nucleon spin space and can
be written in the form'7

I'.(rr, f ~l~*,f ')

dr exp( i—x r)P„r „,*(r)P„,„,(r).. (4.6)

lf (r) = [1/(4rr)"'r7[u(r)+4v2Stsw(r)7,

with S» denoting the ordinary tensor operator. The
(scalar) functions u(r) and w(r) are the S- and D-
state radial wave functions, respectively, which are
normalized such that

~ 0

dr[u'(r)+w'(r)7= 1.

if')=P C(f'; p,s) ip(1,2)& is(0)), (4 1)

where lp) denotes a two-nucleon spin state and ls) is
a single-nucleon spin state. We recall that

l
f') is sym-

metric in the indices 1, 2. Then

In our detailed calculations we will use the forms for
u(r) and w(r) derived from the Vale potential. ""

It will be convenient to write the states if& as

The matrix elements of P(r) are dehned by Eq. (4.3)
with it (q) replaced by P(r).

The matrix elements of P(r) have the general form"

lt",.(r) = [1/(4 )""7(u(r)~..
+A„,„w(r)Fs (r,p,)). (4.7)

The numerical coefhcients A„„are real and I'i™g(r,p,)
denotes the normalized spherical harmonic which is
defined with respect to a polar axis in the direction of
our axis of spin quantization p;. In (4.7) we have
suppressed the dependence of m on v and p.

The angular integrations which are implied in (4.6)
after one has employed (4.7) can be carried out in a
straightforward manner with the aid of various ex-
pressions for the products of spherical harmonics. "Then
one 6nds that the overlap integrals (4.6) can be ex-
pressed in terms of the 6ve radial integrals

4(q) lf &=~fr,.4 ps')4, s(q) l~(o,~)) ls'(0)&, «0 (4 2)

with the sums on the right-hand side understood to be
over repeated indices. The matrix elements of p are
defined by

4„,(q)—= (~(1,2) i4(q) lf (1,2)&. (4.3)

The (real) quantities C and f in Eqs. (4.1) and (4.2),
respectively, can be expressed in terms of the Clebsch-
Gordan coefhcients in an elementary manner. ~ 4'

One 6nds, using (4.2) and the "linear approximation"
described in Sec. (III-A), that

I,( )—=s

Is(ii) =—

I,(K) —=

I4(s) =

dr js(ar)u'(r),

dr js(iver)u(r)w(r),

drj, (sr)w'(r),

drj,(iir)ws(r),

G.rlf. & &(1 r', 1 )lf'&
+ frf, vf (pf p fpsf )fri, vi(fbi)&i&si )Fg(i fyfsf i i iyfii)

x(p„,lf.& &lp...,».,
where

(4.4)

and

F ("f»f I i" u') —= dq & r,.r*(q—si)&;,.;(q), (4 5)

pi 4lri s &~ pf 4irf+ s& ~

The functions F„are the generalizations of the usual

37 L. Hulthdn and M. Sugawara, Ref. 7, p. 1.
"K. E. Lassila, M. H. Hull, Jr., H. M. Ruppel, P. A. Mc-

Donald, and G. Breit, Phys. Rev. 126, 881 (1962).
"H. Kottler and K. L. Kowalski, Nucl. Phys. 53, 334 (1964).
'In our calculations we adopted the phase conventions of

Ref. 41 for the Clebsch-Gordan coefFicients and spherical
harmonics.

4' Appendix A of Ref. 29.

Is(ii) —= dr j4(iver)ws(r),

where j& denotes the spherical Bessel function of order /.

The numerical evaluation of these integrals will be
discussed in the next section.

The matrix elements (4.4) can now be expressed
entirely in. terms of the integrals I;(s), the spherical
harmonics Fi (si,p~), and the nucleon-nucleon scatter-
ing amplitudes. The explicit forms for these matrix
elements are given elsewhere. 4' "

is H. Kottler, thesis, Case Institute of Technology (unpub-
lished). Copies of the various unlisted matrix elements referred
to in this paper will be supplied upon request.

4'We might mention that our original motivation for our
rather laborious approach to the evaluation of the spin matrix
elements and their subsequent summation was to obtain ex-
pressions for the amplitudes which would be adaptable to a study
of the off-the-energy-shell effects. (Cf. Ref. 6.)
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By using procedures similar to those utilized in
evaluating the direct terms, we find that in the ap-
proximation (3.9)

(I-flI.(kf', k,') ll.')
= —2[l l+ (A'/2M)Q']XZfr, „(pr, ,sr')

XCO-, ;~... )8., '4„,„,'(Q )4.,„,(Q,), (4.8)
where

Q;=kr'+ j'k, Qr
——-,'kr'+k, '.

We note that

0.4

0.3

02

O. I .

-O. I

60 L 90 I20
8 (deg)

ISO I80

DIRECT ( S"STATE )

DIRECT 4 PICK UP (S STATE)

IQ'I = IQrl-=Q

The evaluation of the deuteron wave function factors
in (4.8) will entail the computation of the radial
integrals
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FIG. 2. Nucleon-deuteron polarizations at 40 MeV. The experi-

mental points are taken from Ref. 19.

~2(Q) = «r~(r) j2(Qr) .

The details of this computation will be discussed in the
next section. The explicit forms of the matrix elements
(4.8) in terms of the integrals J,(Q) and the spherical
harmonics I'~ (Q, ,p;), I'p(Qr, p;) are given elsewhere. 4'

V. NUMERICAL DETAILS

Our calculations were carried out at incident nucleon
(lab) energies of 40 and 150 MeV for which there exists
a reasonable body of experimental information. ""

Ioo-

These two energies are of particular interest in that
one (40 MeV) corresponds to a situation where the
simple (IA) might begin to faiP while the other (150
MeV) is high enough to expect the (IA) to be excellent.
We will now summarize the procedures followed in our
evaluation of the direct and pickup amplitudes and
the consequent cross sections and polarizations.

The two-nucleon amplitudes appearing in the direct
terms were calculated using the Yale phase shifts. 44
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FIG. 1. Nucleon-deuteron cross sections at 40 MeV. The ex-
perimental points are taken from J. H. Williams and M. K.
Brussel, Phys. Rev. 110, 136 (1958).
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FIG. 3. Nucleon-deuteron cross sections at 150 MeV. The experi-
mental points are taken from Ref. 14.

44 G. Breit, M. H. Hull, Jr., K. E. Lassila, K. D. Pyatt, Jr.,
and H. M. Ruppel, Phys. Rev. 128, 827 (1962). M. H. Hull, Jr.,
K. E. Lassila, H. M. Ruppel, F. A. Mc Donald, and G. Sreit,
iNd 128, 830 (1962). .
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Since all of these amplitudes were on the energy shell
the procedures followed were standard. 4'

All of the radial integrals I; and J; were evaluated
using the specific deuteron wave function mentioned
previously. " With this (analytic) form for u(r), the
integral J~ could be integrated in closed form. The
integral I5 did not appear in our final expressions for
the amplitudes and therefore was not computed. The
remaining integrals were evaluated numerically with
the upper limit of integration cut off at a distance of
either six (I2,I~,I4) or eight (I~,I~) pion Compton
wavelengths. The maximum possible errors as a result
of the cutoffs were estimated to be no more than a
few percent. The largest possible errors were confined
to the region of the smallest values of ~ and Q considered.

The direct and pickup amplitudes were employed in
the usual manner" to calculate for several different
cases the cross section o (8) and the polarization P(8),
as a function of the three-body c.m. scattering angle
e. The results of these computations are presented in
Figs. 1—4.

Four different cases were investigated. First of all,
in order to provide a basis of comparison with the
standard approximations we calculated o(8) and P(8)
using only the direct terms and the pure S-state
deuteron wave function which in this case was normal-
ized to unity for the sake of consistency. Next, the
D state was properly incorporated into the direct terms
but the pickup scattering was neglected. Then, the
pickup scattering was included but the D state was
neglected in both the direct and the pickup ampli-
tudes. Finally, the D state was properly accounted for
in both the direct and pickup amplitudes.

4' H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev.
105, 302 lI95)l."L.Wolfenstein, Ann. Rev. Nucl. Sci. 6, 43 (1956).

VI. RESULTS AND DISCUSSION

I.et us consider first the various cross sections at 40
MeV which are plotted in Fig. 1. In the angular range
t))&75' the fit obtained to the data is somewhat of an
improvement over most previous calculations carried

out in the same degree of approximation. '"""This
is most probably due to our use of a more accurate
deuteron wave function. It is evident that in this
angular range the pickup scattering is entirely negligi-
ble. On the other hand, the difference between the
results obtained with and without the inclusion of the
deuteron D state is small but not insignificant at least
for these angles.

The cross sections calculated using only the direct
terms are seen to agree rather well with the data up
to about 120'. For 0&75' this is probably fortuitous.
As one expects, the agreement is poor for 8&150'. The
effect of the D state on the cross section when the
pickup scattering is neglected is about the same at all
angles.

The pickup process dominates the scattering for
0&120'. In this region the cross sections computed
using the combined direct and pickup amplitudes pro-
vide a very poor quantitative fit to the data. The
contributions of the D state in these cases is insignificant.

An examination of the computed polarizations at 40
MeV (Fig. 2) shows virtually a complete failure of our
calculations in any degree of approximation to provide
even a qualitative fit over practically the entire angular
range under consideration. This great disagreement is
to be contrasted with our comparatively good results
for 0.(8), particularly for 8&75'. Of course, the polari-
zation is notoriously sensitive to effects which only
slightly alter the cross section. In this regard we note
the greater influence of the D state on P(8) than on
~(8)

The principal inadequacy of the polarization pre-
dictions is the complete failure to account for the very
large negative peak in the observed P(8). Although
data is available only at a few energies' ' 4 it seems
to be a characteristic feature of E-d scattering even at
relatively low energies4' for P(8) to be quite negatively
peaked in the neighborhood of 8= 100'. It also appears
to be characteristic of the standard (IA) calculations
to underestimate this peak ' "' "

It should be pointed out that of all the various
calculations'"" of P(8) at 40 MeV the prediction of
Ref. 11 seems to be in best qualitative accord with
experiment in the angular range 30'~&0~&75'. This
calculation appears to be unique in predicting the
change of sign in P(8) at about 70'.' "Of course, for
8)80' the magnitude of P(8) is grossly underestimated.
It is interesting to point out that the approximation
procedures used in Ref. 11 were considerably less
refined than those employed here. This inverse correla-
tion between the degree of re6nement in calculation

"H. E. Conzett, G. Igo, and W. J. Knox, Phys. Rev. Letters
12, 222 (1964).

"This calculation is also unique in that the Gammel-Thaler
(Ref. 49) N-X phase shifts are employed. It is unclear how
sensitive our 40-MeV polarization calculations are with respect to
any inaccuracies in the assumed S-S phase shifts (Ref. 42).

49 J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 291, 1337
(1957).
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procedures and the agreement with the 40-MeV polari-
zation data has been observed before. "

Next let us examine our results at 150 MeV. Again,
we consider first the cross sections (Fig. 3). The over-
estimation of o (8) at 8= 30 is particularly interesting.
At this angle and energy it is customarily expected
that the simple (IA) should yield an excellent represen-
tation of the scattering amplitude. Vet several calcu-
lations carried out with varying degrees of rehne-
ment' "' "and with the use of a variety of E-E data
and deuteron wave functions or form factors all seem
to yield a somewhat larger cross section than experi-
ment at this particular angle even when the neighbor-
ing data are reasonably well approximated. '4 Further
experimental data in the region of 0=30' for both
a(8) and P(8) would be most informative in identifying
any theoretical shortcomings.

Excepting the point 8=30', a fair fit for o (8) is ob-
tained with all of the diferent approximations for
0(75'. For larger values of 0 the pickup scattering
and the D state both play an important role. Consider-
ing the approximations employed, we obtain a rather
remarkable fit to o(8) over the entire angular range
when both the pickup scattering and the D state are
included. We note that the cross sections computed
without the pickup scattering are lowered relative to
the corresponding curves obtained in Ref. 6. Again we
attribute this to the use of an improved deuteron
wave function over that employed in Ref. 6.

One phenomenon associated with the D state should
be pointed out. It is clear from Fig. 3 that with the
D state included the pickup amplitude becomes im-
portant at considerably smaller angles than is the case
without the D state. This effect is present in all our
calculations although it is somewhat subdued at 40
MeV.

Finally, we consider the polarizations at 150 MeV
(Fig. 4). The results for 8(75' are about the same as
those obtained in previous calculations'""" except
for the somewhat better agreement at 30'. In this
angular range the pickup amplitude contributes negli-

gibly; however, the eGect of the D state is quite
noticeable.

Certainly the most striking feature of Fig. 4 is the
behavior of P(8) in the neighborhood of 8= 120'. The
effect of the D state on P(8) in this angular range when
the pickup scattering is neglected is enormous. It
should be remarked that the calculation of P(8) with
the D state included is extremely sensitive to apparently
small changes in the matrix elements (4.4). Our original
calculations were carried out neglecting all but the
dominant D-state terms in the matrix elements (4.4).
In this case, we obtained curves for P(8) more in
accord with the S-state curves. The present computa-
tion evaluated all terms in (4.4).

Since we have treated the pickup term only in Born
approximation this amplitude by itself will not give rise
to a polarization of the outgoing nucleon. Therefore,
in our approximation, the pickup process inQuences

P(8) only through its interference with the direct
terms. ' With this in mind it is very interesting to note
the large "damping" of the P(8) curves, particularly
in the D-state case, for 8)100 . This appears to be
due primarily to the fact that o (8) is rapidly increasing
for large 0 when the pickup term is included as com-
pared to o(8) calculated using only the direct terms.
It is not entirely clear why the polarizations found at
large 0 using both the direct and pickup terms appear
to be independent of whether the D state is included
or not."

VII. CONCLUSION

Our calculations indicate that the D state of the
deuteron and the pickup process contribute to elastic
X-d scattering to a greater degree and at smaller
angles than was previously suspected. The approxi-
mations which were introduced (impulse approxima-
tion. , neglect of multiple scattering, etc.) in the course
of this computation were all physically plausible and
we expect that they form a reasonable erst-order repre-
sentation of the "actual" situation. Therefore, there
exists some justi6cation for supposing that the qualita-
tive aspects of our results will be valid even when the
scattering amplitude is evaluated by more re6ned
techniques. "

1Vote added ie proof. After this manuscript was sub-
mitted for publication, we became aware of a calculation
of the nucleon-deuteron cross section at 155 MeV by
Benoist-Gueutal and Gomez-Gimeno LPhys. Letters 13,
68 (1964)].These authors took into account the deu-
teron D state as well as the pickup term. Consequently,
their results are in close accord with the direct+pickup
(S+D state) curve presented in Fig. 3 of the present
paper.
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"It is a matter of taste whether or not one calls a change in
the magnitude of P(8) arising from a change in a(8) an inter-
ference effect.

"Our semiquantitative reproduction of the backward positive
peak in P(8) offers support to the conjecture of Postma and
Wilson (Ref. 14) as to the origin of this peak.

"The identi6cation of part of the scattering amplitude as the
"pickup" term may or may not be useful or meaningful depending
upon the formalism and approximation procedures employed.


