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Radiative Transfer in Dispersive Media*
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A radiative transfer equation is derived which is sufficiently general to apply to energy transfer by various
types af wave motion, such as electromagnetic waves, sound waves, hydromagnetic waves, etc. Scattering
of waves is neglected. The equation is compared to the equation found in the literature of radio astronomy,
and the meaning of a term in this equation is clarified. The general solution of the equation is given. A more
rigorous derivation of the transfer equation based on a method due to Wigner is given.

I. INTRODUCTION
' 'N problems of radiative transfer at optical fre-
~ ~ quencies, the index of refraction is usually very
close to unity and the derivation of the equation of
transfer is straightforward. ' However, at radio fre-
quencies the index of refraction may diGer appreciably
from unity and vary with position. In this case the
derivation of the transfer equation involves subtleties
which we feel have not been sufFiciently appreciated.

In this paper we shall give a derivation of an equa-
tion of radiative transfer which is suKciently general to
apply to energy transfer by various types of wave mo-
tion, such as electromagnetic waves, sound waves,
hydromagnetic waves, etc. There is a term in the equa-
tion which we derive which is apparently absent from
the equation which occurs in the literature of radio
astronomy. "This seems to be due to the fact that the
meaning of a derivative which occurs in the conven-
tional derivation is ambiguous. In any case this appar-
ent omission is of no practical consequence since the
solution given to the equation in the literature is the
correct one.

In Sec. II we give a semi-intuitive derivation of the
equation of transfer and compare the result with the
equation found elsewhere. ' ' In Sec. III the general
solution of this equation is given. In Sec. IV a deriva-
tion is given for a spatially uniform system using a
method due to Wigner4 which has been successful in
similar quantum-mechanical problems. In Sec. V we ex-
tend this derivation to spatially dependent media.

IL DERIVATION OF THE EQUATION
OF TRANSFER

As our starting point we shall assume that the equa-
tions describing the propagation of waves of the form

A(x, t) =Ace""'*

*This work was carried out under a joint General Atomic-Texas
Atomic Energy Research Foundation program on controlled
thermonuclear reactions.

t On leave from the University of Tennessee, Knoxville,
Tennessee.' S. Chandrasekhar, Radiative Trasssfer (Dover Publications,
New York, 1960).' R. v. d. R. Wooley, Suppl. Aust. J. Sci. 10, 1 (1947).

3 R. v. d. R. Wooley and D. W. ¹ Stibbs, The Outer Layer of a
Star (Clarendon Press, Oxford, England, 1953), p. 240.

4 E. Wigner, Phys. Rev. 40, 749 (1932).

in some medium have been solved and a dispersion rela-

tion of the form

D((o,k) =D((a,k„k„,k.)=0 (2)

has been found. If k is assumed to be a real vector, then

Eq. (2) can be solved for a& to obtain

(o (k) =(v,(k)+ice,(k) . (3)

k„(&o,k„,k,)=k„„+ik, ; (4)

alid
(5)

then a relation between k, i and co i can be found by
substituting Eq. (4) into the argument of Eq. (3), keep-

ing only the first term of a Taylor expansion and re-

quiring the result to be real. We find

O=cu.;(k „,k„k,)+(Bcv,/rlk „)k,.;
or

&ai ~gxaksai p

where v„ is the x component of the group velocity.
Equations (4) and (5) will generally be valid under con-

ditions for which transfer equations are valid.
Now in addition to the dependence on k which has

been explicitly noted, or will also depend on parameters
of the medium such as density, temperature, magnetic
field, etc. If these parameters depend on position and

time, then we may write

co.=o.(k,x,t) .

If co varies su%.ciently slowly with respect to x and t

(that is, if the relative change in a wavelength and in a
period of the wave is small), then it is still sensible to
describe disturbances in the medium in terms of wave

Generally there will be more than one solution and we

distinguish between them by the subscript 0.. For in-

stance, two solutions may represent transverse electro-
magnetic waves of different polarizations and a third
solution may represent longitudinal plasma oscillations.
The subscripts r and i denote the real arid imaginary
parts of co .

We can also solve Eq. (2) for one component of k, say
k„as a function of real co, k„, and k, to obtain
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packets. As is well known" the motion of such a wave
packet is the same as that of a particle of momentum k
whose Hamiltonian is to, (k,x,f). That is, the equations
of motion of the packet are

given by

5p(k) =
(2w)P es&u(x) IT

(18)

*'=v, =BIo.,/Bk

k= —B~.„/Bx.

(8)

(9)

We now define f (x,k, t)dered% as the number of wave
packets of species rr with x in Ipx and k in d'k. Clearly
this is a meaningful definition only for suSciently
slowly varying radiation fields. Having now sufficiently
emphasized that there may be more than one species of
wave in the medium, we will drop the subscript n in all
that follows and refer to the wave packets as "photons. "
The distribution function f must obey a conservation
equation in phase space.

Bf B B—+—(xf)+—(kf) = h —A,
Bi Bx Bk

(10)

where $(x,k, t)d'xdeh is the number of photons emitted
per unit time with x in dsz and k in d'h, and A(x,k, t)
)&d'xd'k is the number of photons absorbed per unit
time with x in d'x and k in d'k. We will assume that A
and f are linearly related by an absorption coefficient:

A (x,k, t) a(x,=k, t)f(x,k, t) . (11)

The quantities x and fx are given by Eqs. (8) and (9).
Equation (10) becomes

Iff~Bf Boor Bf BMr Bf—=—+- —— —= b af. —
df R Bk Bx Bx Bk

(12)

The absorption coefficient may be found from the
following considerations: Let f and &o be independent of
x and let 8=0. Then

Bf/Bt= af, —

On the other hand, from Eq. (1)

(
A

i

p-e+»'&

(13)

(14)

(15)

and since the number of photons present in a wave is
proportional to the square of the amplitude we find by
comps, ring Eqs. (14) and (15) that

g= —20)~.

This is the limiting form of interest in radio astronomy.
In order to compare Eq. (12) with the transfer equa-

tion found in the literature, we must write it in terms of
the specific intensity I.In doing this we will assume that
the medium is isotropic, so that co depends on the magni-
tude of k but not on its direction. Then

where

Bo) Ba) Bk
Vg= —=——=Vga ~

Bk Bfe 8k

n= k/k

(20)

(21)

is a unit vector in the k direction. We shall also assume
that all quantities are time-independent. It follows that

8co 807 807 t96l 8G0 8co 8G0

~=—+—x+—1 = ~ =0, (22)
Bt Bx Bk Bx Bk Bk Bx

so co is a constant of the motion. We write

If,'fe=fe'Ilkdn=fe'(Bk/BM)dMdn=(fs'/vg)dpodn. (23)

Then
k'((o, x)

f(x,co,n, t)dsxdIodQ
vg(ar, x)

equals the number of photons in d'x with co in des and n
in the solid angle dQ.

We now calculate the energy dE which crosses an
element of area do. whose normal makes an angle 8 with
n in an interval dt with co in d~ and n in dO. This is
clearly

dE=(fs'/vg)hppvgf(x, po, n, t)ChodQdtdo cos8, (24)

since each photon carries an energy Ace and moves with
speed eg in the direction of n. One customarily writes

where T is the temperature in energy units. The factor
2 in Eq. (18) is present because of the two polarizations
of photons. It may need to be changed for other types
of waves. Equation (17) is an expression of Kirchoff's
law. For ko«T, Eq. (18) becomes

2T
fp(k)

(2sr)' h(o

For an infinite uniform plasma in thermal equilibrium

f and pp are independent of x and t; hence
dE=I(x, pg, n, t)dpodQdtdo cos8, (25)

hp(k) =a(k) fp(k), (17)
so by comparison of Eqs. (24) and (25) one Qnds

where fp(k) is the blackbody photon distribution. It is

P T. H. Stix, The Theory of Plasraa Waves (McGraw-Hill Book
Company, Inc., New York, 1962), Secs. 3-3 and 3-6.

e S. Weinherg, Phys. Rev. 126, 1899 (1962).

I= hu)k'f

De6ning the index of refraction by

is= he/po,

(26)

(27)
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and using it to replace k, one finds

This is used in

which becomes

f= (c'/hei') (I/ti') .

df/dt= 8 af—,

(28)

(29)

8/I) 8 /II 8 I—
I

—I+"n —
I

—I+n ——I= h —al —
I

(3o)
gt &ti'J gx &ti') pjn ti'I c' Eti'p

We wish to compare Eq. (30) with the equation

(d/d )(I/") =~.~(,~)-~,(1/")

This interpretation of d/ds does not seem to have been
explicitly stated in derivations of the transfer equation
with which the writer is familiar. However, the solu-
tions of the equation found in the literature are equival-
ent to the solution obtained in the following section.
The solution is probably more obvious intuitively than
the equation is.

III. SOLUTION OF THE EQUATION OF TRANSFER

A solution of Eq. (12) may be found in the following
way. First, one solves the equations

given by Wooley and Stibbs. P In this equation v= pi/2n. ,
2ItvP/c' 1 2hpp'/c'

B(v,T) =
ei" —1 (21r) ' e""~ —1

32)
to obtain

and E„is the absorption coeKcient defined so that the
intensity of a beam through the medium falls off as

x= apr„/ak,

k= —a~,/ax,

x=x(xp, kp, t),
k =k(xp, kp, t),

(36)

(37)

(38)

(39)

where xp and kp are the values of x and k at the time
t=0. Next Eqs. (38) and (39) are inverted to obtainIn terms of quantities in this paper it is

E„=+2k;=—2pi;/vp= a/vp,
(40)

(41)

xp ——xp(x, k,t),

k,= kp(x, k, t) .
(33)

where we have used Eqs. (6) and (16). Equation (31)
may be written Note that

v p(did~)(lit ') =a&(v, &) a(1/t '—) (34)

If Eqs. (17) and (18) are used in Eq. (30), then Eqs.
(30) and (34) will agree only if

dXp BXp BXp BXp
+x +k

dt Bt cjx Bk

xp(x, k,0)=x

(42)

(43)
8 1 8—=n —+—n—

ds Bx v, Bn
(35) and that similar equations hold for kp. The solution of

Eq. (12) is

f(x,k, t) = dt'8(xp, (x, k, t—t'), kp(x, k, t t'), t') exp —— dt"a(xp(x, k, t—t"), kp(x, k, t—t"), t")

+g(xp(x k t), kp(x, k, t)) exp — dt a(xp(x k t t ) kp(x, k —t t ) t ) . (44)
p

That Eq. (44) is indeed a solution is readily verified by
substituting it into Eq. (12). At t=O, Eq. (44) gives

f(x,k,O) =g(x,k). (45)

Generally we are interested only in the inhomogeneous
part of Eq. (44) and we discard the term depending on
g(xp kp) and change the lower limit of the first integral
from zero to —~. If h, a, and f are independent of t,
then the solution may be written as

t

exp — dt'a(t') (47)

because of the absorption undergone.

The interpretation of Eq. (46) is fairly obvious. The
number of photons at the point x, k at some instant is
the sum of those emitted from points xp, kp at times
earlier by the time t, each contribution to the sum being
weighted by the factor

f(x k) = dt 8(xp(x k t) kp(x k, t))

Xexp — dt'a(xp(x, k, t'), kp(x, k, t')) . (46)
0

IV. A RIGOROUS DERIVATION OF THE EQUATION
OF TRANSFER FOR A SPATIALLY

UNIFORM MEDIUM

The definition of f(x,k, t) which we have given clearly
must represent some sort of an approximation since one
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cannot specify both x and k accurately. In fact

Ax;ski 1.

We will try to make the nature of this approximation
clear.

For concreteness we assume that the medium is a
plasma in which a disturbance can be described by the
linearized equations

BE

and its adjoint

S* /220m) i~2 p*
i'(x, t)=, , I I

v*, , (54)
(82r)'" (82r)'" k 2 3 (2yp0)'"

where the asterisk indicates a complex conjugate. The
scalar product

1 spm 1
4V=—(IEI'+ ISI')+2 Ivl'+Z I pl' (55)

Sm 2 2 rp0
=cV)(S—p 42re220v,

aS/at = —cv&& E

(48)
is just the energy density when iP is complex. It obeys
the equation

(49)

Bv 1 e e 1—= ——v+—E+—v xS,—
Bt 7 m mc @pm

ap/at= —yp0V v.

B spm

(50) at

(51)

—V Re —(E*xS)+p p~v . (56)
4n-

In the above E, S, v, and p are small perturba, tions in the
medium. The quantities rt0 S0, and p, are unperturbed
quantities. For the time being we assume that they are
constants. There will be equations like Eqs. (50) and
(51) for each species of particle in the plasma with
appropriate values of e, m, 220, y, r, and p0. A summation
sign without indices denotes summation over species.

We have assumed that the plasma is a medium de-
scribed by Eqs. (48), (49), (50), and (51) in order to
show explicitly how wave packets are to be interpreted.
These equations are probably sufhcient for problems of
interest in radio astronomy, but we believe that the
radiative transfer equation which we derive is applicable
to a wider class of problems.

If Eq. (48) is multiplied by E/42r, Eq. (49) multi-
plied by S/42r, Eq. (50) multiplied by 220nw, and Eq.
(51) multiplied by p/yp0 and the equations added, then
one obtains

a -g2+ g2 p'
+Q 2220m02+ g-

Bt Sx 27p0-

The vector iP satisfies the equation

ag(x, t) t'1 a)= —i&I —.—Ip(x, t),
ki ax/

(5&)

/1 a)
=+'~'If'I —.—

I

I i axi
(58)

(We indicate by an arrow over a differential operator
the direction in which it operates when this adds
clarity. )

We now look for a solution of Eq. (56) with spatial de-
pendence given by a factor

eilr, 'x

Equation (56) becomes

where the operator II is a matrix operator which can be
found by inspection from Eqs. (48), (49), (50), and (51).
Similarly iPt satisaes

Rpm
a$/at = iII(k)ip. —

C

4n
)+~ P ' ( ) We assume a solution of the form

(59)

This is the equation of conservation of energy for the
system. The energy density is

e=~(k)e-'"'

I H(k) —(o1]y(k) =0,

(60)

(61)
p'

U= (82+82)+p 22n0—m02+p-
Sm. 2 Yp0

Now we define the column vector

' E/(82r)'"

( )
S/(82r) '"

(220m/2) "'v
- p/(2V p0)'".

(62)p.(k, t) =4.(k)e-'"-~»'

P "(k,t) =y.t(k)e+*".*&'&'.

(53)
and

(63)

where 1 is the unit matrix. For a given k, Eq. (61) will
have a number of solutions representing electromagnetic
waves, sound waves, plasma oscillations, etc. We will
distinguish them by a subscript n; thus &o„(k) is an
eigenvalue and p, (k) is the corresponding eigenvector.
We write
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inte rand

where

( (t))= d'x Pt(x, t)P(x, t)x,
f(x,k, t) =

Note that
65)

' '* t(k+-'q t)f(k ——,q,e'p'* — —— t . (73)
(2~)'

N(t) = d'x ft(x, t)P(x, t . (66)
x,k, t)d'x=P'(k, t) g (k,t), (74)

f the energy carrie yied b theis the centroid of e ie
e n. (For simplicity o n

' t W Eressed the subscript 0..
qs. (66) together with

f(x,k, t)d'k = d'k e'p *|tt(k+-', q, t)
(27r)'

nsit in k space. AAlsowhich is the energy densi y
'

aI1d

to obtain

where

xp(t) =

aild

d Se'&'-» *=(2~) a(k'—'—k)

i(k'—k) xd xxe
(2n.)' a

a(1
'—1)

i ak'

(x(t))=xp(t)+tv„(t),

d'kit(k)y(k)e'"'&»'

1 2
'

2 d'k( t(ay/ak) —(apt/ak)y)e'"*&»

(67)
e'3 i(u-v) It= dl de&&p(1 ——,'q, t) =

X '(n, t)P(v, t)=f (x, )f(,n, , = t t x,t), (75)

(a/at)ltt (k', t)p(k", t)
= +iL&p*(k') —&p(k

con6guration space.r density in con gu acwhich is the energy g

tof th 1 t t'o
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processes, on
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note that

v, (t) =
d'kLa&p„(k)/akjyt(k)y(k e'"*&")'

d'kit(k) y(k) e'"'&")'

d'k(a&p„/ak)pt(k, t)p(k, t)

dPky&(k, t)y(k, t)

(76)

i *( ') —( ")]=L ~&p
' — " = &p,(k') —&d,(k")j

(72)

77) about k and obtamNext we expand Eq. a

1 /a q)"
'(k+-,'q)- (k--,q)j=&p' -q — —-' =2 P —&p„(k)i-

01d
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at."=k——,
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(71)
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e2~i(k) t
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e2es(ko) t

1 (a
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1E . (73), qisi
'
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'
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Using Eqs. (76) and (78) in Eq. (73) we obtain

Bf(xk2) 1 B B)= —co,(k) 2 sin ———
~
f(x,k, t)

at 2ak ax)

a&(k, t) ( 1 B
= —iH~ ——,k ~P(k, 2).

iak i

The equation of motion then becomes

(85)

a}p'(k, t) 1B
+~ip'jk=, t}B''( —,—k

~

.
i Bk

(86)The sine and cosine functions arise from summing the
series in Eq. (73).

If one assumes that f a,nd co are very slowly varying

higher than the first can be neglected, one obtains

~ ~

Next we divide H into Hermitian and anti-Hermitian
parts. Thus

(87)H=HH+Hg,

1 8 8 The adjoint equation is+~;(k)2 cos ———f(x,k, t) . (79)
2ak ax

Bf a(o, Bf
+ 2%if

at 8k Bx
(80)

where

and
(88)

This is just the equation we should expect. The third
term on the left of Eq. (12) does not occur because of our
assumption that co„was independent of x. No emission
term occurs on the right-hand side because spontaneous
emission cannot be obtained from the equations from
which we started.

(89)

We again define f(x,k, t) by Eq. (73). In calculating the
partial derivative of f with respect to t we need

a — ( 1 a—Pt(k', 2)y(k",2) =g2(k', 2) Ht~ —,I '
~

V. EXTENSION TO SPATIALLY DEPENDENT MEDIA

We now assume that 8, 220, r, and po
'

q . (in E s. (48),
(49), (50), and (51) are functions of position. Then Eq.
(57) may be written where

B( -, k"' —
~

g(k—",t), (90)

Bf(x,t) 1 a
iH x, ———P(x,t),

Bt i Bx
(81)

k'= k+-', q,

k"=k ——',q,

(91)

(92)

with a similar equation corresponding to q. ~E . ~58~. The
equation of motion for }P(k,t) may be found by multi-

E . ~~76'~b '"' and integrating over all space
to obtain

a}P(x,t) B
e—'~'* d'x= —P(k, }!)

Bt

1 8 d'k'
i d'x e '~'*ll x, ——— e+'""*P(k,2)

2 Bx (22r)'

i d'k'H(k, k')}P(k', t), —(82)

LH2(x', k') —H(x",k")]

and

BH22 1 BHI2 (
k k' ak"Bk 2 BX B B

Bf(x,k,2)
e'2 *P'(k+-,'q, i)

(22r)'

we expand with respect to k and x, where x is the opera-
tor —(1/i) B/Bk, and keep only the leading terms of the
expansion. Thus

where

H(k, k') = e '~'*H x, ——~e+'""*, (83)
(22r)' i Bx&

BHH 8 t9H~ t9HII
X 2iH~+ — -+— -+

Bx Bk Bk Bx Bx B

which can also be written as X}P(k—-,'q, t) . (94)

(1 B
H(k, k')=H~ —,k' B(k—k')

ki ak'
1 ()——,I ~l —k.
28%

For the case of no spatial dependence we had

H(k)}P(k) =(o(k)}P(k). (95)



B(x,k) =1~(x k).
desired result. The assumption contained in Eq. (96)

(96) seems to be dificult to justify in general.

then Eq. (90) gives

Bf Broils Bf B(uIr Bf
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Several serious mathematical de6ciencies in Sudarshan s probability-functional approach to the statistical
description of light beams are demonstrated. In particular, it is shown that all the correlation functions of
the beam do not necessarily determine its density matrix.

I. INTRODUCTION

ECENTLV, Sudarshan" has developed a proba-
bility-functional approach for describing all free

boson 6elds. He concludes that "the description of
statistical states of a quantum-mechanical system with
an arbitrary (countably in6nite) number of degrees of
freedom is completely equivalent to the description in
terms of classical probability distributions in the same
(countably infinite) number of degrees of freedom. "
This conclusion and the methods introduced by Sudar-
shan have been used in several discussions of the
statistical properties of light beams including that of an
optical maser. ' '

The purpose of this note is to demonstrate several
scllous mathematical dc6clcnclcs ln Sudarshan s probR-

bility functional approach. In particular, we will show

that all the correlation functions of the beam do not
necessarily determine its density matrix.

and'

Sudarshan' ' has argued that all density matrices of the
form given by Eq. (1), i.e., every free field boson density
matrix, can be put into a special form in a unique way
which allows the conclusion that "there is a one-to-one
correspondence between density matrices of a quantized
(free boson) field and classical probability functions. "
%C shall now review for a single mode the demonstra-
tion which precedes this conclusion.

The most general density matrix for an isolated oscil-
lator (field mode) is

11. SUDARSHAN'S PROBABILITY FUNCTIONAL and the expectation value of the normal ordered product
bt i b "for this statistical state is'

The most general form taken by the density matrix
of a free boson field. is

(nl l, t ng~l

' K. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).
2 E. C. G. Sudarshan, Proceedings of the Symposimrl ol OpticuI

Muses (Brooklyn Polytechnic Press, New York and John Wiley
Bt Sons, Inc. , New York, 1963), pp. 45—50.

3 L. Mandel, Phys. I.etters 7, 117 (1963).
4 L. Mandel, Phys. Rev. 134, A10 (1964).
~ L. Mandel, Phys. Letters 10, 166 (1964).

=2 (f+, I+))(I/I')[(I+))'(l+ )6'".

'
~
es) is the occupation number state describing e bosons in the

kth mode.
Vb and b+ are the annihilation and creation operators, re-

spectively, for the bosons of the oscillator: b(e)= (e)&(e—1),
5+)e)= (e+1)&~e+1).


