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Electromagnetic Solutions of the Field Equations of General Relativity

B. KENT HARRISON

Los A/amos Scient~fi'c Laboratory, Los Alamos, Eem 3fexico
(Received 6 July 1964)

An investigation of the electromagnetic field in general relativity has been undertaken. This study was
partially motivated by the recent interest in the intense quasistellar sources and gravitational collapse and
relativistic models for such phenomena. Metrics and fields as functions of two or three independent variables
are considered. The equations for the case of two independent variables are presented in a simple form, and
certain special solutions of these equations are derived, which may have some bearing on gravitational
collapse. The major result of this paper may be stated as follows. Suppose given a set of metric coefBcients
g;& which are functions of no more than three independent variables and which satisfy the vacuum Geld
equations. We also suppose it possible to express this metric in diagonal form. Then, from this metric, one
can Gnd another metric, plus nonzero electromagnetic Geld, which satisfy the Geld equations with electro-
magnetic sources plus Maxwell's equations.

I. INTRODUCTION

'HERE has been a resurgence of interest in theories
of gravitation in the last few years, in particular,

in general relativity. Furthermore, the recent discovery
of intense quasistellar radio sources' has caused much
speculation about gravitational collapse, which some
feel to be a possible cause of the intense radiation from
these sources. ' We thus have a very good reason for
investigating general relativity —to see what sort of
cosmological consequences it may predict, which
consequences may be used either to verify or disprove
the theory or to provide models which may contribute
to understanding of such cosmological phenomena as
the quasistellar sources.

This paper is an outgrowth of discussions by the
author with M. A. Melvin concerning the latter's
electric and magnetic "geons. "' Investigation of
possible time dependence of such "geons" led to the
present paper. Most of the results of this paper, how-
ever, go beyond Melvin's geon and are quite general.

The Geld equations of general relativity with an
electromagnetic stress tensor as source and Maxwell's
equations in curved space are investigated. The metric
coe%cients g;~ and the electromagnetic fields F;~ are
restricted to be functions of three independent variables
only. It is then shown how introduction of potentials,
plus a "duality rotation, "4 simplihes the equations.

The case in which g;& and F;I, are functions of only
two independent variables is considered in some detail.
SimpliGcation a la Weyl and Einstein —Rosen' leads to
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simple quasilinear wave equations for a metric coef-
ficient and an electromagnetic potential. Certain
special solutions —mainly similarity solutions —of these
equations are found and discussed; these solutions may
have some bearing on the problem of gravitational
collapse.

It is then shown that, if one assumes a functional
relationship between the two dependent variables
mentioned in the last paragraph, that one can find a
solution of the coupled gravitational-electromagnetic
equations in terms of a solution of the vacuum equa-
tions. This result also holds for the more general
equations with three independent variables if a similar
functional relationship is assumed. The final result is:
Given any solution (metric) of the vacuum 6eld equa-
tions which is a function of no more than three variables,
one can generate from this a solution of the coupled
Einstein —Maxwell equations with nonzero electro-
magnetic Geld. The proof given in this paper assumes a
diagonal metric, so that one must restrict the above-
mentioned vacuum metric to be diagonal or diagonaliz-
able. (Metrics which are functions of three or fewer
variables can, in theory, be diagonalized, unless there
is an asymmetry such as a rotation in the nonoccurring
coordinate. )

The assumption of functional dependence of certain
dependent variables has been made by several authors
before. ' However, the full generality of the above result
does not seem to have been completely stated and

pl oved.

II. SIMPLIFICATION OF THE EINSTEIN-MAXWELL
EQUATIONS

We work with the Geld equations of general relativity
plus electromagnetism,

R„——,'g@R=kT,;, (2.1)
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with
(2.2)

&',= (4 ) '(F,gF;g sF—g&g"g,~). (2.3)

F;, is the electromagnetic-held tensor, g;; is the metric
tensor, and conventions as to metric signature, Riemann
tensor, etc., are as in Landau and Lifshitz. ~ Maxwell's
equations in curved space are4

[ijkl jg)Fgs/»i=0

(~/»') L(—g) "9'g"'F'gj=0 (2 5)

{[ijkg=(+1,—1) for (even, odd) permutation of i, j,
k, I; =0 if any two of i, j, k, I are equal. }

Contraction on Eq. (2.1) yields

G =[k(8gr) g]gg'F" (2.7)

where R=R' T=T . Since T=o, we have R=O. If
we put

G,,= —W „(i=0,1,2), (2.15)

We now assume that the f; and the G,, are in-

dependent of x3. This partially justides the previous
assumption of a diagonal metric, since a metric can be
diagonalized if

(a) it is independent of one variable (say x'), and

(b) it is invariant under the reflection x'-+ —x'.
The 6rst requirement makes it possible to diagonalize
the part of the metric involving g,;(i,j&3) by a general
coordinate transforma, tion involving three functions
(new coordinates), for then one can require g;,=0
(i'; i j/3). The second requirement then makes
possible the setting of the g,s (i&3) equal to zero. If x'
is an azimuthal angle, (a) requires axial symmetry and

(b) requires no rotation.
The independence of x' now brings about the follow-

ing results. The equations for i=0, 1 or 2 in Eq. (2.13)
each reduce to two terms; the same thing happens for
j=0, 1, or 2 in Eq. (2.14). This circumstance makes it
very easy to satisfy these equations by means of
potentials. We dehne A and 8 by

U;,=kT,;,
then Eqs. (2.1) and (2.3) become

Rg ——Ug
2(G, G i iG Ging. ,)

(2.8)

(2.9)

G"=esB,s exp(f'+ f—fs—fs)
(ij,k=0, 1,2 in cyclic order). (2.16)

(A is a component of the usual vector potential; B
is not. ) We now find that Eqs. (2.11) become

In Eqs. (2.4) and (2.5), F,, is replaced by G;;.
We now assume the metric to be diagonal (for

justification see the next paragraph):

g;;=5;;e; exp(2f, ), (2.10a)

I k k i i k l i l i l k l ik
l&i, k

=2exp( —2f,)(A,Q,+ B, B) (i, k, 3W) (2.17)

with
8o= —i 8y= 82= 83=|. (2.10b)

(We now drop the summation convention). Equations
{2.9), (2.4), and (2.5) now become'

Lk ki ik Li Li lk oIik
i+i, k

=2 Q G,gGsgeg exp( —2fi) (i~k), (2.1,1)

B,;A,s= B,gd, ; (i,k,3W) .

Equatlolis (2.12) yield

f;;fi, , fi,' fi;,—+e,ei e—xp(2f, —2fi)

X(fi, if;, i f', g' f, , gg f,—, i P —f,g)]—

(2.18)

2 [f',gfg.g fg, P fg, ~"+—egeg e—xp(2f' —2fi)

X(fi, if, , i—f*,g'—f,, gg
—f, i Z f, g)7

=P {G;i)'eiexp( —2fi) —-', e; exp(2f )

X P (Gi )'eie„exp( —2fi—2f ), (2.12)

Q [ijkljGgg, i=0, , (2.13)

[e;exp(fo+ fi+ fs+ fs 2f, 2f,)G;;],.—=0,—(2.14)

where commas denote ordinary diQ'erentiation.

VL. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-%esley Publishing Company, Inc., Cambridge, Mass. ,
1962), 2nd ed. , Chaps. 10 and 11.' B.Kent Harrison, Phys. Rev. 116, 1285 (1959).

=exp( —2f,){(A,,)'+(B,,)'—g e,eiexp(2f,—2fi—2fs)

X[(~,g)'+(B,g)'j} (i&3) (2 19a)

=Q ei exp( —2fg)[(A, g)'+(B,g)'j (i=3). (2.19b)

Equations (2.13) and (2.14) reduce to

Z e'[~, 'exp( —f'+f +f,—f,)j„=O

(i,j,k=0, 1,2 in cyclic order) (2.20)

and. exactly the same equation for B.Equation (2.20) is
a wave equation for 2; were the absent independent
variable xo instead of g', this equation would be
Laplace's equation.

It should be noted that there are alternative ways of
de6ning potentials. %e could write

G~g= A;;—A;; (ij=0,1,2) (2.21)
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h(A, B)=0. (2.23)

We can now use Eq. (2.20) (for both A and B) to
further elicit the relationship of A and B. We find that,
in general,

A=C cosa

8=8 sinn

(2.24a)

(2.24b)

for constant 0, , where C is a new potential. There is
another case, in which 8 is an essentially arbitrary
function of A; however, in this case, A is restricted
further by a first-order differential equation. This
second case is too special for our purposes and will not
be considered.

In either of these two cases, we may introduce a new

potential C which takes the place of A and B. It may
be defined by the equation

C, ,C,,= A, ;A,+B,B, (all i,j) (2.25)

and it satisfies the wave equation (2.20).
The 6nal set of equations is now the set Eqs. (2.17),

(2.19), and (2.20), with A, ;A o+B;B,o~C, ,C, o in

Eq. (2.17), (A, &)+(B,&)'~ (C, &)' in Eq. (2.19), and
A —+C in Eq. (2.20). There are eight equations and
five unknowns.

We note that the transformation from A and J3 to C
is apparently a "duality rotation" of Misner and
Wheeler. ' If the fields were independent of x instead
of x', we could choose 8 to be zero, for example, with
A =C, and have a pure electric field; or if A =0, 8=C,
we would have a magnetic field. However, in the present
case, we will have both electric and magnetic fields

present.
one other comment should be made. The same

equations given here will hold for the independence of
x', provided proper changes in signs and notations are
made in them.

III. TWO-VARIABLE DEPENDENCE ONLY

We obtain considerable simplification if we assume
all quantities independent of x'. In this case, we may
transform the metric so that fo= fi We write the f;. as

G;o=e; exp(f, f;—fo—+fa)(B o
—'Ba ')

i,j,k=0, 1,2 in cyclic order), (2.22)

or we could take Eqs. (2.15) and (2.21) (the usual
vector potential) or Eqs. (2.16) and (2.22). The
potentials in Eqs. (2.15) and (2.16) seem to be the
most convenient for quantities depending on only three
variables.

We now note that Eqs. (2.18) imply that there
exists a functional relationship between A and 8:

If one substitutes these expressions into the final
equations of the last section and suitably combines the
equations, one finds that R satisfies

R,pp
—R,pi=0.

We must distinguish three cases.

(3.2)

(a) R= const. This case reduces to a flat, vacuum
space.

(b) R= f(x'&xo), f'AO Th.is case is completely
soluble, and after some reduction, we find a metric of
the form

—ds'=dudo exp —2P+ Pup"+u 'C" exp(2$)]du

+exp(2$) (dx')'+u' exp( —2P) (dx')' (3 3)

where u=x'&xo, o=x'Wxo, and C and p are arbitrary
functions of N. This is clearly a function of one variable,
N. The coefficient of dlde may be absorbed into dg by
making a coordinate transformation, but this probably
does not contribute to an understanding of the metric.
This metric may represent a combination of plane
electromagnetic and gravitational waves; such a
conclusion, however, must be made cautiously because
of the uncertainty of the meaning of x' and x' and be-
cause it may be possible to transform away the I
dependence. Some sort of analysis, such as that carried
out on vacuum plane gravitational waves' is clearly
needed.

(c) R= f(x'+x )+g(x' x), f'g'WO—It is. easily
shown' that in this case we may define a new x'= R
If we assume the new x' to be used already and put

and also

y= $+inx' —2 lnV,

i/= lnx' —lnV,

we get the following equations:

(3 4)

(3.5)

(3.6)

V, ii+ (V, i/*') —V, oo

(1/V) (V io V o2+C 2 C i2) (3 7)

C, ii+(C, i/x') —C,oo= (2/V)(C, iV, i—C,oV, o), (3.8)

$ o=2x'V '(V, oV i—C oC, i), (3.9)

$, 1 giV—2(V oo+V, 12+C op+C 2)

(3.10)

$, ii—5,oo= V '(V, o' —V, i'+C, o' —C, i') .
(3.11)

The metric is now

—ds'= V '(exp2$)L —(Cx')'+ (dx')'$
+(gl)2V—2(dx2)2+V2(gxo)2 (3 12)

fo=fi=y

fo——lnR —P.
(3.1)

F. A. K. Pirani, articles in Recent DeveloPments in General
Relativity (Pergamon Press, Inc. , New York, 1962); Gra~ta-
tion: An Introdgction to Clrrent Research, edited by Louis Witten
(John Wiley 8t Sons, Inc., New York, 1962).
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Equation (3.11) is derivable from Eqs. (3.7)—(3.10);
( p& as calculated from Eq. (3.9) is identical with that
calculated from Eq. (3.10),with Eqs. (3.7) and (3.8)
assumed. Thus we can find $ from V and C, and Eqs.
(3.7) and (3.8) are the main equations. They are seen
to be quasilinear wave equations for V and C. If we
write

0=sech'=x'(x") ', g&0. (3.21)

() 13) Then, if we assumeV= expU,

There are also other solutions which, however, fall in
the category of cases discussed in the next section.

Also considered. were a class of similarity solutions.
To discuss these, it is convenient to define quantities
0 and gaby

they take the slightly simpler form

U, gj+(U, y/x )—U pp=exp( —2U)(C p
—C y), (3.14)

C, iy+ (C,y/x )—C,oo= 2(C, xU, g
—C,pU p) . (3.15)

The author has tried various ways of simplifying
Eqs. (3.7) and (3.8) further. The most interesting way,
which involves assumption of a functional relationship
between C and V, is given in the next section. In this
section we shall discuss a number of special solutions.

and

C=F(r)+ (x') "G(rI)

U=lnV=H(r)+ j(g),

(3.22)

(3.23)

with

C= (x')":G(g)

V= (x')'K(g),

(3.24R)

(3.24b)

which form is convenient for calculation, we get two
more cases:
Case IV.

Case I. G"+K"= kPGP —mKP (3.24c)

We first note that if G" k'G=2K—'K '(G' —kG cothg), (3.24d)

then
V= kgx',

C= f(u) (u=x'axo),

&
= 2 (f'(u)]'du.

(3.16a)
$= (k'+m) lnx'+2 dqK '[k(GG'+KK')

(3.16b)

+ (mK' —k'G') cothg], (3.24e)

where k and m are constants.

Again we have a "wave-like" solution, but without
any justification for a true wave nature.

If we assume C = lnx' — Q(g)drI, (3.25a)

C=F(x')+G(x'), (3.17)
and

U= H(x')+ J(x'), (3.18)

we get two cases which are, after some simplification:

Case II.

V= V(q),

Q'=2V'V '(Q+cothg),

Q'+V"+mV'=1,

(3.25b)

(3.25c)

(3.25d)

C=Xx'+u dx'(x') ' exp(2U), (3 19a) $—m Inx'+2m ln
~
sinhg

~

with
U= U(x'), (3.19b) +2 dq V '(Q+cothg), (3.25e)

U' p2
U"+—=exp( —2U) X'—

x'
exp(4U)

(x')'

$= 2Xuxo
p2

dx' x'(U"+X'e '~)+ exp(2U)—
x'

(3.19c)

(3.19d)

where m is a constant. Again some solutions have not
been presented because they are included in other cases
in this paper.

Another interesting sloution can be obtained from
case V by putting m=0, G02=G» ——0, and

G„=—x'C, ~V '= —V '(Q cothg+1), (3.26a)

where X and p, are constants.

Case III.
C= —,'X(x')'

V= Xx' coshx',

$ =2 ln coshx'+lnx'+-'(x')'.

Gs = —*'C,oV-'= V-'Q cschg. (3.26b)

We term this case VI. This can be obtained in a more
(320a) straightforward manner by employing the alternate

potentials defined in Eqs. (2.21) and (2.22). It cannot
be obtained directly with the potentials of Eqs. (2.15)

(3.20c) and (2.16).
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A special case of VI can be obtained if one takes

Q= —1, (3.27a)

(3.27b) Eg=0 (3.35a)

a is an arbitrary constant. Thus, we need investigate
only the quantities I';.

For the case of independence of x', we find that

Then we get

exp] = [1+(1—o')'/')'(1 —o')—'

Gpp
———1+(1—a')»',

Gip ———o (1—o') '".

(3.27c)

(3.27d)

(3.27e)

F = (8irk ')'/ C (V/x') exp( —]) (3.35b)

F = (8irk ')'/PC, p(V'/x') exp( —$). (3.35c)

Suppose now that we calculate the physical fields
for the special case of VI, Eqs. (3.27). Here n=0. We
find (r=x' T=xP)

Why consider similarity solutions' The motivation
can be found in the hope that such solutions may
represent gravitational collapse in some simplified

model. Indeed, they may represent an approximation to
the time-dependent approach to Melvin's static solu-

tion, ' which solution can be written

V= p(p'+1) ',
C=+(p'+1) ',

(3.28a)

(3.28b)

where p=x'/a and a is a constant (characteristic
length). If x' is the radial cylindrical coordinate r, this

represents a bundle of electric or magnetic Aux held

together by its own gravitational attraction. For
x'&&u, a similarity solution may well approximate an

approach to this static configuration.
Undoubtedly, further analysis may serve to simplify

the above solutions. In this paper we shall content
ourselves with a few remarks about their nature.

To understand the solutions better, we need to look
at the electromagnetic fields associated with them. We
6rst combine Eqs. (2.7), (2.15), (2.16), and (2.24),
obtaining

F„=(8irk
—')'/'e&C, &(sinn) exp(f;+ f; fi fp)——

(i,j,l= 0,1,2 in cyclic order) (3.29a)

F;p —(8mk ')'/'C, i cosn——(i=0,1,2) . (3.29b)

We note that the Ii@ are the covariant components
of the electromagnetic-field tensor and that they are

sot the physical fields in a curved space. To get the

physical 6elds, we use a prescription of Melvin. ' The
physical electric field is

E,=Fp;( gppg;~)
'/' (i=1—,2,3) (3.30)

and the magnetic field is

2 (1 o2)[1 (] o2)
—1/2][1+ (] oP) 1/2 1

—2 (3 36a)

E = —(rT) (1—o )i/ [1+(1 —oP)»P]—P (3 36b)

Both 82 and E3 are well-behaved at r=T. At r=O,
8& is 6nite, but E3 is not. This is probably to be ex-
pected, since the solution was derived from a similarity
assumption. As previously mentioned, for large r, the
solution may be a good approximation to a possible
physical situation. One Qy in the ointment remains:
the singularity in exp/ at r= T [see Eq. (3.27c)j.This
may be a coordinate singularity. Such singularities may
be tested for phyiscal reality by computing the dif-
ferential invariants of the metric. "

We may examine case V near r=T by making a
power-series expansion in r/ for Q and V. [Equation
(3.25d) seems to indicate that Q and V are bounded
for small r/. $ Calculation with power series in r/ indicates
the following facts (if we assume V and Q not con-
stant): (1) Q is odd in r/, V is even; (2) m) 0; (3) the
coefficients in the power series are functions of m only;
(4) the metric coefiicients and the electromagnetic
fields are all finite and nonzero at r= T(r/=0); (5) the
radial derivatives of the electromagnetic fields at r= T
are not zero.

Inspection of the equations near r=0 (r/= ~) shows
that the metric is quite singular there. However, the
metric may have possible physical meaning for large r.

It is apparent that similar treatments can be carried
out for other solutions. Furthermore, coordinate
transformations may simplify some of the metrics.
A likely candidate for this type of simpli6cation is
solution III.

IV. DERIVATION OF ELECTROMAGNETIC
SOLUTIONS FROM VACUUM SOLUTIONS

&'= Fip(g/rg»)

(i,j,k=1,2,3 in cyclic order).
Thus, if

P = (8~k-')'/'C, exp( —f;—fp)

(with j=3 i, i =1, 2—, or 3), we get

Pj sinn, Eg = —I'2 silica, E3= —I'3 coso'

(3.31)

(3.32)

(3.33)

The form of Eqs. (3.7), (3.8) suggests many possible
techniques for simplifying the equations. One of these
is to attempt to define new dependent variables as
functions of the old such that one equation involves
only one dependent variable; solution of that equation
would then yield something like a source function in the
other equation for the second variable. However, it is

Bi Pi cosn, J3p=Fp
——co—sn, J3p= Pp sinn. (3 34)—

J. Ehlers and W. Kundt, in Gravitutiog: Ag Introduction, to
Cgrrent Research, edited by Louis Witten (John Wiley R Sons,
Inc., New York, 1962).
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C=C(H),
V= V(H),

(4.1a)

(4.1b)

where B is a new function of x' and x'. We obtain, by
substitution into Eqs. (3.7) and (3.8),

V'(H, 11+H, 1/x' —H, pp)

= (H, P H, o')((V—" C")/V —V"), —(4.2)

C'(H, 11+H, 1/x' —H, pp)

= (H P Hp') (2C' V—'/ V—C"), (4.3)

easily shown that this sort of simplification is not pos-
sible for the given equations.

However, another sort of technique does yield rich
rewards. It has the disadvantage that a general solution
of Eqs. (3.7)—(3.8) is not obtained; however, the insight
gained more than compensates for this.

We assume a functional dependence between C and
V, in the form

fo=l —y,

f1=0 y

fo w y, —— —
fp=y.

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.6). In other words, we can do the following: choose
any solution H of the wave equation (4.5a). Find the
corresponding $ from Eqs. (4.6a, b). The functions $
and V=expH now form a solution of the vacuum
equations. However, the functions $, V= X sechH,
C=X tanhH also form a solution of the nonvacuum,
coupled Einstein —Maxwell equations. Thus, from any
vacuum solution, we may obtain a solution for the
case with electromagnetic 6elds.

This result can be extended to the equations with
three independent variables, Eqs. (2.17), (2.19), and
(2.20) (with A and 8 replaced by C as previously
outlined). We write

where the prime denotes diGerentiation with respect to
H. If H 0' —H, p and H, ii+(x') 'H 1

—H, oo are both
nonzero, we 6nd that

Then, if we put
C=C(H),

y= lnZ(H),

(4.8a)

(4.8b)

V=) cos8,

C=) sing,

8=8(H),

(4.4a)

(4.4b)

(4.4c)

H 11+H 1/*' —H.»
= (H 0'—H P) —(8"/8'+8' tan8). (4.4d)

We will be more interested in the only other non-
trivial case, in which we assume

H, 11+(H, i/x') —H, pp
——0, (4.5a)

H P Ho'WO — (4.5b)
Then we get

V"= V '(V"—C"),
Clf 2C/ VIV—i

(4.5c)

(4.5d)

The solution of these equations, slightly simplified, is

V=X sechB,

C=) tanhH,

(4.5e)

(4.5f)

where ) is a constant. Here we have a linear wave
equation for B, so that we may get a readily obtained
solution of Eqs. (3.7) and (3.8) with two arbitrary
functions; or, alternatively, we can impose two bound-
ary conditions on our solution.

If we substitute Eqs. (4.5e) and (4.5f) into Eqs.
(3.9)-(3.11), we find another surprise —the equations

t,o——2 'x, H,0H, 1(4.6a)

t 1
——x'(H p'+H, P) (4.6b)

$,11 $,00 H, p H, 1 (4.6c)

But if we took the vacuum case with C=O and put
V=expH, we would obtain exactly Eqs. (4.5a) and

and require the vacuum equations to hold LEqs.
(2.17), (2.19), (2.20), and (4.7), with C~ 0, y~ H j,
we get again equations for C(H) and Z(H) LEqs. (4.5c)
and (4.5d) with V-+Z) which can be solved to give

Z=XsechH, (4.9a)

C=X tanhH. (4.9b)

Thus, any (diagonalizable) solution of the vacuum
equations in not more than three variables yields a
corresponding solution of the combined Einstein-
Maxwell equations.

We may write this result in a very simple form. Sup-
pose the metric

—ds'= V 'P e'"(dx')'+e'"(dx')'+—e'"(dx')' j
+V'(dx')', (4.10)

with u, e, m, V functions of x, x', and x', satisfies the
vacuum equations. Then the metric

—ds'= ((V'+1)'/4X'V') $—e'"(dx')'+ e"(dx')'
+eo"(dx')0]+ (4)PVo/(Vs+1)0) (dx')0 (4.11)

and the potential

C X(V'—1)/(V'+1) =X(1—2/(V'+1)) (4.12)

satisfy the Einstein —Maxwell equations. (A similar
theorem holds with x' and x' and appropriate signs
interchanged. When this is done, the definitions of the
potentials must be appropriately modi6ed. )

The idea of assuming a functional relation between
certain variables, as in Eqs. (4.1), is apparently not
new. Several authors have derived solutions in this
manner. ' However, none completely present the general
result that to every vacuum solution in three variables
there corresponds an electromagnetic solution. (Misra
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and Radhakrishna do state this, but show it only for
functions of two variables. )

Two obvious possible generalizations present them-
selves. The first is to extend this result to any metric,

,diagonalizable or not, in not more than three variables.
This is only a slight generalization and quite possibly
can be done. The second is to extend the result to any
metric whatsoever. The restriction to three independent
variables makes possible the singling out of two
special functions VL=(ass)'I' in Eq. (4.10)j and C
(the electromagnetic potential) —which can then be

'related. In the general case, no such special functions
exist, and the assumptions to be made to get a similar
result are unknown.

The most immediate utility of the results above is in
the generation of electromagnetic metrics from vacuum
metrics. However, there is, perhaps, a more fundamental
conclusion which can be drawn from these endings:
There exists a hitherto undiscovered intimate relation-
ship between the electromagnetic and gravitational
fields, implicit in the Einstein —Maxwell system of
equations. These results may be nothing more than
trivial consequences of known theorems, or they may be
a completely new relationship of profound signi6cance.

,It is at least certain that this relationship will bear some
close connection to the "alrea, dy:unified theory" of
Rainich, Misner, and %heeler. 4

So far we have no clue as to such a possible relation-
ship except the correspondence of the metrics (4.10)
and (4.11).We can see a few facts from this correspond-
ence which may shed some light on the problem.

First, we note that, if V'«1, the metric (4.11) is
essentially the same as that of (4.10), the only difference
being scale changes due to the constant X. For large
V', this is not the case. In connection with this, we see
that singularities V=O in Eq. (4.10) yield the same
singularities in Eq. (4.11), but that if

~ V~
='~ in

Eq. (4.10), the expression V'(V +1) s in Eq. (4.11)
equals 0. The only other singularities in either metric
are those (if any) resulting from I, e, or w= + oo, which
singularities occur in both metrics. There is thus a one-
to-one correspondence between the singularities of
both metrics; they all produce the same result in both
metrics except when [ V j

= ~.
The fact that there exists a special Symmetry in the

given metrics —independence of x' and consequent
invariance under a one-parameter group of transforma-
tions —prompts another observation. It may be that the
looked-for relation between gravitation and electro-
magnetism is a consequence of this special symmetry in
the fields. If such is the case, we might hope to find
diGerent relationships, corresponding to different sym-
metries in the fields.

Finally, we note that we can view —in some sense—
metric (4.11) as metric (4.10) with a special electro-
magnetic field introduced into it. If there were a
plausible physical reason for introducing this particular
held, we might derive some insight from it. A hypotheti-
cal example follows. Suppose the vacuum metric (4.10)

to arise from a system of point or line masses, occurring
at singularities of the metric. Then suppose the masses
to be suddenly converted entirely into electromagnetic
radiation, which then distributes itself until it reaches
equilibrium with the curved space around it. Then the
resulting metric plus field might be represented by Eqs.
(4.11) and (4.12). This example is in no way proved;
it is merely hypothetical. One defect with the example
is that the singularities at which there were masses in
Eq. (4.10) would continue to be singularities in Eq.
(4.11).However, it might still be possible to reinterpret
these singularities in the electromagnetic-fi. eld metric,
particularly if they had changed their nature (as in
the V= ~ case). Such an example need not be the case,
as with Melvin's static metric. ' If we take

n= ~=@=lng' (4.13a)
V= x'/u (4.13b)

(4.13c)

(a= constant) in Eqs. (4.10)—(4.12), we get a flat space
from Eq. (4.10) (cylindrical coordinates) but Melvin's
solution from Eqs. (4.11)—(4.12). Thus the electro-
magnetic field in Melvin's case does not arise from line
or point masses in the corresponding vacuum metric.
However, Thorne" notes that Melvin's "geon, " or
"universe, " is the Inost disuse distribution of elec-
tromagnetic gravitational energy possible under the
circumstances. A more condensed, concentrated
system may represent exploded or converted masses, as
discussed above.

A perhaps obvious comment should be made. in
closing: Not all solutions of the equations can be ob-
tained in this way. The solutions given in Sec. III
cannot be obtained by the methods of Sec. IV. One
wonders whether or not there is some fundamental
physical distinction between solutions obtainable by
the methods of Sec. IV and those not so obtainable.

V. CONCLUSIONS

It is hoped that the results given in this paper will
lead to a deeper understanding of the relations between
electromagnetic and gravitational fields —or between
electromagnetic 6elds and curved space. Failing that,
we can at least hope that some physical insight can be
gained from the solutioris of th|: Einstein —Maxwell
equations given here. Future work is contemplated oli
all of these fronts.
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