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from the percent intensities of the gamma rays de-
exciting the levels fed by the respective beta-ray spec-
tra. These values of log ft are summarized in Table III.
The initial nucleus of each beta spectrum of Table III
is taken to be that indicated by earlier investigations. s "

V. DISCUSSION OF RESULTS

The shell-model orbitals of Te12g and Te12g are h11/2
and d3~2, the 106-keV transition4 being 3f4. The ground
state of I'" has a measured spin'4 of 2, shell-model
orbital g&~2. By lifetime measurements" and study' of
the (L+M)-shells conversion coefficient, the 27-keV
transition has been shown to be Mi, the spin and parity
of the 27-keV state in I"' being —,'+, shell-model orbital
d5~2. If indeed the allowed transitions of Table III do
stem from Te", the possible spins and parities of the
482-, 797-, 1112-, and 1222-keV levels would be as+ or
-', +. The spin and parity of the 725-keV level, fed by
a erst-forbidden spectrum initiating at Te"', could be
—,
'j or —,'+. The 1065-keV level does not de-excite with
a transition to either the ground state or the 27-keV
state. Its spin is therefore assumed to be 13/2+,
making the spin of the 725-keV state more probably

"Ralph Livingston, O. R. Gillian, and Walter Gordy, Phys.
Rev. 76, 149 (1949)."D.W. Hafemeister, G. DePasquali, and H. deWaard, Phys.
Rev. 135, 81089 (1964).

—',+. These various possible assignments of spin and
parity would suggest that the bulk of the observed
gamma-ray transitions in I'" are 3fj or E2 or a mixture
thereof. Others" have suggested possible spins and
parities of —,'+, 11/2+, or 13/2+ for the 1385-keV
level. All of these possible values are consistent with
the gamma transitions from that level as shown in the
decay scheme of Fig. 5.

Some theoretical efforts have been made to compute
the energies of the excited states of I" . Banerjee and
Gupta" have based their theoretical calculation upon
a model which assumes the nucleus to be an even-even
core, with its spectrum of vibrational levels, and an
odd nucleon giving rise to single-particle states. They
And thirty-three excited states between the ground
state and an excitation energy of 1075 keV. Somewhat
better agreement has been found with the calculations
of Kisslinger and Sorensen, "which are based upon the
assumption of spherical nuclear shape with residual
forces. They report the possibility of ten excited states
on approximately the same energy interval. The spins
predicted are such that virtually all the levels of either
theoretical calculation should have been excited in the
decay of Te"' —Te"'. It is concluded that. the proposed
decay scheme produces best qualitative agreement
with the works of Kisslinger and Sorensen. "
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Nuclear-structure calculations, relevant to the evaluation of irregular gamma-ray transition amplitudes
iparity-forbidden multipolesl, have been performed. General expressions have been derived for the case of
one-particle states in odd-A nuclei with spherical or spheroidal shape. In particular, the pseudoscalar
operator e p is discussed. The case of regular M1 plus irregular Z1 transition is considered as an applica-
tion. Results are derived for the transitions of 482 keV in Ta' ', 343 keV in Lu' 5, and 14 keV in Fe' . For
Ta'", it is possible to calculate the magnitude and the sign of the nuclear matrix-element ratio R. Comparing
the theoretical result for the circular polarization, Pfx FR, with recent measurement, gives the following
limits for the amplitude factor F:9&10 XF&110.This result agrees in sign and order of magnitude with
estimates derived from the current-current theory of weak interactions.

I. INTRODUCTION

KCENTLY, experimental proof has been obtained
for the existence of parity admixtures in nuclear

states. "Such impurities are predicted by theories of

weak interactions. The current-current hypothesis'
implies a weak nucleon-nucleon force, with the same
parity-violating properties as the interaction responsible
for beta decay. From this theory a form of the weak

*This work has mainly been performed at California Institute
of Technology, Pasadena, California, and has been supported by
the U. S. Atomic Energy Commission, and by the Swedish Atomic
Research Council.

F. Boehm and E. Kankeleit (private communication); Pro-
ceedings of the International Conference on nuclear Physics, Paris,

July 1964 (Publication par le Centre National de la Recherche
Scientiiique, Paris, 1964l, Vol. II, p. 1181.

' Vu. G. Abov, P. A. Krupchitsky and Yu. A. Oratovsky, Phys.
Letters 12, 25 (1964).

3R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958); M. Gell-Mann, Rev. Mod. Phys. 31, 834 (1959}.



NUCLEAR STRUCTURE AND PARITY IMPURITIES 8 531

pseudoscalar term in the nuclear Hamiltonian can be
derived and its magnitude estimated. 4'

For the observation of parity impurities, such nuclear
processes are favorable where the regular process is
hindered, ' e.g., retarded electromagnetic transitions. A
relevant measure of the degree of retardation is provided
by the ratio E between the nuclear matrix elements of
the irregular (parity-forbidden) and regular process. '
The other quantity of interest is F, which characterizes
the parity-admixture amplitudes in the nuclear wave
functions' (in the present paper F is regarded as a weak-
interaction parameter). The observable effect depends
on the product FE; thus, in cases of interest, the in-
herently small value of F is compensated by a large
value of R. General estimates of the quantities F and R
are presented in Refs. 4 and 5. The present work deals
with more detailed nuclear-structure considerations,
relevant to the calculation of the ratio R for gamma-ray
transitions. This is of interest, since the result makes
possible a comparison between experiment and pre-
dictions based on weak-interaction theories. Alterna-
tively, such considerations may provide a means for
deriving the value of F from experiment.

In Ref. 1, the circular polarization P of a gamma-ray
has been measured; P is proportional to the product FR
(see e.g. , Ref. 8). In the present paper general expres-
sions for P in terms of transition amplitudes are first
presented. Then the use of the independent-particle
model is described with regard to evaluating the irregu-
lar transition amplitude for one-particle levels in odd-A
nuclei. The interaction of the form o.y, suggested by
previous authors, ' ' is discussed with particular atten-
tion to the role of the ls term in the irregular-EL case.
The case of dipole radiation is considered in greater
detail. The theory is applied to the 482-keV transition
in Ta'" where the circular polarization has been meas-
ured, to the analogous 343-keV transition in t.u"', and
to the 14-keV transiton in Fe". The results and con-
clusions are briefly summarized. The basic nuclear-
model expressions used in this work are briefly presented
in the Appendix.

II. GENERAL EXPRESSIONS

In general, the probability for a transition I; —+I~
with the emission of an electromagnetic quantum with
polarization r and wave number k= pi/c, is given by

t, =C'u(Z
I A;t(a, L) I'

o,L

+2m Re[+ A;f(O, L)A;r(1,L)*j). (1)
L

The amplitudes A;f and multipole operators 0'(a,L)
are defined as follows:

t+ t 2A;y—(a,L)A;t(o', L)
P=——

t~+t A;f(a, L)'+A, ,(a',L')'

2 A;t(o', L)
(3a)

1+q' A;f(a, L)

g =A;t(o', L')/A, t(o,L) . .(3b)

It should be noted that the total transition probability
is given by the expression

T„=t++t = 2C'k[A;t(o, L)'+A;f(o', L')'$.

The nuclear Hamiltonian is generally written as the
sum of a scalar operator Ho, which is the regular part,
and a pseudoscalar operator H', which is a parity-
violating perturbation:

I'I =IIp+ Il'.

Both parts are assumed to be Hermitian and invariant
under time reversal. The parity-impure initial and final

A't&a L) =~'t&Itl~lo(a L)ll~')

O„(a,L) = (C"/c)i ~ j A„(a,L),

where S;f=—[(2It+1)/(2I;+1)$'", j is the nuclear
current, and C'C"'=4n /rttholds. For the reduced matrix
elements and the standard multipole-6elds, A, (a,L), the
conventions according to Rose' "are used. The symbol
o. has the value 0 for magnetic, and I for electric
2z pole."By definition, v=+1 when the polarization
and propagation direction of the photon are parallel,
~= —1 when they are antiparallel (conventionally called
left and right polarization, respectively). In the follow-
ing, phases of operators and wave functions are chosen
so as to ensure a time-reversal invariant description,
and thus real values of all matrix elements.

Let (a,L) denote the lowest multipole order which is
allowed according to the usual angular-momentum and
parity selection rules. This regular transition may in
practice contain a regular multipole admixture (a',L'),
where L'=L+1 and o'Wo hold. The irregular part of
interest is (a.',L). For example the regular transition
may be M1+E2, and the irregular transition E1
[irregular part is indicated by a tilde, if the general
notation (a',L) does not apply]. The expression for the
circular polarization of the gamma ray is obtained from
Eq. (1) and reads:

4R. J. Blin-Stoyle, Phys. Rev. 118, 1605 (1960'); 120, 181
(1960).

~ F. C. Michel, Phys. Rev. 133,B329 (1964) Lgives a review and
also contains references to earlier workj.

6 D. H. Wilkinson, Phys. Rev. 109, 1603 (1958).
7 T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).' L. Kriiger, Z. Physik 157, 369 (1959).

M. K. Rose, MuZtipole PieZds {John Wiley Bz Sons, Inc., New
York, 1955).

"M. E. Rose, 2'ZemerItary Theory of ArIgulur momentum (John
Wiley R Sons, Inc. , New York, 1957).

~'Note that the interference terms in Eq. {1) contain only
products of amplitudes with the same rank 1.but with different cr.



S. KAHLBORN

III. THE INDEPENDENT-PARTICLE MODEL
AND ODD-A NUCLEI

To start with, the total Hamiltonian for nucleus,
radiation and their interaction is represented in the
following semiclassical way':

H~.~=K. {(2~o)-'ll.—('/ )cA]'+ V(r )
Ij,„eh(2&V()c)—'a„H)+H„.+H'+H, .a, (&)

where I=V x A and V A=O. The erst part is a sum
of single-particle operators, labelled by the nucleon
index v. It does not include residual interactions, which
are all represented by H„,. The perturbation H' is the
same as in Eq. (4), and H„q stands for the free radiation
Geld; e„and p„are the values of the charge and magnetic
moment of the vth particle; ufo is the mass of the
nucleon; V(r) is the average single-particle potential
of the nucleus.

In the limit of long wavelength (kE,«1, E,=the
nuclear radius) one Ands, as a consequence of Eq. (7),

~'f(,L)=(—1)'+'~"&'I.{L+1)/L]'"
XL(2L+1) 'l]-*&I~II'(.,L)III'»'r, (8)

where Q(o,L) is a sum, Q„(o,L) =P„u&„(o,L)„, of single-
particle operators having the following well-known
form '

~„(1,L)= (EL)„=ezi~rzY„z—(r); (9a)

a)„(O,L)= (ML)„=(eh/2Moc)i ~'$2g(l/(L+1)+ g~5
~ VLr'I' '(r)]. (9b)

Here, e~ is the eA'ective charge for EL radiation. The
nuclear gyromagnetic factor, gE, equals the charge of the
nucleon (0 or 1), and g, may have an effective value

"Such higher terms have been omitted which are either
relativistic corrections or, for the (ML) operator, minor corrections
arising if t/ (r) has spin dependence.

states of the transition are then given by

Il,)= I~„l,&++.&~.,I.IH'I~„l,&

x(z;—z.)-&I~„,I.), (sa)

I
lr&=

I ~r,lr&+Re &~e Ie I
H'I ~s,lr&

&&(Er Ee—) 'I ~e Ie& (Sb&

Here, the indices n and p label the admixed states, and
(vr,I) labels generally an eigenstate of Ho, i.e., Holm. ,I&
=El~I) In Kq (5) we have I =I s = —s" and
Ip ——Iy, my= —my. The irregular transition-amplitude,
A;f(a', L), is given by

~'r(~', L)=2- ~-"(e',L)/(&' E-)—
+Re Be"(e',L)/(&~ —~e), (6a)

A."(o.',L)=S;f(~r,IIIIO(0',L)~)~,I )
X(~.,I.IH'l~;, I,), (6b)

Be"(o',L)=S;r(err, Ir I
H'

I 7re, Ie)
&&& e,lello( ',L)ll~', L*& (6c)

which is usually smaller in magnitude than the free-
particle magnetic moment. For convenience the following
notation is introduced:

U(,L)=—Sv&lrllfl(, L) III*)

which is simply related to the reduced transition proba-
bility, B(0,L)=.

I
U(0.,L) I'. The circular polarization is

now given by

I'= —2{1+g') 'U(o', L)/U(o, L),
which is not strictly exact but can be considered a good
approximation. Equation (6) can be taken as an ex-
pressio~ for U instead of A;r, if the operator O~ is
replaced by Q.

In the nuclear Hamiltonian, Eq. (4), the independent-
particle model is introduced as described in the Ap-
pendix, Eq. (A1). Then also II' is written in the form
H'=P, h„', where h' is as yet unspecified (it will be
discussed in the next section).

One of the most interesting cases at hand for experi-
mental investigation of parity impurities in nuclear
states seems to be transitions between low-lying one-
particle levels in nuclei with odd mass-number. The
remaining part of the paper will be restricted to this
case. Because of the presence of strong pairing correla-
tions in nuclei, caused by the short-range forces of B„,-,
the seniority (or quasiparticle) description is applicable
for these states, " as outlined in the first part of the
Appendix. The multipole and H' matrix elements there-
fore reduce according to Eq. (A6). For the high-lying
admixed excitations, n and p of Eq. (6), the effects of
the correlations are unimportant. Equation (A'1) is then
a good approximation, and one can set,

E;—E =+(e;—e.), Ef—Ep= +{eg—ep), (12)

where plus holds for particle, minus for hole excitation.
For the matrix elements, one of the situations (I)-(III)
will apply (see the Appendix), and one can assume S to
be negligible in the situation (III). Then for the terms
contributing to Kq. {6),either situation (I) or (II) will

apply, the labels being denoted by n+, P~ and a, P,
respectively. Furthermore, the 5 factors are approx-
mately independent of the excitation

I see Eq. (A9)],
so that, for the quantities A,",Be", Kq. (6), a common
factor is obtained which is denoted by S~(+1) '+', with
the sign rules stated in the Appendix, 5+ is positive
I follows from Eq. (Ag)]. Applying also Eq. (12), one

"For general information about the nuclear-structure and
nuclear-model considerations applied in this work (in particular
about rotating nuclei, collective motion, pairing correlations,
seniority, quasi-particles, blocking, the BCS method, etc.), the
reader is referred for example to the notes from A. Bohr and 3.R.
Mottelson, Lectlres on E'nclear Sfrlctlre and Energy Spec@'a
(Copenhagen, 1962), and to the excellent monograph by G. K.
Brown, United Theory of Nuclear Jj/rodeos (North-Holland
Publishing Company, Amsterdam, 1964). See also A. K. Kerman,
nuclear Reactions, edited by P. M. Kndt, and M. Demeur (North-
Holland Publishing Company, Amsterdam, 1959),Vol. I, Chap. X.
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U( ',L)=5' (~1)"[Z-,~-,'( ',L)/( '—;)
+Zs, &s,'(~', L)/(~r ~s,)];. (13)

~-'(~' L)= (fI:~(o',L) l~)(~ I
h'I i)

&s'(.',L) =(fib'l~)(~I:-(-',L) II').

The quantities denoted by (l jI) are defined by Eq. (A4)
in the case of a spherical nucleus, where the usual nuclear
shell model is applicable, and by Eq. (A5) in the case of
a nucleus with great deformation, where one applies a
modification of the shell model, including a spheroidal
equilibrium shape of the nuclear surface. '4 "

If the effects of residual inteactions on the matrix
elements are neglected, one may set 5+~2—'/' for a
spherical nucleus (if

~ f) is the ground state), and S~= 1
for a deformed nucleus. Due to the correlations, S~
might be slightly reduced [also small additional con-
tributions may occur in Eq. {13)].The effect of possible
collective motion on one-particle transition amplitudes
may be represented by CGective charges or effective
nuclear g factors. However, configuration mixing (or
band iiiixliig) iii the iilitial and final states might sonie-
times significantly modify the result [the form of Eq.
(13), as well as the value of the 5 factors). These
questions will be illustrated later in connection with the
applications to irregular Ej transition.

IV. THE CASE OF h'=6"e P AND THE
ROLE OF THE ls TERM

The single-nucleon pseudoscalar interaction, emerg-
ing4 ' to lowest order from the current-current theory of
weak interactions, has the form of the "helicity
operator, "o"y, of the nucleon. Other simple operators,
which may be constructed, subject to the required
symmetry-properties, have the character of relativistic
corrections to this operator. The subsequent considera-
tions are therefore restricted to

O'=6"e y= (Fh/3foRO)e y (15)

where G" is a constant, characterizing the strength of
the nuclear weak interaction (G" depends on isospin and
mass number' ). The dirnensionless parameter F repre-
sents the average magnitude of parity-impurity ampli-
tudes ln nuclear states. Estimates of F have bccn
presented, e.g., by Michel. ' The transition amplitude
ratio of Eq. (11) may be factorized as follows:

U(o', L)/U(o, L) =FR(o',L; o,L), (16)

which provides the desired decomposition in a weak-
interaction parameter Ii, and a pure nuclear-structure
ratio E.

'4 For further information about the nuclear shell model see, for
example, A. de-Shalit and I. Talmi, ENclear Shell Theory
(Academic Press Inc. , New York, 1963).The "Nilsson-Model" is
introduced in Ref. 15."S.G. Nilsson, Kgl. Banske Videnskab. Selskab, Mat. Fys.
Medd. 29, No. 16 (1955).

To facilitate the further discussion of the expression
U(o', L) with h', given by Eq. (15), the following single-
particle quantities are defined:

(o',L)= (fIt~0(o', L) la&(Ix ~
(~ r/Roi) Ii), (17a)

&s(o' L) = (fl (~ r/Roi)
I
P)(&(~(o' L) ll~),

( 'L)=(f( ( 'L)( /R )II), (Ig )

uo( ',L) =(J((~ r/Roi)~(~', L) jli), (»b)
u(o', L) = (1/2) [ug(o', L)+us(o', L)]. (18')

The following sum rules hold:

u~(o', L)=P A (o',L); uo(o', L)=gp Bp(o',L). (19)

With the expressions, Eq. (9), for the operators (AIL)
and (FL), one finds ug(FL) =uo(FL) =u(FL), whereas
the operators ug(3fL) and uo(ML) generally need not
be equal. It is appropriate to compare the quantities
U(o',L) and u(o', L); the ratio Q=F'U{o',L-)/u(o', L)
should in general be of the order of i. The ratio
u(o', L)/U(o, I.), on. th. e other hand, is expected to be
large in the cases of interest, due to nuclear-structure
effects [(o,I.) is hindered). In the case of irregular EL
transitions, a reduction of the ratio

~ Q ~
compared to 1

is also expected; special attention will be paid to this
qucstlon.

If the nuclear Hamiltonian were spin indepeldeu-t the
following relations would hold for the independent-
particle model:

[ho, e y]=0,

g, q' meaning any labels i, f, o, or P. Then one would
also find the following relation, from Eqs. (13) and (14),
since the energy denominators are cancelled:

U(o', L)=FS~(+1)"
X[K;~;(~' L)—Zs, &s,(~' L)] (21)

If the sums were performed over all n and P values, this
expression would be proportional to the quantity
(fIt[a&{a',L),(a r/Roi)])i), which is the relation found
by Michel. ' This does not seem to be strictly valid
though, even when Eq. (20) is fulfilled. Yet, U(o', L)
should be roughly proportional to the difference
u~(o', L) uo{o',L), and thus te—nd to vanish for the
ease EJ because of cancellation. However, when ho is
spin-dependent, Eqs. (20) and (21) no longer hold.
Thus, in principle there is not even approximate cancel-
lation between the two sums of Eq. (13) for the case of
FL. Consequently, U(BL) is essentially determined by
the spiv dependent part of-ho.

In the nuclear shell model the spin-dependence is
represented by the well-known /s term. '4 The actual
form of ho is described in the Appendix; see Eq. (A10).
Considering spherical nuclei, it seems to be an empirical
fact that the presence of the 1s term a6ects the radial
wave functions R„i;(r) only slightly. On the other hand,
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the ls term has a great eGect on the single-particle
energies. These facts are born out e.g., in calculations
with a diffuse nuclear potential"; in particular the con-
dition R„i,(r) R„i(r) is found to be valid to good ap-
proximation. One may therefore make use of Eq. (A14)
and insert in Eq. (13) the expressions

sents the hindered M1 amplitude, U(M1) =Si(3/4s)'~'
X(eh/2$Ipc)g, X. Here, Si is the S-factor [Eq. (A6)]
for Mi.

The expression for R now reads as follows:

Ri=R(81; 3I1)= ~(S~/Si) f,(A,Z)C~/X; (29)

A '(o', L) [pP—p ']FA (o',I),
Bs'(o',I)=[ps' pf—']FBs(o',I), (22)

fi(A, Z) = (2/g )(ei/e)(RpMpc/b)

=(11/g.)(oi/o) A'".

V. THE CASE OF M1 PLUS E1

The case where the irregular Ei transition interferes
with the regular, hindered kIi transition is considered.
The operators read, from Kq. (9),

(E1)=eii(3/4~)'"r
&

(cV1)= (eh/2cVpc) (3/4m. ) '"(g,l+g.o) .

For simplicity, the following dimensionless quantities
are introduced:

(23a)

(23b)

a = (fl(r/Rp~)]}n)(n
~

(n. r/Rpi)
~
i)

bp
= (f ~

(n r/Rpi)
~ P)(P [(r/Rpz) )i),

replacing A and Bs of Eq. (17);
a~'= —[eiRp(3/4m. )'"(»'—p ')F]—'A ~'(E1), (24a)

bp'= [eiRQ(3/4lr)'—"(pr' pp')F] 'Bp'(E—1), (24b)

replacing A ' and Bs' of Eq. (14);

while the energy denominators are p, (~)—p (a), and

pf(i~) —po(~), respectively. Here, A and Bs are given by
Eq. (17).For z/0, the energy ratios differ from 1 (by a
term proportional to ~, to lowest order), preventing the
A' and 8' sums of Eq. (13) from cancelling. The result
differs greatly from Eq. (21). In the case of a nucleus
with spheroidal deformation, the above considerations
for a spherical nucleus are still essentially valid, in-
cluding Eq. (22). (p„P refers generally to the eigenvalue
p„with ~=0; see the Appendix. )

If effects of correlations are disregarded, S» is the sta-
tistical factor for M 1, and one can set Si~S~~S ~2 '

g

for spherical nucleus, Si= 1 for deformed nucleus. In
Eq. (30) one inserts, for g„either the free-particle
magnetic moment (p„or p„), or an effective value which

may be about 30 to 40% smaller. The factor e& is the

effective Bi charge; for pure single-particle transition
it would be equal to (gi —Z/A)e. However, for admix-

tures of higher excitations, collective sects may con-

tribute, via the giant dipole resonance, tending to in-

crease the value of ei. Thus ei ——(gi —Z/A) e+e„ii holds,
where 0&e„ii&e.Results will be presented for e„ii=0,
as well as for e,.ii=e; g~ is 0 for neutron, 1 for proton.

The expressions derived so far, will in Sec. VI be
applied for calculating R~ in a few cases. Of course, the
important problem is to evaluate C+/X (or C+/D and

D/X), including the determination of the sign. Since the
spin-orbit splitting is fairly well established" (~ is known

to be positive), one expects generally C+ and C to be
well-determined [they should have opposite signs, see

Eq. (25)].Also, the quantity D [see Eq. (26)] seems to
be well defined, in general. For the magnitude and the
sign of X (or D/X), one must usually resort to experi-
mental information. Furthermore, in the case of neutron
transitions, the value of the factor fi, Eq. (30), may be
ambiguous.

In the following calculations, the hurmorIic-oscillator

potential (h.o.p.) will be used. This is briefly described
in the Appendix; see Eq. (A16) et seq. In the spherical
case, it should be noted that Eq. (A14) holds exactly for
h.o.p. ; thus for the quantities defined by Eqs. (23) and

(24) one obtains'~:
6f 6p~

bp~',.
pq(K) p~+(K) Pk pt'(K) ps+(K)

D= —(eiRp) '(3/4x) '~'u(81)

=(fjt(/R )( /'Ro) jI ),
replacing e of Eq. (18'). Using

A~—=P +a+, A —=P a„,
8+=Zs, bs, B==Z—s 4

we write the sum rule, Eq. (19), in the form

(25)

(26)

(27)

(31)

Another great simplification appears in this case, since
r and r n connect only states with

~
61V~ =1:There exists

only one term of each kind n+, n, P~ and P; con-

sequently, there are only four quantities a and b to
compute, being equal to A+, A, 8+ and 8, Eq. (27).
For deformed nuclei (b)0), this simplification and
Eq. (31) do not hold strictly. However, one can assume
1' to be a good quantum number (see the Appendix),
a,nd then Kq. (31) is still valid. "

D=A++A =8++8 . (28)

The quantity defined by X=(f((g&/g, )l+n)i) repre-

I6 J. Blomqvist and S. Wahlborn, Arkiv Fysik 16, 545 (1960).

17 The validity of Eq. (31) also means that Kq. (22) holds
exactly. Furthermore, the following fact (independent of h.o.p.)
should be emphasized: The result of the calculation (i.e., the value
of the ratio E&) is essentially determined by the spin-orbit splitting
of the single-particle energy levels; otherwise, the spacing of the
levels enters roughly by an over-all factor and is of less importance.
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VI. APPLICATIONS

Ta"' 482-heV Transition; 5/2+ ~ 7/2+

This transition is predominantly E2(~97%), and its
half-life has been measured to be 1.0X 10 ' sec. The M1
part is hindered by a factor of 10'—10'. From angular-
correlation measurements, " the ratio It [Eq. (3b)] has
been obtained; the magnitude is ~q~ =6.4+0.8. The
M1 internal conversion coefficient" is found to be
0.40+0.15, nearly 10 times larger than the tabulated
value. The penetration factor" has been evaluated from
experiment and turns out to have the value'

Psrt=—U(M1; pen. )/U(M1) =+210~30. (32)

0.3-

0.1-

4
O

'fg181 ~pd Lg1?5

x and X values

according to
MN (points) and

9 GN (triangles)

I s I ~ I s I ~ I

01 0.35 645 0 0.1 0,2 03
d

The single-particle operator for (M1; pen. ) is obtained
(approximately) by replacing, in the expression for the
operator (M1), the vector p= gtl+g~ by the vector"

(r/Ro)'LIs+g —g./'( I')j (33)

Since the I- and e-matrix elements both are greatly re-
duced, only the last term of Eq. (33) contributes. In
fact, the matrix element U(M1;pen. ) is of allowed
character for 2ds/s+~ 1g7/s or for 5/2+[402 j&~ 7/2+[404 j
(see the Appendix regarding asymptotic quantum
numbers")

The fact that psrt is known experimentally makes it
possible to predict the sign of R~. One may put
FRi=Psr&U(E1)/U(M1; pen. ). Furthermore the last
term of Eq. (33) is just the same operator as occurring
in u(Z1), Eq. (26); in fact U(M1; pen. )=Stg, (3/4z)'/s
X(eh/2Mpc)D, where the factor S, is the same as the
one appearing in Eq. (29). Thus Ri can be written in
the form

Ri=Psrtfr(A, Z)(S~/St) Y~ I V~—= WC~/D. (34)

If the nucleus is assumed to be spherical, the transi-
tion is 2d5~2~ 1g7/Q with the only possible parity ad-
mixtures being 1'/s, 1fs/s, 2f7/s and 2fs/9, One finds
exactly (using h.o.p.) A~ ——A =8+ 8, so that all-—
nuclear matrix-elements cancel in the ratio between
C+ and D [see Eqs. (25), (27) and (28)]. As a result, '"
I'+ is given simply in terms of the energy ratios of
Eq. (25), and this expression clearly vanishes at «=0.
The energy-level order is roughly correct, in the spheri-
cal case, for x= 0.075 and X=0.45 in Eq. (A18). It holds
to second order in /r: I'+ ——3.85s(1&1.10x). The ratio V+
as function of ~ is drawn in the erst diagram of Fig. 1,
where various assumptions are compared.

In actuality, the Ta'" nucleus is deformed. The
calculation for 5&0 is more complicated, and has been

"Z. Grabowski, B.-G. Pettersson, T. R. Gerholm, and J. E.
Thun, Nucl. Phys. 24, 251 (1961).' E. L. Church and J. Weneser, Ann. Rev. Nucl. Sci. 10, 193
(1960). See also A. S. Reiner, Nucl. Phys. 5, 544 (1958)."T. R. Gerholm (private communication); T. R. Gerholm,
B.-G. Pettersson, and Z. Grabowski, Nucl. Phys. (to be published).' B. R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab.
Selskab, Mat. I ys. Skrifter 1, No. 8 (1959).

PIG. 1. The ratio Y'+ ——WC~/D [see definitions in the text,
Eqs. (34), (25), and (26)] as a function of the nuclear potential
parameters ff:, ) and 8. MN means Ref. 21; SGN means Ref. 15.

TAm, E I. Calculated values of the quantities u, bp t see Kq.
(23)j, and A~/AS for 8=0.2, ff:=0.06 and X=0.45. The ratio
6c/hN equals (~;—e )/(N; —N ) or (ef—~p)/(Ny —Np) (unit Scop).
(The 482-keg transition in Ta' or the 343-keV transition in
Lu"'.)

Orbital
np Pg

Assignment
PEn&)Z

3031
3121'

503$
5121'

523[,
5321'

303$

503$
514$
5231'

(Rp'/bp') a;
(~0'/bp') bt

-1.426
—0.036
—1.420
+0.002
+0.008
+0.000
—1.447
—1.427
+0.001
+0.002

A~/aS

0.878
1.466

1.245
0.622
0.472

—0.237

1.322

0.811
0.635

—0.142

performed by the aid of a computer (IBM 7094).It leads
to a result which is roughly the same as for 5=0. In fact,
even the relative position of the two levels 5/2+[402]$
and 7/2+[404]l, is found not to be greatly affected by
the value of 6; see e.g., Ref. 21. The result is shown in
Fig. 1.We see that I'+ and I' do not differ too widely;
the sign is well determined. " In the present case, the
5/2+ level is a hole state, and so I' sh, ould be used.
Experimentally, the deformation" is roughly 5=0.2,
and one may take ~~0.06, X~0.45. The value found
from Fig. 1 is then I' =0.22+0.04. The details of the
calculations are shown, for one particular case, in
Tables I and II. Table I shows that there are still
essentially only four admixing states, and Table II
shows that A+, A, 8+ and 8 are approximately equal,
also for 3)0. The calculation is therefore insensitive to
details of the nuclear wave functions From Table II it is
also seen that the energy difference (et—e;) is approxi-
mately reproduced (hp/p~7. 6 MeV).

It is of interest to calculate the magnitude of p/Lrt,

using the experimental value of the (M1; y) lifetime,
which gives

~
p/Lrt~ =(Stg /2. 79)(240&40)(Rp/bp) ~D~.
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TABLE II. Calculated quantities in the case 5=0.2, ~=0,06 and
X=0.45. (The 482-keV transition in Ta'8' or the 343-keV transition
in Lu"'.)

Quantity

(ey —e;)/heep
A+
A
8+

(~o/bo)'X ~ 8
C+
C.D
P'+
F

Value

0.044—1.461—1.410—1.447—1.424
0.653—0.553—2.871
0.228
0.193

9&10'XJ«110.

Lu"' 343-lreV Transition; 5/2+ ~ '7/2+

(37)

This M1 transition is also hindered (by about 600
times). Experiment gives the value (4.7~0.4) X 10 iP sec
for its y lifetime, " and the estimate I/tl~0. 1 for the
(E2/3/I1) ratio. The penetration factor p/ai of the N1
internal conversion is not known, however. The in-
formation available is sufficient for evaluating the mag-
nitude, but not the sign, of Ri LEq. (29)].The transition
involves the same orbitals" as the 482-keV transition

"S.Wahlborn, Nucl. Phys. 37, 554 (1962)."B.Deutch, Nucl. Phys. 30, 191 (1962).

(The uncertainty is derived from the experimental errors
of q and the M1 conversion coeScient. ) The calculations
give a very stable value of D, (Rp/bp) 'D = —(2.88&0.03),
and the result is

I p~il (Sig /2. 79)(700+100).Thus,
with S~= 1 and g,= 2.79, a value much larger than the
experimental one

I Eq. (32)] is found. However, in-
cluding the sects of pairing correlations, particularly
with blocking, ""certainly brings down the value of S&,
possible effects of band mixing give the same tendency.
Furthermore, one expects g,(2.79. Together, therefore,
these sects may substantially reduce the estimate of
lppril, and there need not be any discrepancy with
experiment. The calculated value of D can therefore be
assumed to be reasonably correct. Equating the result
for

I ppril with the experimental value, Eq. (32), gives
the estimate (Sig./2. 79) 0.30&0.06.

The results of the calculations are inserted in Eq. (34)
(with S =1),giving Ri= —(3.4&0.8)X10'(ei/e). From
Eqs. (11) and (16) one finally obtains

F= —(1.6+0.5)(ei/e) X 10'F
= —(1.6 p p+i P)X10PF, (35)

where the limits refer to e~ being 0.6e and 1.6e. The
experimental result by Boehm and Kankeleit' reads

F= —(5W2) X 10-'.

Combining the extreme limits of Eqs. (35) and (36)
gives the following range of possible F values, which
are compatible with experiment and with the present
nuclear-structure consideration:

in Ta"' (also, in both cases, the final state is the ground
state). One may evaluate IRil, using the theoretical
result obtained for Ta"'; in particular, the information
in Fig. 1 is applicable. For Lu'", 5/2+ is a particle state.

I il =e,Rp(3/4~)'/PIC+/&(F1) I, where IC, I

=0.063+0.010 (from C~= —DY+) and U(3II1) is ob-
tained from the partial (M1), life-time. The expression
for the polarization reads:

I
&

I
=(0 7a0.1)(1+q')—'"(ei/e) X 10'I F

I

=(0.7 p p+")X10'IFI. (38)

Comparing this result with Eqs. (35) and (36) for Ta"',
the following reasonable prediction for I u'" is found:
IF I

—(2&1)X10 '. The sign of F is expected to be
opposite to that of ppri.

Fe" 14-keV Transition; 3/2 —~ 1/2—

The half-life of this well-known transition is 1X10
sec. One may assume that the amount of E2 is negligible,
i.e., q~0. The retardation factor for M1 is then about
140. The hindrance is due to the complicated structure
of the states, which have strong configurational admix-
tures, adding to the seniority-1 components built on the
orbitals 2pi/p and 2pp/p ~ The strong configuration-inter-
action is enough to shift the level order, so that 1/2
becomes the ground state. The state vectors (one quasi-
particle" ) are given by,

I
pl I )Cp/p I

2pp/p)+'c'onfigurational admixtures,

I
7l f If)—Ci/p

I
2pi/&)+configurational admixtures.

The available configurations are such that their con-
tributions to M1 are fairly small; therefore, one may set

SgCg/g|"3]g 140 ' ', (39)

D= —(3v3/2)(bp/Rp)', X=243/3& (40b)

Cy/X= —(bp/Rp) I (9&5)/(1&2.20')
—(9+1)(1+1.10K)]. (40c)

Equation (40c) has been obtained with), =0.45. Clearly
the quantity C+ is nega, tive and C positive (p:(0.1);
they do not approach 0 when /t:

—+ 0 but the sum C++C
"I. Hamamoto and A. Arima, Nucl. Phys. 37, 457 (1962).

where S~ is the M1 statistical factor. Theoretical
analysis'4 of properties of Fe'" levels indicates that the
main component of the 1/2 state is (pp/p')ppi/p(42%),
and the 3/2 state is predominantly (pp/p')p/p(72%).
This result would require the factor S~ to have a rather
small value (there might also be destructive interference
in the 3II1 amplitude from the admixtures).

In calculating the parity impurities, it is assumed that
these to erst-order enter only as parity admixtures to
the 2pi/p and 2pp/p orbitals: n+= 2dp/p, n = 1dp/p,

P+ ——3si/p, P =2si/p. Using the h.o.p. , one finds:

A+= —( %73/6)(bp/Rp)', Bp —(2%3/3)(bp/Rp)', ——
(40a)

A = —(v3/3)(bp/Rp)' 8 = (435/6)( p/bRp)'—
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does. Therefore, the ratio WC+/X is positive, and R~

[Eq. (29)] has the same sign as f~(A, Z) S.ince g, is
negative and g~= 0 for a neutron, E~ turns out positive
if e„~~=0, but negative if e„i~=e. Thus, one cannot with
certainty predict the sign of E~, within the present
considerations, it is possible, however, to derive an
upper limit for

~
E~

~

.
For ~=0.06, Eq. (40c) gives: —C~/X= +0.081,

+C /X=+0. 104. Since the states are actually quite
complicated, pairing correlations will greatly modify
the wave functions, making the result intermediate
between these values. For the same reason, S~ is reduced
relative to S (S stands for S~ S ). Assuming the
product Cl/2 C3/2 to cancel in the ratio U(E1)/U(/M1),
one finds

I
&~

I

=
1
(2 0~0 2)( e&/e)( —1.91/C, )(S/Sg)

~

&(10~01)~, (41)

where P is a factor for possible enhancement of B1
relative to 311.The expected reduction of S~ and ~g, ~

may increase the value of g by as much as a factor of
~3.However, there is also the possibility that B1 does
not suer from the same "hinderedness" as does 351;
this could give rise to another factor of roughly 10
[see Eq. (39)]. One may therefore set the limits
1&@&30.

The result reads, if the value F=4.4&&10 ~ according
to Michel' is used:

[P[ &60IPI =2.6X10-'. (42)

This should be considered a fairly conservative upper
limit (provided the estimate of F is correct). In fact,

~

P
~

might be smaller than the value of Eq. (42) by an
order of magnitude. Attempts have been made to
measure E' for Fe'~, th, e present experimental result"
being P= (2&6)X 10 '.

VII. SUMMARY AND CONCLUSIONS

The general expressions for the irregular transition-
amplitude U(o', L), for the case of low-lying states in
odd-A nuclei, are presented in Eqs. (13) and (14).These
expressions have been derived within the independent-
particle model and are restricted to seniority-1 states.
Prescriptions for their use with the shell model are
presented in the text for spherical as well as spheroidal
nuclei (see also the Appendix). The particular form of
the perturbation h'=G"e p leads to simplifications [as
indicated by Eq. (22)]. For irregular EL transition, the
ls-term is of crucial importance, and special attention
has been paid to this question.

In the case of %1+81, the nuclear matrix-element
ratio R& is given by Eq. (29). The use of harmonic-
oscillator potential for calculating the amplitudes leads
to simplifications, in particular Eq. (31), but does not

25K. Kankeleit (private communication); Proceedings of the
InternationaL Conference on XNcLear Physics, Paris, JNLy 1964
(Publication par le Centre National de la Recherche Scientifique,
Paris, 1964), Vol. II, p. 1206. See also L. Grodzins and F. Geno-
vese, Phys. Rev. 121, 228 (1961).

crucially inft.uence the result. In connection with the
illustrating applications, effects of correlations on the
calculated matrix elements have been discussed.

The 482-keV transition in Ta'" is a remarkably
fortunate case, since the penetration factor" p~~ has
been experimentally determined"; this makes it also
possible to predict the sign of Eq (and hence of P ~ FE).
It is interesting to compare the tentative limits of F,
which are obtained in this work, with Michel's estimate'
F=8.4X10 ~, based on the current-current theory of
weak interactions. The agreement is good for the lower
limit of F according to Eq. (37). In the analogous case
of the 343-keV transition in Lu' ', the calculations indi-
cate a value of

~

P
~

[Eq. (38)] roughly half of that for
Ta' ' The 14-keV transition in Fe' is a more compli-
cated case, because of strong configuration-mixing, and
the result [Eq. (42)] is not very decisive; the predicted
upper limit of ~P~ is smaller than the experimental
error "

One may conclude that it is possible to calculate,
under certain circumstances, fairly unambiguously the
value of the nuclear matrix-element ratio E, using the
appropriate version of the independent-particle model.
Such calculation is important, since it makes it possible
to compare the result of experimentally observed e8ects
of parity admixtures (like the circular polarization P)
with predictions of weak-interaction theories. In particu-
lar it has been found that the Ta"' experiment' does
not contradict the current-current hypothesis. ' (cVote
added im proof The mea.surement of the circular polari-
zation for Ta'I has recently been repeated [F. Boehm
and E. Kankeleit (private communication)) giving the
improved result P= —(2.0&0.4)X10 4, which should
replace the value quoted in the text [Eq. (36)].It has,
furthermore, been brought to the author's attention
that the collective contribution to the E1 effective
charge should actually have a negative and rather small
value, reducing for proton transition the ratio eq/e, and
hence the last members of Eqs. (35) and (38), by a
factor of about 2, without changing the sign. It should
also be mentioned that 3-quasiparticle excitations,
which have not been explicitly considered in deriving
Eq. (13), may generally give rise to a correction. , al-
though this is relatively unimportant unless the single-
particle level distribution is very nonuniform at the
Fermi surface; conservative estimates for Ta'" and
Lu'" give a correction factor with the value 0.8~0.3.
Combining the above-mentioned facts, we find that the
conclusion drawn in this article from the Ta' ' measure-
ment is not changed. The tentative result for the con-
stant Ii seems somewhat more diffuse, however, and it is
adequate to state the limits in the form 10 '&P & 10 '.]
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APPENDIX: NUCLEAR-MODEL EXPRESSIONS

The Independent-Particle Model and
Seniority-1 States

The nuclear Hamiltonian is given by

The degeneracy of an eigenstate
l it) is 2i+1 in the

spherical case, and 2 in the spheroidal case. The Fermi
level is denoted by ~~. A certain orbital g is referred to
as a particle orbital if e,& e~, and a hole orbital if e,& op.

The considerations are here limited to low-lying
intrinsic states of nuclei wi.th odd mass-number A.
These states are assumed to have seniority=i. The
usefulness of the seniority quantum number is the main
consequence of the strong pairing-correlations known to
act in nuclei's (due to the short-range part of II„,).
Then Eq. (A3) contains only one term, the label it being
uniquely determined by the quantum numbers ($xI).
In the spherical case, q stands for I= j, and g'for I'= j'.
For the intrinsic states of deformed nuclei, g stands for
I=K, and q' for I'=E'. Thus, g and g' label the states
uniquely; g~q' is assumed to hold. One may write

II,=+„h,„+II„„hs —hs(23I )——'V'+ V(r), (A1) &( 'I llo(8 L)llew I)—S(it il' 8 L)&rt'(0(8 L))rt) (A6)

where ho defines the independent-partide model used,
and II...represents the residual forces. The eigenstates
of Ho and ho are written

IIsl P,m,I,M)=E(.g, m,

I)lpga,

I,IV), h,
l

i.})=s„lrt). (A2)

The symbol f represents all quantum numbers needed
in addition to the parity (s) and angular momentum

(I,3II); the index rt labels the single-particle states. Con-
sider any independent-particle operator of tensor rank
L (component ti): 0„(8,L)=g„o„(8,L)„.Here, 8=0 for
time-even, 0= 1 for time-odd operator; for example, 8=0
for ho, and 8=1—0. for the electromagnetic multipole
operator &u(e,L) (see the text). One can write

&g'~'I'llo(8, L) ll ~~I)
= p S(~~I,g'~'I', &,&'; 8,L)(&'ll'0(8, L) jl~), (A3) &($p'qI)seniority i:E(it)= I sw (A7)

One of the following three situations is encountered:

(I) Both il and it' are particle orbitals (including
ground state).

(II) Both i} and it' are hole orbitals, or one of them
is a hole and the other the ground state.

(III) One of the two orbitals it and il' is a hole, and
the other a particle orbital other 3hae the ground state.

In the situation (III), the S factor vanishes or is small
compared to 1, in general. In the following, only the
situation (I) or (II) will be considered.

If the further eRects of residual interactions are
neglected, the energy eigenvalues of Ho are given by

where the S factors generally contain the eRects of H„,.
In defining the last quantity of Eq. (A3) it is necessary

to distinguish between the cases of the nucleus having
spherical or nonspherical equilibrium shape. ""In the
first case, V(r) is symmetric with respect to all directions
in the nucleus; then the angular momentum (i,m) of
the single-particle orbital is a good quantum number,
and the definition reads:

&i'(o(8,L) lli) = (2i'+1)'"(2i+1) '"&i'llo(8, L) lli) (A4)

If the nucleus has a static deformation, it will here be
assumed that the shape is axially symmetric (spheroidal)
and that the adiabatic description of particle and rota-
tional motion can be used. The angular momentum is
then a sum of an intrinsic and a collective part, I=J+R;
the component E of J along the symmetry axis of the
nucleus is a good quantum number. The definiton reads

&I',K'(o(8,L) jI,K)
= (IKL, K' K

l
I'E')(K'l ox x(—8,L) l K)

+ (—1)i'+x'(IKL, E' IC
l
I', E')—— —

X&—E'lo x ir(8,L)lK). (A5)

The properties of the S-factors are fairly simple in this
case. The following sign rule holds:

(+1)' '+(Srrtt'8L)&0.

S(rt il' 8 L) uu'+( —1)'+'sv' (A9)

"S. Wahlhorn, Nucl. Phys. 58, 209 (1964}.

Here, as well as in the main text, the upper sigu always
refers to the situatiou (I), the lower si gu to the situation (II).
For a spherical nucleus, the order of magnitude of

l Sl
is 1 (the actual value is determined by the shelMlling).
F«a defo rmed nucleus, IS l is exactly 1.

The above results for energies and S-factors may be
modified due to the eRects of residual interactions,
notably pairing correlations and blocking. ""However,
for high-energy one-particle excitations, these modifica-
tions are relatively unimportant; the magnitude of the
S-factors is somewhat reduced relative to 1. A clue to
these eRects is generally provided by the SCS approxi-
mation" "" this gives for the S factors in the
seniority-1 case:



y{r)= —b'V'{r)//r,

1/ (r) = —h'( Mph')-'[ s' —(r'/3) ]. (A10b)

Here, b is a characteristic length, and I( and 8 are

empirical parameters.

The Spherica/ /Vuc/e-us Case (8=0)

If ~= 0 the eigensolutions read,

h, l
n/mi)= e„i

l n/mi), ln/mi) = lR„i(r)i'I'„,'(r)). (A11)

The following relation is of use in the present work:

(n'/'llplln/&=Mph '(p-i p"i—)(n'l'llr/illln/). (A»)

The radial quantum-number e is usually taken to be a
nonzero integer. For a&0, the solution is given by

hpl nljm)= p.i, (~) l nljm};
(A )

l
nlj m) =

l
R„i;(r)ii[I"(r)g't']„t),

where the bracket [ ]„&' means vector coupling;
j=/+1/2. The following statement is valid, as a
corollarium of Eq. (A12): If R„i,(r)=R„i(r) is inde-

pendent of j, then

( 'l'j'I Iil /j&=Moh-'[. '—" ']
y(n'/'j'l» r/i

l nlj) (A14.)

Here p iP=p„&;(0), by definition.

The Spheroida/ IV uc/eus Case (-b) 0)

The solution for f~&0, b&0 is expressed in terms of
the eigenstates for f~:=0, 8=0:

hpl p«&= p,.&(.) l p~z&;

l y»K) = P c„ip(yz.K) l
n/Az) .

(A15)

Here ln/AZ) = lR„i(r)i'I"q'(r)Xz'n)
been defined earlier, x=parity, and y represents all
other quantum numbers needed. The matrix element
(p'n'El» pl&»E) can readily be evaluated, since Eq.
(A12) is applicable for each component.

The IIarmonic Osci//ator Potential -(h o p).. .

The Hamiltonian, used in this work, is given by"

hp= [—h'(2Mp) 'V'+(heep/2)(r/bp)'] —xhppp(21 s+Xl')
+hhcpp(r/bp)'[(s/r)' —{1/3)], (A16)

The Shell Model and the Use of Harmonjc-
Oscillator Potential

In the nuclear shell-model one takes, generally, "
hp(„, b) = hP(2M )-iyP+. y(r)

+2~y(r)1 s+g (r), (Ala)

where, in particular, one may take

where bp=(h/3IIpp~p)'~' The following values are used:

Ace 432—'/' MeV 80~123'/' F
(A17)

bp/Rp~0. 822 '".
In Eq. (A16), X is another empirical parameter. "

For 8=0, the number of oscillators, /V=2(n —1)+l,
is a good quantum-number. The energy eigenvalues
are given by

pni;(~) = ((/V+3/2) —x[f(/, j)+X/(/+1)]) ha)p, (A18)

where f(/, /&1/2)=+(/+1/2%1/2). One finds that
Rip&, (r) =RNi(r) does not depend on jso, that Eq. (A14)
is valid.

For 5&0, S is not strictly a good quantum number.
However, one has found that a good approximation'5
results if it is assumed that X has a fixed value for
the solution, Eq. (A1S). Then the eigenvalues of
hp are written p~nx{~), and the eigenvectors lv/VX&
=Ziz aiq(ylVK)

l
MAX} [note that pr = (—1)x].It is con-

ventional to label the eigenstates by the so-called asymp-
totic quantum numbers, ""[1Vn,A,]Z„K=A +Z,.

The evaluation of matrix elements with h.o.p. is a
relatively simple matter. For the matrix elements of
» r, Eq. (A14), general expressions are presented in

Ref. 26, including the radial matrix-elements. In the
deformed case, where Eq. (AS) is applicable, we use

(~'JV I'l» pl~/Vz)
(1V /V )Mppppbxx' ZB.Zl'A' alA(VIVIf)ai'A'(7 + R)

X(/V'/'A'Z'l» r/ilmAZ), (A19)

where'-i(X'/'A'Z' ».
r l/V/AZ) = (4~/3)' '(—1)'-'i'-'-'

X(E'/'lrl/V/)(&' »z zl&)J'I'p. '*F1 p. 'F~'df/ «c.
(see, e.g. , Ref. 10). The matrix elements of the electro-
magnetic multipole operators pp(o. ,I.) (see the main text)
are evaluated according to standard methods'" " (see
also Ref. 27 for M1 and E2 in the deformed case). For
generating the Nilsson wave functions, a previously de-

veloped computer program has been used; see Ref. 27.

General Note

Finally it should be noted that it is, of course, possible
to generalize the treatment to other kinds of states than
those considered here, and to nuclei with even mass-
number. Concerning odd-mass deformed nuclei, the
present work is restricted to the case If——Ky, I;=K;.
Furthermore, in the actual apphcations (M1+Ei in
Ta's' and Lui7P) the relations I.=Ir I;and E;+Et)I—.
are valid, making the two Qebsch-Gordan coeKcients
of Eq. (AS) equal to 1 and 0, respectively, which is a
somewhat special situation. If the condition K;+Et&I.
holds, the second term of Eq. (AS) may contribute.
By the use of Eq. (AS) one can easily include rotational
states in the treatment; however, the triangular condi-
tions limit the number of possible contributions (in
particular, the condition

l
E El CI. is restrictive—).

'7 R. T. Brockmeier, S. Wahlborn, E. J. Seppi, and F. Boehm,
Nucl. Phys. 63, 102 (1965).


