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A radiative transfer equation is derived which is sufficiently general to apply to energy transfer by various
types of wave motion, such as electromagnetic waves, sound waves, hydromagnetic waves, etc. Scattering
of waves is neglected. The equation is compared to the equation found in the literature of radio astronomy,
and the meaning of a term in this equation is clarified. The general solution of the equation is given. A more
rigorous derivation of the transfer equation based on a method due to Wigner is given.

I. INTRODUCTION

N problems of radiative transfer at optical fre-

quencies, the index of refraction is usually very
close to unity and the derivation of the equation of
transfer is straightforward.! However, at radio - fre-
quencies the index of refraction may differ appreciably
from unity and vary with position. In this case the
derivation of the transfer equation involves subtleties
which we feel have not been sufficiently appreciated.

In this paper we shall give a derivation of an equa-
tion of radiative transfer which is sufficiently general to
apply to energy transfer by various types of wave mo-
tion, such as electromagnetic waves, sound waves,
hydromagnetic waves, etc. There is a term in the equa-
tion which we derive which is apparently absent from
the equation which occurs in the literature of radio
astronomy.?® This seems to be due to the fact that the
meaning of a derivative which occurs in the conven-
tional derivation is ambiguous. In any case this appar-
ent omission is of no practical consequence since the
solution given to the equation in the literature is the
correct one.

In Sec. IT we give a semi-intuitive derivation of the
equation of transfer and compare the result with the
equation found elsewhere.??® In Sec. ITI the general
solution of this equation is given. In Sec. IV a deriva-
tion is given for a spatially uniform system using a
method due to Wigner? which has been successful in
similar quantum-mechanical problems. In Sec. V we ex-
tend this derivation to spatially dependent media.

II. DERIVATION OF THE EQUATION
OF TRANSFER

As our starting point we shall assume that the equa-
tions describing the propagation of waves of the form

A(x,) = Ageitx—0 (1)
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in some medium have been solved and a dispersion rela-
tion of the form

D(w,k) = D(w,kz,kwkz) =0 (2)

has been found. If k is assumed to be a real vector, then
Eq. (2) can be solved for w to obtain

Wa(k) =war(k) +iwa(k) . 3)

Generally there will be more than one solution and we
distinguish between them by the subscript a. For in-
stance, two solutions may represent transverse electro-
magnetic waves of different polarizations and a third
solution may represent longitudinal plasma oscillations.
The subscripts 7 and 7 denote the real and imaginary
parts of we.

We can also solve Eq. (2) for one component of k, say
k., as a function of real w, &y, and %, to obtain

kza(w)ky;kz)zkxar“*'ikzai- (4)
If
l krai I < I kzarl
and
[wail<<|warl ) (5)

then a relation between k..; and w.; can be found by
substituting Eq. (4) into the argument of Eq. (3), keep-
ing only the first term of a Taylor expansion and re-
quiring the result to be real. We find

0= wai(k:cr,ky,kz) + (6war/akzr)kzai
or
Wai= — vg:cakxai N (6)

where 9,44 is the x component of the group velocity.
Equations (4) and (5) will generally be valid under con-
ditions for which transfer equations are valid.

Now in addition to the dependence on k which has
been explicitly noted, w will also depend on parameters
of the medium such as density, temperature, magnetic
field, etc. If these parameters depend on position and
time, then we may write

wa=wa(k X,0). )

If w, varies sufficiently slowly with respect to x and ¢
(that is, if the relative change in a wavelength and in a
period of the wave is small), then it is still sensible to
describe disturbances in the medium in terms of wave
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packets. As is well known®*® the motion of such a wave
packet is the same as that of a particle of momentum k
whose Hamiltonian is wa.(k,x,t). That is, the equations
of motion of the packet are

X=V,=0war/0k (8)
k= —0wa,/0x. )

We now define fo(x,k,t)d%xd% as the number of wave
packets of species @ with x in d3x and k in d%. Clearly
this is a meaningful definition only for sufficiently
slowly varying radiation fields. Having now sufficiently
emphasized that there may be more than one species of
wave in the medium, we will drop the subscript « in all
that follows and refer to the wave packets as “photons.”
The distribution function f must obey a conservation
equation in phase space.

2 o (k)= 64 (10)
—_— — x — — —

ot ox dk ’

where 8(x,k,t)d%xd% is the number of photons emitted
per unit time with x in @3x and k in d%, and 4 (x,k,r)
X d*xd% is the number of photons absorbed per unit
time with x in @3 and k in 3. We will assume that 4
and f are linearly related by an absorption coefficient:

A(xk,1) = a(xk2) f(x k). (11)

The quantities x and k are given by Eqgs. (8) and (9).
Equation (10) becomes

df 0f Ow, df Ow, 9
s _Of e O Serf o ..
dk 9x ox 9k

dat ot

(12)

The absorption coefficient may be found from the
following considerations: Let f and w be independent of
x and let §=0. Then

af/dt=—af, (13)
f~eet, (14)

On the other hand, from Eq. (1)
[A]2~etres, (15)

and since the number of photons present in a wave is
proportional to the square of the amplitude we find by
comparing Egs. (14) and (15) that

(16)

For an infinite uniform plasma in thermal equilibrium
f and w are independent of x and ¢; hence

Eo(k)=a(k) fo(k) , (17)
where fo(k) is the blackbody photon distribution. It is

a=—2w,~.

5T. H. Stix, The Theory of Plasma Waves (McGraw-Hill Book
Company, Inc., New York, 1962), Secs. 3-3 and 3-6.
¢ S. Weinberg, Phys. Rev. 126, 1899 (1962).
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given by

Jo(k)= (18)

(27)3 gho®@ /T —1 ’

where T is the temperature in energy units. The factor
2in Eq. (18) is present because of the two polarizations
of photons. It may need to be changed for other types
of waves. Equation (17) is an expression of Kirchoff’s
law. For #w<T, Eq. (18) becomes

1
ok’—\_’ .
Jolk) (27)3 hew

(19)

This is the limiting form of interest in radio astronomy.

In order to compare Eq. (12) with the transfer equa-
tion found in the literature, we must write it in terms of
the specific intensity 7. In doing this we will assume that
the medium is isotropic, so that w depends on the magni-
tude of k but not on its direction. Then

dw OJw dk 20)
V,=—=——=y,n,
* ok okok
where
n=k/k (21)

is a unit vector in the k direction. We shall also assume
that all quantities are time-independent. It follows that

0w OJw ow

(b:———--’———. ﬁ..l__
at 9x

S0 w is a constant of the motion. We write

d*k=k2dkdQ=k2(0k/dw)dwdQ= (k%/v,)dwdR. (23)
Then
&*(w,x)
f(x,w,0,t)d%dwdQ
(0w, X

equals the number of photons in @x with w in dw and n
in the solid angle dQ.

We now calculate the energy dE which crosses an
element of area do whose normal makes an angle 6 with
n in an interval d¢ with w in dw and n in dQ. This is
clearly

AE=(k%/v,) o, f(X,0,n,t)dwdQdido cosf, (24)
since each photon carries an energy #w and moves with
speed v, in the direction of n. One customarily writes

dE=I(x,0,n,t)dwdQdide cosf , (25)
so by comparison of Egs. (24) and (25) one finds
I'=hok?f. (26)
Defining the index of refraction by
u=kc/w, (27
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and using it to replace k, one finds
f=(*/h®)(T/u?).
df/dt=E—af,

(28)
This is used in
(29)
which becomes

as1 d/1 /1IN I I
DY (i (D) o).
0\ u? ox\u? on\u? c? u?

We wish to compare Eq. (30) with the equation

(d/ds)(I/u?)=K,B(»,T)—K,(I/u?) (31)

given by Wooley and Stibbs.? In this equation y=w/2mr,
2hv¥/c? 1 2hwd/c?

eMIT—1 =(2,|.)3 eholT—1’

and K, is the absorption coefficient defined so that the
intensity of a beam through the medium falls off as

B(V) T) = (32)

e K,
In terms of quantities in this paper it is
K,= +2ki=—-—2w.-/'v,,=a/'ua, (33)
where we have used Egs. (6) and (16). Equation (31)
may be written
vy(d/ds)(I/u?)=aB(,T)—a(l/u?). (34)
If Egs. (17) and (18) are used in Eq. (30), then Egs.
(30) and (34) will agree only if

d a9 1 o
_=n._+.__..fl._ .

(35)
ds dx v, Jn
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This interpretation of d/ds does not seem to have been
explicitly stated in derivations of the transfer equation
with which the writer is familiar. However, the solu-
tions of the equation found in the literature are equival-
ent to the solution obtained in the following section.
The solution is probably more obvious intuitively than
the equation is.

III. SOLUTION OF THE EQUATION OF TRANSFER

A solution of Eq. (12) may be found in the following
way. First, one solves the equations

x=0dw,/dk, (36)

k= —0w,/0x, (37
to obtain

x=x(xo,ko,?), (38)

k= k(XOJkO)t) ) (39)

where xo and ko are the values of x and k at the time
t=0. Next Egs. (38) and (39) are inverted to obtain

Xo=Xo(x,k,1), (40)
ko=ko(x,k,7). (41)
Note that
d i) d
B TR SR T Wi 42)
a ot 9x ok
and
xo(x,k,0)=x (43)

and that similar equations hold for ky. The solution of
Eq. (12) is

t ¢
f(x,k,t)=f dt’ 8(xo, (x, k, t—1), ko(x, k, t—1), 1) expl:—/ at’a(xo(x, k, t—1"), ko (x, k, t—1¢"), t")]
0

¢

+g(xo(x,k,2), ko(x,k,2)) exp[—- f d'a(xo(x, k, t—1'), ko(x, k, t—7'), t’)] . (449)

That Eq. (44) is indeed a solution is readily verified by
substituting it into Eq. (12). At ¢=0, Eq. (44) gives

Jxk,0)=g(xk). (45)

Generally we are interested only in the inhomogeneous
part of Eq. (44) and we discard the term depending on
8(xo,ko) and change the lower limit of the first integral
from zero to — . If &, @, and f are independent of ¢,
then the solution may be written as

fix)= / "2t 8k, Kalx k)

Xexpl:— /0 tdt’a(xo(x,k,t’), ko(x,k,l’)):l. (46)

0

The interpretation of Eq. (46) is fairly obvious. The
number of photons at the point x, k at some instant is
the sum of those emitted from points xo, ko at times
earlier by the time ¢, each contribution to the sum being
weighted by the factor

expl:-— /0 tdt’a(t’):l

because of the absorption undergone.

(47)

IV. A RIGOROUS DERIVATION OF THE EQUATION
OF TRANSFER FOR A SPATIALLY
UNIFORM MEDIUM

The definition of f(x,k,#) which we have given clearly
must represent some sort of an approximation since one
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cannot specify both x and k accurately. In fact
A”{Aki’\’ 1.

We will try to make the nature of this approximation
clear.

For concreteness we assume that the medium is a
plasma in which a disturbance can be described by the
linearized equations

oE
—=cVXB—3_ 4renyv,

(48)
at
oB/ot=—cVXE (49)
av 1 e e 1
—=—-v+—E+—vxB;——Vp, (50)
ot T om mc nom
ap/at= —'YPOV.V‘ (51)

In the above E, B, v, and p are small perturbations in the
medium. The quantities 7, By, and p, are unperturbed
quantities. For the time being we assume that they are
constants. There will be equations like Egs. (50) and
(51) for each species of particle in the plasma with
appropriate values of e, m, n, v, 7, and p,. A summation
sign without indices denotes summation over species.

We have assumed that the plasma is a medium de-
scribed by Egs. (48), (49), (50), and (51) in order to
show explicitly how wave packets are to be interpreted.
These equations are probably sufficient for problems of
interest in radio astronomy, but we believe that the
radiative transfer equation which we derive is applicable
to a wider class of problems.

If Eq. (48) is multiplied by E/4w, Eq. (49) multi-
plied by B/4r, Eq. (50) multiplied by #emo, and Eq.
(51) multiplied by p/vpo and the equations added, then
one obtains

o[ E+B? »°
S
oL 8r 2vpo

== ”L"’vz—v-[f—(E xB)+X pv] . (52)
T dx

This is the equation of conservation of energy for the
system. The energy density is

1 2
U=—(E24-B%)4-3_ $ngmv>+ ? .
8w 2vpo

Now we define the column vector

E/(8x)!2
B/(8x)12
(ngm/2)1/2y

b/ (2vpo)'"

Y(x,)= (53)
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and its adjoint

ey [_EBY pmamNi2 gt 54
v (x,t>—[ o (—2—) v, (271;0)1/2]’ (54)

where the asterisk indicates a complex conjugate. The
scalar product

1
2vpo

is just the energy density when ¢ is complex. It obeys
the equation

1 nom
¢*¢/=8—(IEI2+IB|“’)+Z7[V|2+Z [p|2 (55)

d nom
—Py=—% ||
at

T

—V‘Re[;:—r(E* xB)+> p*v:l . (56)

The vector ¢ satisfies the equation

awW(x 10
w(x )= - T,H(—' —)W(X,t) )
at 10X

(57)

where the operator H is a matrix operator which can be
found by inspection from Eqs. (48), (49), (50), and (51).
Similarly ¢ satisfies

oyt 14
—_— _’_1“/,1[11(_ __) .
ot

7 9x

(58)

(We indicate by an arrow over a differential operator
the direction in which it operates when this adds
clarity.)

We now look for a solution of Eq. (56) with spatial de-
pendence given by a factor

6ik° x,

Equation (56) becomes

/ot=—iH(k)y. (59)
We assume a solution of the form
y=o(k)eit. (60)
Then
[H(k)—w1]p(k)=0, (61)

where 1 is the unit matrix. For a given k, Eq. (61) will
have a number of solutions representing electromagnetic
waves, sound waves, plasma oscillations, etc. We will
distinguish them by a subscript a; thus we(k) is an
eigenvalue and ¢,(k) is the corresponding eigenvector.
We write

Yalk,t) = o) e iwa®
Vo' (k1) = pal (k)etiva™ w1,

(62)
and
(63)
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[Note that we do not assume that w,(k) is real.] From
Va(k,f) we can construct wave packet solutions. Thus

d3k
‘pa(xft)=/ @ )3e+ik'x‘/’a(k:t)

(64)

is a packet of waves of type a.
It is convenient at this point to derive an expression
for the group velocity. Let

(X(t)>=Ni(t) / PP (x,)¥(x,)x, (65)

where

NQ)= / Fr v (0 x,). (66)

Clearly (x) is the centroid of the energy carried by the
wave packet of type a. (For simplicity of notation we
have suppressed the subscript o.) We now use Eq. (64)
in Egs. (65) and (66) together with

/ P 00— (2)%8(K — K) 67
and
(27)3 9
/ B xeiw0x=""__" 510 k) (68
i ok
to obtain
&O)=xol0) 3,0, (69)
where
i2 f PR30/ 3K)— (96 Ok)g)eric0
Xo(t-)= (70)
/d3k¢f(k)¢(k)e2wi(k)t
and
/ AL 900, (K) /KT () (e2ei 00
Vv(t)‘_‘ (71)
/ Pkt B0
/ Ph(00,/ W (k) ()
= . (72)

/ by (k)

If o is real, then xo and v, are constants and the
centroid moves with constant velocity. If  is complex,
then xo and v, will change with time because the spec-
tral composition of the packet is changing. However, if
¢(k) is very sharply peaked about some value kg, then
the factor

62wi(k)t

can be replaced by

e2wo‘(ko)t
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and removed from the integrand of Egs. (70) and (71).
It then cancels from numerator and denominator and
Xo and v, are again constants.

We now look for a function f(x,k,f) which in the lowest
order of some approximation satisfies an equation like
Eq. (12). We will follow a method due to Wigner* which
has been successful in a similar quantum mechanical
problem. Define

3
stk = [ (j:)aew-xsbf(kﬁq, D(k—ta, 0. (73)
Note that
/ Fxkpdx=yt(k)yk,t), (74)
which is the energy density in k space. Also
/ Fx k)= / &k / k! e’ 5t (k+3q, 1)
(2m)?
Xy (k—3q, t)=——1—— /d%/d%e““‘"’“
(2m)
XY () (v) =y (x,0¢(x,0), (75)

which is the energy density in configuration space.
These are the properties one expects from f(x,k,z). This
definition of f(x,k,f) differs from that of the last section
where f was defined as the photon density in phase space
rather than the energy density. For time-independent
processes, one can be obtained from the other by multi-
plying by #w, since w is a constant of the motion. We
note that

(9/ (K, (K" 1)
= +ilw*(k) —w®”) WK, )¢ K1) .

We take the time derivative of Eq. (73) and use Eq.
(76) with k’=k+3q and #’=k—%q. Note that

[w*(k) —w(k”) ]=[w (k') —o-(k”)]
—ifwi(k)+wik")].

Next we expand Eq. (77) about k and obtain

(76)

an

o 1 5 q\"
(k30 —o(k—30)]=2 3 —a)(—-) .
Lo (k- 3) —o(k—30)] L?n' <>(ak 2)

odd

2 ¥ - <k>(5 ).
-2 —w () ——) .
n=0n! ok 2
even
Now when it occurs in the integrand of Eq. (73), q is
equivalent to the differential operator

19

7 9x
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Using Egs. (76) and (78) in Eq. (73) we obtain

af(xk,1) 2 19 8 ) .
= T Wy T y N
at ¢ Sm(Z ok ox fx

19 9
+wi(k)2 cos(— ———w—)f(x,k,t). (79)
2 0k ox
The sine and cosine functions arise from summing the
series in Eq. (73).

If one assumes that f and w are very slowly varying
functions of their arguments so that all derivatives
higher than the first can be neglected, one obtains

af Ow, df
e

ot dk ox

This is just the equation we should expect. The third
term on the left of Eq. (12) does not occur because of our
assumption that w, was independent of x. No emission
term occurs on the right-hand side because spontaneous
emission cannot be obtained from the equations from
which we started.

V. EXTENSION TO SPATIALLY DEPENDENT MEDIA

We now assume that B, n,, 7, and p, in Eqgs. (48),
(49), (50), and (51) are functions of position. Then Eq.
(57) may be written

o))

13
= _iH<X7 - _>¢(X;I) )
ot 10X

with a similar equation corresponding to Eq. (58). The
equation of motion for ¥(k,/) may be found by multi-
plying Eq. (76) by e~#*= and integrating over all space
to obtain

(81)

a(x,! d
/ e—ik‘x__w(x_)dax:__l//(k’ )
at ot

19 azk’
=— / d3x e—ikexf] (x, - —) / et xy (k1)
7 0x (2m)3

- / FHAKK)WK,), (82)

where

dx 13
e—zk-xH(x’ - __)e+ik’~x’ (83)

kk)=
(k) /(21r)3 i 0x

which can also be written as
139

H(k,k’)=H(--—, k’)ﬁ(k—k')
7 ok’

=H(_i31,k)5<k_kf>. -~

z 0k
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The equation of motion then becomes

oy (k,t 14
&) —m(—- —, k)¢(k,t) . (85)
ot i ok
The adjoint equation is
i (k,t) 19
oo —-— k). (9
i ok

Next we divide H into Hermitian and anti-Hermitian
parts. Thus

H=Hy+Hya, (87)
where
Hy'=Hy (88)
and
Hjist=—H,. (89)

We again define f(x,k,t) by Eq. (73). In calculating the
partial derivative of f with respect to ¢ we need

d 139
—¢*<k',z>¢<k",t>=w<k',t>[HT( Sy k')
at 7 ok’

1 9
—H( 2 k")]wax",o . (90)

7 ok”’
where

k'=k+1q, (91)

K'=k—13a, ©2)

we expand with respect to k and x, where x is the opera-
tor —(1/4)d/dk, and keep only the leading terms of the
expansion. Thus

[H'(x"k)—H(x"k")]

0Hy
=2H 4+

+1 0Hy ( l¢] l i) ) (93)
ok i ax \ok' ' ok
and

af(x k1) / @q S (kHda, 0

at (2m)3

d 9Hy 3 0Hy 9Hp 9
XI:ZiH at— F— -+ —:|
ox ok 0k ox 9Ix ok
XY(k—3q,0). (94)
For the case of no spatial dependence we had
H(ky(k)=wk)yk). (95)

We will assume that this is still approximately true so
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that
H(x,k)=1w(x,k); (96)
then Eq. (90) gives
a dwg 0f Odwm 9
O gy len ¥ Bend g
ok ox 9x 9k

If we identify w4 with —iw; and wgy with w, we have the
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desired result. The assumption contained in Eq. (96)
seems to be difficult to justify in general.
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Several serious mathematical deficiencies in Sudarshan’s probability-functional approach to the statistical
description of light beams are demonstrated. In particular, it is shown that all the correlation functions of
the beam do not necessarily determine its density matrix.

I. INTRODUCTION

ECENTLY, Sudarshan!:? has developed a proba-
bility-functional approach for describing all free
boson fields. He concludes that “the description of
statistical states of a quantum-mechanical system with
an arbitrary (countably infinite) number of degrees of
freedom is completely equivalent to the description in
terms of classical probability distributions in the same
(countably infinite) number of degrees of freedom.”
This conclusion and the methods introduced by Sudar-
shan have been used in several discussions of the
statistical properties of light beams including that of an
optical maser.>®
The purpose of this note is to demonstrate several
serious mathematical deficiencies in Sudarshan’s proba-
bility functional approach. In particular, we will show
that all the correlation functions of the beam do not
necessarily determine its density matrix.

II. SUDARSHAN’S PROBABILITY FUNCTIONAL

The most general form taken by the density matrix
of a free boson field is

p= X [{me({m}, {m'P{{m} |, (1)
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where

=pf, Trp=1
and® P=p, P )

I{”k}>=1k1|"k>~

Sudarshan!-? has argued that all density matrices of the
form given by Eq. (1), i.e., every free field boson density
matrix, can be put into a special form in a unique way
which allows the conclusion that “there is a one-to-one
correspondence between density matrices of a quantized
(free boson) field and classical probability functions.”
We shall now review for a single mode the demonstra-
tion which precedes this conclusion.

The most general density matrix for an isolated oscil-
lator (field mode) is

p=3 3 |mhplnn)'| ?)

n=0 n'=0

and the expectation value of the normal ordered product
(dM)M(b)* for this statistical state is”

Nop = PYN(p)#
Enw=Tr{p(6")()"} @)

B zi—i'op(l-i'“’ TN (/D) LEANH-p) 112,

6 | ) is the occupation number state describing # bosons in the
kth mode.

7p and b* are the annihilation and creation operators, re-
spectively, for the bosons of the oscillator: b|n)= (n)}|n—1),

bt |my= (n+1)} n+1).



