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Higher Order Corrections to the Cranking Model~
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The energy levels of the ground-state bands of several deformed nuclei are calculated using a scheme
whereby higher order terms in co {nuclear angular velocity) are retained in the cranking model. Two-param-
eter and three-parameter fits are obtained to the absolute energies.

' "
N a recent publication, ' the author suggested a scheme

~ - whereby the energies of high-spin rotational states
of deformed nuclei might be obtained by an extension
of the cranking model. ' The simplicity of this scheme
allows one to fit the spectra of certain nuclei (up to
spin I= 16) using only two adjustable parameters. Root-
mean-square deviations for the absolute energies vary
between 0.14 and 0.76% as compared to the experi-
mental uncertainty of +0.3%. The purpose of this
paper is to give a more detailed description of the
present model and introduce certain logical extensions
which result in still better agreement between theory
and experiment.

In Sec. I, the usual cranking model is extended to
higher order terms in te (the nuclear angular velocity)
making use of perturbation theory. In Sec. II, the
essential results of the previous part are rederived using
more general arguments based on self-consistency re-
quirements. Third-order terms which seem to be re-
quired in order to ht the highest spin states considered
are introduced. Sec. III contains a comparison between
the numerical results of this model and experiment.

Noting that for our simple case, U is given by

U= exp( —iJ~t),
(4) may be rewritten as

H= exp(iJact)H exp( iJ,&et) &cj- —
=Bo—6)Jg.

(6)

(7)

x axis, we can transform (1) to the intrinsic nuclear
reference frame. The wave function in the latter system
is p, where

(2)

Substituting (2) into (1), one obtains a new Schrodinger
equation,

IIq =i(8q/Bt),

where H is given by

FI= U '(HU iBU/Bt). —

We now seek a stationary solution to (3), i.e., one
for which we can write

We now solve (5) making use of (7). For basis states,
we take stationary states of the static Hamiltonian in
the nuclear system, Ho. The term H'= —coJ is treated
as a perturbation. The usual cranking model results
from the use of second-order perturbation theory. We
will, however, also include terms up to fourth order ina. '

Hf= iBQ/Bt

If we assume that the nucleus is rotating about the
* Supported in part by the U. S. Atomic Energy
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I. THE CRANKING MODEL The energy eigenvalues in the two systems are also

We begin by considering a rotating, deformed, self-
consistent potential well. In the laboratory system, one +=8'I HI&) (8)
has a time-dependent Hamiltonian H and state func- =&+~(~lI I ~).
tion f which is a solution of the equation
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Applying fourth-order perturbation theory, we obtain
for the energy eigenvalue in the nuclear reference frame,

(Ol H'I ttt&&tidal H'I0&8=Ep+P'
fn ~0—~m

, &0III'I~&&~I&'I~&&~II''IP&&PIII'I0&

(Eo E—-) (Eo E—.) (Eo E—n)

I (o I
fI'I ~& I'I &o I

&'I ~& I'
(9)

mn (Ep—E„)o(Eo—E )

In the above equation, lt'& is the basis state defined
by the Schrodinger equation Zp

I i& =E, I i&. All sums in
(9) exclude the terms m, ts, p=0.

The energy in the laboratory system may be calcu-
lated from (8). Since we are including terms up to
fourth order in H', we must calculate q to third order
in the perturbation, paying careful attention to maintain
the proper normalization. The contribution to the
pertinent matrix element to fourth order is

&ola'l~)(~la'Io&
& p I

fI'I p»= —2 2'
m (E,—E )

, &o I
If'I ~&&~ I

&'I ~&&~ I

&'
IP&&P I

&'I 0&+1
(Eo—E )(Eo—E )(Ep—E,)

+4 2' — (1o)
(Eo-E )(Eo-E.)'

Upon substituting (9) and (10) into (8), we obtain

&ol J.l~&(~l J.lo&
E=Eo—o' Z'

m (E,—E)

and

, &0l~. l~&&~l J.l~)&~l J IP&&PI~*I0&

(E —Eo)(E.—Eo) (E,—Eo)

—&o Z' (15)
(E Eo)

The evaluation of the expectation value for the angular
momentum of the state q leads to

&po I J.l p )=oiLdp+2Cod']. (16)

Upon comparing (12) and (13) with (16), one sees that
a diferent effective moment of inertia enters into the
calculations of energy and angular momentum when
terms of order rds are retained in d(rd). The usual
cranking model treatment leads to (14). We have
managed to obtain a result for the moment of inertia,
however, which depends on the degree of rotation. Thus,
this treatment leads to a centrifugal stretching of the
nucleus, reminiscent of the theory of Davydov and
Chaban3 although no interaction between rotational
and vibrational modes is explicitly introduced.

The angular momentum is of the form

It is possible to obtain the main result of the previous
section without resorting to perturbation theory. The
treatment of this section is perhaps more satisfactory
since we will see that the large correction terms which
arise from the so-called "higher order" contributions
cast doubt on the rapidity of convergence of the pertur-
bation series.

%e choose to write the energy in the laboratory
system in the form

E=Eo+o&(Z &W'").
yM

(Eo—E )(Eo—E )(Eo—E,)

, l&0l~*l~&l'l&0I~ l~&l'
+ 3o~' P' . (11)

mo (Ep—E )(Eo—E„)o

&p I~. l p»=~(E 4"")
Using (8), we have

E=E+ois Q b„(o'r, (19)

BE/Bod=BE&Bod++ b„(2P+2)ohio+'

All terms containing ~ contribute to the rotational which leads to

energy. If we write the energy in the form

E=Ep+-,'d(o~)o~',

then, upon comparing (11) and (12), we find that

ti(cd) = So+3CGP ~

, l&~l J.I0&l'
do ——2 P'

(13)

%'e can, however, apply a theorem due to Feynman'
which states that for a stationary solution of

&(~)v (~)=E(~)1 (~),
' A. S. Davydov and A. A. Chaban, Nucl. Phys. 20, 499 (1960);

R. M. Diamond, F. S. Stephens, and W. J. Swiatecki, Phys.
14 Letters 11,315 (1964).' R. P. Feynman, Phys. Rev. S6, 340 (1939).



BE/Boo= {q i BH/Ba
i q).

Thsx, z I. Constants used in tyro- arameter Gt
LEqs. (24') and (25') .

Therefore, in our case

BE/Bco= (y—f J.[ y)

=—co g l/&M ~.
u

Combining (20) and (21), we have

BE/Bee=+ b„(2p+1)co'&+'.

Nucleus

~172
@7174

+7178
Hf186
Hf168
Hf170

Hf IVY

+bI84
QbI86

80(10~ keg I)

2.274
2.596
2.689
1.734
2.328
2.894
3.116
2.369
2.897

C(10 6 keV ')

15.332
9.470
7.768
9.909
9.554

11.647
7.050
8.385
6.541

Hut from (17), we must also have

BE/Bco=-,' p a„(2p+2)co'&+'. (23) Ll(I+ I)]'is=co(uo+2Cco'+3Dco'+4Fcoo+ ) . (25')

Upon comparing (22) and (23), we see that both equa-
tions can only be valid if a~(p+ 1)= b~ (2p+1) for all p.
Thus, self-consistency is achieved if we write (17) and
(18) in the form

E=Eo+ ,'cd'(&o+3C-co'+5Dcd4+ 7Fco'+ ) (24)

{y~J~~ y)=co(c(o+2cco +3Dco +4Fco + ' ' '). (25)

If the higher order terms (those containing D, F, etc.)
are set equal to zero, (24) and (25) are identical with
the results of the previous section. No use was made
here of perturbation theory and, consequently, one
need not make any assumptions about the relative
magnitudes of the various coeKcients entering into
these expressions.

%hen describing the rotational states of deformed
nuclei, we may begin with (24') and (25'),

E„c=-'co'(do+3Ccoo+5Dco4+7Fco'+ ) (24')

In principle, ~ may be eliminated leaving one equation
for E„t,as a function of nuclear spin I. The solutions
depend parametrically on the coeflicients 80, C, D, etc.

III. COMPARISON WITH EXPERIMENT

In the previous report on this work, ' only the two
parameters 50 and C were retained, and a two-parameter
least-squares fit of the system of Eqs. (24') and (25') was
obtained. to the available experimental data for several
nuclei. ' Table I gives the values of 80 and C which
resulted in the best ht to the observed spectra. Once
80 and C were determined, they were substituted back
into (24') and (25') and those equations solved for E
corresponding to each value of I.The results of this pro-
gram appear in Table II.

The Gt to the data obtained in this manner seems
quite good. The rms deviations given in the last column
of Table II vary from 0.14 to 0.76% (rms deviations
are calculated before the theoretical energies are rounded

TABLE II. Rotational energies (keV) for two-parameter fit.

Nucleus

174

Hf166

H f170

+b164

+b166

Kxpt.
Theory
Expt.
Theory
Kxpt.
Theory
Kxpt.
Theory
Kxpt.
Theory
Kxpt.
Theory
Kxpt.
Theory
Kxpt.
Theory
Expt.
Theory

122.9
123.8
111.9
112.2
108.7
109.1
158.7
158.9
123.9
123.8
100.0
101.0
94 5
95.0

122.5
122.4
101.8
102.0

376.9
376.2
355.0
354.9
348.5
348.7
470.7
472.7
385.0
386.2
320.6
320.7
307.9
308.1
384.0
384.8
329.7
329.7

727.2
720.9
704.2
701.8
699.4
696.4
897.6
893.5
756.1
755.0
641.1
636.6
627.0
624.7
758.0
757.0
667.1
665.9

1147
1137
1137
1133
1140
1133
1407
1396
1212
1208
1041
1031
1036
1030
1219
1217
1097
1094

10+

1612
1635
1634
1648
1645
1971.
1965
1734
1731
1503
1491
1519
1513
1748
1750
1604
1602

12+

2129
2136
2186
2196
2206
2223
2565
2591
2304
2313
2013
2008
2063
2062

2172
2179

2564
2575
2651
2672

RQls %
16+ deviation

0.30

0.59

0.26

0.20

F. S. Stephens, N. Lark, and R. M. Diamond, Phys. Rev. Letters 12, 225 (1964); University of California Radiation Lab-
oratory Report UCRL-11402, Berkeley, 1964, Nucl. Phys. (to be published).
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Nut:leus ao(10 ' keV ')
@7172

+7174
QT176

Hf166
HP68
H f170

HP72
~164
+b166

2.336
2.618
2.719
1.762
2.337
2.954
3,149
2.372
2.910

C(10 ' keg ')

10.735
7.816
5.609
8.349
8.946
7.256
4.766
8.218
5.592

5.53
1.93
2.39
1.45
0.654
4.76
2.36
0.203
1.03

T~l,z GI. Constants used in three-parameter 6t
LEqs. (24') aud (25')j. Lo g r g

'C
Q92-

«c

l i g 1
~ Expt.—Teo-Parameter Rt—--Three-Parameter Fit

Hg
lee

Hfle»

t I . I t I

0 4 8 t2 0 4 8 t2 0 4 8 0 4 8

J.OO-
I I

~ Expt.—Trio-P'arameter Fit
---Three-Parameter Fit

1 gl'r

off). This should be compared with the experimental
accuracy of &0.3%.s The largest deviations are usually
traceable to the higher spin states. This suggests that
the higher order terms (those containing D, etc.) may
become signihcant for very large I.

In an attempt to obtain still better agreement with
experiment, the above procedure was repeated for
(24') and. (25') retaining the three parameters, do, C, and
D. The values of these three parameters which give the
best least-squares 6t to the data are given in Table III.
The corresponding energy levels are presented in Table
IV. From Table IV, it is seen that the rms deviations
have been reduced below the experimental uncertainties
in aB but one case by introducing the third parameter
D. One may question whether this is a signihcant im-
provement in view of the generally good results of the
two-parameter its. However, a more sensitive test of
the goodness of ht exists. One should also compare the
transition energies which are the experimentally de'-

termined quantities. Using Tables II and IV, one Ands

that the rms deviations for the transition energies are
usually about three times as large as the corresponding
numbers for the absolute energies. It should be remem-
bered, however, that the parameters 80 and C were
determined so as to yield a best Gt to the experimental
energies. If we tried to reproduce the transition energies,
larger deviations would result for the absolute energies.

Fyo. 2. +~+2/A I versus I for Hf isotopes.

In Ref. 5, graphs of weighted transition energies
versus spin are presented. They introduce the parameter

Ar= (Er Er s)/(4I—2), —

and plot Ar~s/Ar versus J. Since the transition energies
have an accuracy of +0.3% associated with them, the
ratios (Ar+s/Ar) are uncertain to &0.6%. The data of
Tables II and IV are plotted in this manner (Figs. I—3)
so as to allow a comparison with the results of Ref. 5.
In the latter work, the model of Davydov and Chaban, '
which explicitly takes into account the interaction be-
tween rotations and P vibrations via a P-dependent
moment of inertia is used to obtain good two-parameter
its to the experimental data.

IV. SUMMARY

In conclusion it may be said that the present model
permits one to obtain generally good two-parameter
fits to all of the rotational energy levels for the nuclei
which have been investigated. In two of the cases
where the deviations are signiicantly larger than the
experimental uncertainties, excellent agreement can be
obtained by including a third parameter which corre-
sponds to retaining the third-order term in the power
series expansion for the moment of inertia. If one were to
observe higher spin states of rotational nuclei, it might
be necessary to include still higher-order terms in this
expansion. Since the worst disagreement for Hf'" arises
for the high spin states, it may be that the next term

Q94-

4 Q92-

i.00

„096- g

Ol

cK
~ Q94-

i i
~ Empt.—Two-Parameter Fit——Three-Parameter Fit

FIG. 3. 2 I+sl+ 1
versus I
isotopes.

0 4 8 0 4 8 0 4 8 i2

Frc. t. Ar+&/A z versus I for W isotopes.

I t I l

0 4 8 0 4 8
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TAaLz IV. Rotational energies (keV) for three-parameter 6t.

Nucleus 10+ 12+
Rms %

16+ deviation

~172

+7174

176

Hf'66

H f168

Hf1?0

Hf'7'

gbl64

Qbl66

Expt.
Theory
Expt.
Theory
Expt.
Theory
Expt.
Theory
Expt.
Theory
Expt.
Theory
Expt.
Theory
Expt.
Theory
Expt.
Theory

122.9
122.8
111.9
111.8
108.7
108.5
158.7
158.2
123.9
123.7
100.0
99,9
94.5
94.4

122.5
122.4
101.8
101.8

376.9
377.9
355.0
355.4
348.5
349.4
470.7
474.1
385.0
386.5
320.6
321.1
307.9
308.2
384.0
384.9
329.7
329.9

727.2
727.0
704.2
704.3
699.4
699.9
897.6
897.1
756.1
756.1
641.1
641.8
627.0
627.6
758.0
757.3
667.1
667.4

1147
1145
1137
1136
1140
1138
1407
1399
1212
1209
1041
1041
1036
1036
1219
1217
1097
1097

1616
1615
1635
1634
1648
1645
1971
1963
1734
1731
1503
1501
1519
1518
1748
1750
1604
1602

2129
2129
2186
2188
2206
2210
2565
2579
2304
2309
2013
2011
2063
2060

2172
2173

2677
2679

2564
2563
2651
2655

3147
3151

0.14

0.08

0.18

0.48

0.24

0.11

0.10

0.14

0.06

p' in Eqs. (24), (25)j is anomalously large for this
nucleus.

In principle, (14) and (15) permit one to calculate the
coefficients dp and C which enter here if perturbation
theory is valid. 8p has been calculated in the quasi-
particle approximation. ' The results for rare-earth
nuclei indicate that 8p calculated in this manner is
usually about 10 to 30%%u~ smaller than the effective value
determined experimentally from the I=0 —& I= 2
energy spacing. (Unfortunately, these calculations have
not been performed for the specific nuclei investigated
here. ) In our model, however, the energy is given by

E=-',(o'(do+3CaP),

whereas d, gq is determined from

E—gGP8ef f e

A measure of the discrepancy between dp and 8,« is 5,
dehned by

d, gg
—dp 3coP 6'

jeff jeff jeff

S. G. Nilsson and O. Prior, Kgl. Danske Videnskab. Selskab,
Mat. Fys. Medd. 32, No. 16 (1961);J. J. GriQin and M. Rich,
Phys. Rev. Letters 3, 342 (1959).

Using Tables I and II, one obtains values for 6 which
range from about 30%%u~ for Hf"' to 4% for Hf'' Since
C&0 in the cases considered here, 6 is always positive,
indicating that ~,« is larger than do by 4 to 30%. If
the nuclei considered here follow the same trend as the
other rare earths, the present model would bring the
value of 80 (calculated with pairing) into better agree-
ment with experiment.

It wouM be prohtable to extend the calculation of
Ref. 6 to include the cases discussed above. Similar
(though much more diflicult) calculations could be
performed to obtain the coefficient C from (15) in the
quasiparticle approximation. It is only then that one
could make definite statements about the applicability
of perturbation theory and the extended cranking model
to this problem.
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