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The proton-size correction to the hyperfine structure in the ground state of atomic hydrogen is re-ex-
amined. It is shown by means of dispersion relations that this correction can be expressed as an integral
over experimentally measurable cross sections for electron-proton scattering. This clarifies the physical
nature of the correction, puts it on a rigorous basis and lends support to previous analyses. In the absence
of experimental data, we give some theoretical estimates for the correction. They agree with previous
estimates, and therefore we cannot explain the present experimental value for the hyperfine splitting.
We discuss some possible implications of this disagreement and suggest some experiments which would

clarify the situation.

I. INTRODUCTION

ECENTI Y, the hyperfine splitting in the lowest
lying s state of atomic hydrogen has been meas-

ured' with the remarkable precision of one part in 10".
The purpose of this paper is to review the discrepancy
between the calculated and measured values of the
hyperfine structure (hfs), to discuss the implications of
this disagreement concerning the structure of the pro-
ton, and the propose certain experimental measure-
ments which would reduce the theoretical uncertainty
in the calculated value of the hfs.

We start with the expression' for the energy differ-
ence between the lowest lying s-wave singlet and
triplet states:

32srn' t „t,( m )-s
3m= — Z„~ 1+—

~
(1+-,'n') h(R(p. (1.1.)
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Here n is the fine-structure constant, R„ the Rydberg
for an electron in a 6xed Coulomb field, tc,/tip the mag-
netic moment of the electron in Bohr magnetons and

p„ is the magnetic moment of the proton. The factor
(1+m/3E) ', involving the proton and electron masses
is the reduced mass correction which may be obtained
from the nonrelativistic Schrodinger equation. ' The
term (1+an') is a relativistic correction which follows
from the use of the single-particle Dirac equation
for an electron in a fixed Coulomb field. ' The elec-
tron shape factor 8 represents corrections to electron
structure' arising from virtual photons surrounding
the electron Lgraphs such as Fig. 1(A)], and the proton
recoil terms R are additional relativistic corrections

coming from the use of the G.eld-theoretic bound-state
equation. "The proton shape corrections (P represents
meson corrections to the point structure of the proton

t graphs such as Fig. 1(B)].As we shall see, the main

difhculty in obtaining a theoretical value for the hfs is
that the proton-shape correction cannot be expressed
in terms of a simple, directly measurable, property of
the proton (such as the static anomalous moment) but
involves an unknown function of two variables which
must be measured. Our reasons for identifying the
various terms as separate entities in this conventional
way is to gain some insight. Of course, this entire ex-
pression for the hfs is just a consistant expansion of the
bound-state equation in powers of n and m/3I up to
including order nm/sr(tt+1)3II where the lowest order

hfs,

(hfs) p—=5=—(32srn'm/3M)R„(tt+ 1)
= (Ssrn/3mM)(ts+1)

~ q (0)
~

' (1.2)

is taken as of order 1. (tc= 1.79.) It is essential to realize
that although the different terms in the expression for
the hfs, Eq. (1.1) do have physical meaning, the only
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FzG. 1. Feynman graphs affecting the hfs. The electron is repre-
sented by a single solid line, the proton by a double solid line and
photons by a wavy line.
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method we have to be sure that we did not double-
count an effect or omit it is to make just this expansion
of the bound-state equation. Of course this has already
been done'~ and the corrections due to proton structure
can be derived' simply by modifying the previous
analysis. In particular, we always have in mind a system
of bookkeeping based on the bound-state equation.
Our later assertions that certain terms are negligible
mean simply that a careful approximation to the cor-
responding terms in the expansion of the bound-state
equation gives an eGect which is too small to count. '

The difhculty with the proton-shape correction
appears as a logarithmic infinity in the calculations of
Arnowitt' and Newcomb and Salpeter. 7 Although this
divergence appears in a rather complicated perturba-
tion expansion of the bound-state equation, we can give
intuitive reasons for its existence as follows: These
authors took the coupling of the photon to protons as"

A.(«) = e[V»—sf (V»~—~V»)j. (1.3)

The corrections to the hfs come from Fig. 1 graphs (C)
and (D) where two photons are exchanged. (This point
will be elaborated shortly. ) Now it is known that the
electrodynamics of fermions with anomalous moments
is not renormalizable and therefore the appearance of
the logarithmic in6nity in the two photon graphs is not
surprising. The above authors introduced an arbitrary
cuto8 in momentum space to obtain a 6nite answer.
Although for a cutoff calculation the experimental and
theoretical values for the hfs can be made to agree, this
arbitrary cutoG is clearly not satisfactory.

An attempt has been made"' to remove this arbi-
trariness by taking the interactions of the proton with
photons as Ii («')i1» where Ii («') is a form factor which has
been chosen to 6t the electron-proton (elastic) scattering
experiments. "This calculation may be understood very
simply": In atomic hydrogen the electron and proton
have very small average velocities (order of tr and
o.m/3E). A high-momentum photon which will probe the
structure of the proton and give it enough momentum
so that it has appreciable recoil velocity wiQ leave the
electron-proton system in a highly virtual state. This
virtual state must soon go back to the initial state by the
exchange of another photon of almost equal and opposite
momentum. It is thus two-photon exchange [Fig. 1,

SC. K. Iddings and P. M. Platzman, Phys. Rev. 1j.3, 192
{1959).We shall refer to this article as I.

9 Qf course there are various forms of perturbation theory which
are equivalent to the use of the bound-state equation; see for
example, Ref. 7. The point to be made here is simply that starting
with the exact theory {quantum electrodynamics) a consistent
perturbation expansion generates u/l corrections to the hfs.

"From now on we shall use units where A=c=1, p, =1.79,
e =n—1/137, the proton mass M is 1, and g is the photon
momentum.

"A. C. Zemach Phys. Rev. 104, 071 (1956)."For a thorough discussion of the form factors, see L. N. Hand,
D. G. Miller, and Richard Wilson, Rev. Mod. Phys. 35, 335
{1963)."The ideas underlying this discussion are due to R. P. Feynman
(unpublished).

graphs (C) and (D)j which involves states with large

enough momenta so that the 6nite mass and structure
of the proton are felt. %e ask for the difference in the
hfs for a proton with structure and a point proton. That
is, we do not calculate Fig. 1, graphs (E).and, (F) [with
an interaction F(«')A»'j but the difference of Fig. 1,
graphs (E)+(F) and Figs. 1(C)+(D). This difference

vanishes very rapidly for photons having momenta of
order nm because the structure of the proton is about. a
pion Compton' wavelength in "size." Any momentum

small compared to a pion mass will "see" only a point
proton. For this reason the binding eBect of proton and
electron can be neglected in the initial and final states for
the difference of these graphs although it cannot be neg-
lected for either pair, Figs. 1(C)+(D) or Figs. (E)+(F),
alone. In fact, the mass of the electron in the inter-

mediate state can also be neglected. These conclusions

also follow from a detailed consideration of the bound-

state equation, provided that one assumes all proton-

photon interactions carry a form factor F(«') Althou. gh,
as we shall see, the situation is not simple enough to be
described by the one-photon form factor, the order of

magnitude estimated for the various graphs by using

such a form factor is certainly correct. Therefore the

conclusion that the nuclear-structure e6'ects in the hfs

are due to two-photon exchange is on firm ground.

Explicitly, we find'4 that the energy shift, hfs (extended

proton) —hfs (point proton), is given by Fig. 1 graphs

L(E)+(F)3—[(C)+(D)]as

crfts

l~sb,4 (fan+1)3f )
(1.4)

+3
88=

d&~

v p~Isv

88 is the energy shift in dimensionless units, momenta,

and energies appearing in it being expressed in terms of

proton mass. C„„(e) and C»„(p) are the Compton scat-

tering operators for the electron and proton. %e have

normalized them so that

e'C„„(p, extended) = h.„(—«)- &,(«)
p+sc —1

A„(-«) F'(«s). (1.9)—x—1

"See Ref. 8 for the details.

&„=& Sp«(C.»(e)(s(1+vi))v vs)

~»„=-', Spur([C»„(p, extended)

—C»,(p, point) )(s (1+vi))v.vs} ~ (1 0
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C„.(P, point) simply replaces F(x') by unity. As noted
above, we replace the electron propagators by (x) '.
There is no trouble with an infrared divergence because
we are calculating the difference of an exterided and a
point proton. There is a logarithmic divergence in Eq.
(1.5) coming from the C„„(p, point) term. This cancels
with a similar divergence in the work of Newcomb and
Salpeter~ and yields a finite answer, the hfs for a proton
with structure. '4

Inspection of C„.(p) shows that what is needed is the
forward Compton scattering of a virtual photon of initial
polarization p and final polarization v and that this is
being approximated by two interactions, each with the
experimental one-photon form factor, and an inter-
mediate state of one virtual proton calculated according
to the usual Feynman rules I Fig. 1, graphs (E) and (F)].
The correct answer for the hfs, at least to this order in
[nm/s(p, +1)3/I], would be given by using the exact
Compton amplitude in which intermediate states I,
such as the Ã*(ss, ss), can occur as well as Protons )see
Fig. 1, graphs (G) and (H)]. In the exact amplitude,
the intermediate state of one proton would presumably
carry more complicated form factors than those of Eq.
(1.9) since the proton as well as the photons are off the
mass shell. The shift coming from the use of (1.6) and
(1.7) in (1.5) disagrees with experiment but this is not
impossible because important processes like isobar
formation have been neglected. "

Rough estimates for Fig. 1, graphs (G) and (H) have
been given"; however, it is not very clear in what way
all the different intermediate states are to be included
and whether or not these estimates can be improved. In
other words, the inclusion of form factors and other
graphs with isobar intermediate states does not neces-
sarily follow from any self-consistent perturbation
theory; it is an ad hoc hypothesis.

In this paper we first propose (Sec. II) a consistent
dispersion-theoretic method of attack for obtaining the
proton-structure corrections to the hfs. We show that
the introduction of form factors LFig. 1, graphs (E)
and (F)] arises naturally and that there is also a con-
tribution from isobar intermediate states )Fig. 1,
graphs (G) and (H)]. LContributions from Fig. 1,
graphs (E) and (F) are discussed in detail in Appen-

dix A.] Using the analyticity properties of the ampli-
tudes involved, we are able to express the structure cor-
rection as an integral over physically measurable cross
sections and an integral over a subtraction constant.
In Sec. III we discuss the methods by which these
cross sections may be obtained from electron-scattering
experiments. Since these data are not available, at
present, we give some theoretical estimates in Appen-
dices 8 and C. Our conclusions are given in Sec. IV and
summarized here: First, there is a discrepancy between
the measured and theoretical values for the hfs. The
previously given estimates for the nuclear-size cor-
rections to the hfs are essentially unchanged. The theory
is forced to rely on some rough estimates for processes
which concern strongly interacting particles and this
will be so until the electron scattering experiments (and
possibly other experiments which 6x subtraction func-
tions) are done. Thus this disagreement is not indicative
of any failure of quantum electrodynamics. Second, the
disagreement would be reduced if there were many
higher proton isobars which were copiously produced by
y rays, and if a certain subtraction function were large.
"Reasonable" estimates suggest that even if both these
effects contribute in the same direction a discrepancy will
remain. Third, there is a close parallel in the calculation
of the electromagnetic mass difference between neutron
and proton and there also appears to be a similar dis-
crepancy there. Progress in understanding either one of
these problems may help with the other.

II. ROTATION OF THE CONTOUR OF INTEGRATION

We shall study the contribution of the extended pro-
ton to the term OR„„of Eq. (1.7) by a method due to
Cottingham and used by him to discuss the neutron-
proton electromagnetic mass difference. 'i BR„„(ex-
tended) is simply the spin-dependent part of the for-
ward scattering amplitude for a proton and a photon of
mass z', polarization p to a Anal state of polarization p

(mass lr'). Using standard reductions, OR„„(extended)
can be brought into a form analogous to Eq. (1.7) of C.

z

OR„„(extended, sc, lrs) =—p(e, u
~
j„(0)

~ Q)
16 ~

"In performing this cutoff calculation, Newcomb and Salpeter
(Ref. 7) noticed a cancellation between various finite terms as well
as the logarithmic divergence referred to above. The logarithmic
divergence from Fig. 1, graphs (C) and (D) occurs only in terms
proportional to the square of the anomalous moment p and its
dependence on the cutoff is quite weak. When the proton structure
is included as in Ref. 8 (Fig. 1, graphs P(E)+ (F)j—L(C)+ (D)j)
only about 7'P& of the correction comes from the p, ' terms. The
largest correction ( 93 j&) arises because the cancellations for a
point proton no longer occur when the proton has structure. This
explains why one does not obtain a realistic estimate of the size
effects merely by replacing the cutoff in the logarithmic in6nity
by some length characterizing the proton structure. The structure
effects are most important for terms which are perfectly 6nite (but
tending to cancel) for a point proton.

~6 +. K. Iddings and P. M. Platzman, Phys. Rev. 115, 919
(1959).We shall refer to this article as II.

bs(st —q) bs(u+q)
X(Qlj,(0)lu, & . +

q' —1—s' —ie q' —1+jr'—ie

—(lu, ~&~lu, P&) (2 1)

where P
~ Q)(Q ~

is a sum over a complete set of outgoing
states ~Q& of momentum (q', q), ~m, n& is the initial
single-nucleon state with spin n, o,=+1 (P is the spin
state o,= —1); j„(x) is the Heisenberg current opera-

' W. N. Cottingham, Ann. Phys. (N. Y.), 25, 424 (1963). We
shall refer to this article as C.
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tor. Equation (2.1) shows that, as a function of cko for
6xed x, 5R„„is analytic in the entire K complex plane ex-
cept for poles and cuts just below the positive real axis
and just above the negative real axis. The integrand in
Eq. (1.5) has exactly the same analytic structure as
(2.1) for fixed x and complex cco. [Of course there are
additional poles in (2.2) because of the photon and elec-
tron propagators; these do not change the analytic
structure since they are evaluated for the usual Feynman
contour. ]Therefore it is possible to rotate the contour
of integration anticlockwise from the real (ckp) to the
imaginary (ickp) axis. Inspection of Eq. (1.9) shows that
this rotation is also possible for the point-proton part of
5R„,. We shall change variables, d4K —+id4IC after per-
forming this rotation of the contour so that the integra-
tion is over a Euclidian four-dimensional space K.
Equation (1.5) now becomes

+3 d4K
&8= X, ( K' iKp)—ORu, (—K' iKp). (2.2)

E4

In order to proceed further we must employ a dis-
persion representation for the function 5R„„.The most
general possible forward scattering amplitude C„.„can be
written

C,„=—[g u' ck„ck„]A(—ck' or)

+Lou~(p'cc)'+Pl P~ck' (Puck~+ckup~)p'ck]&(ck')op]

+ [o(pvcky)y p]D(ck', kp)+ [p(pvckP) xy p]G(ck', kp), (2.3)

d(K')2ck' 1 "2ko'dkp' Im[D(ck', kp')]
D(ck', kp) = +— ——— , (2.4)

K4—4(o2 X —
GO

/2

where A, 8, D, and G are functions of the two scalars K'

and cko= p ck=—kp and p is the laboratory momen. turn of
the proton, (1,0,0,0)." Invariance under cha, rge con-

jugation requires A, 8, and D to be even in ~ and G to
be odd.

Dispersion relations for the functions A, 8, D, and G
can be proved for fixed, negative K' by using the method
of Bogoliubov. ' "For the functions D and G we have

g(")=+p pfifp+ o p'fo' (2.8)

The functions fi(ck') and fp(kk') are the Dirac and Pauli
form factors determined experimentally from elastic
electron-proton scattering" and normalized to unity at
ck'= 0. In terms of fi and fp the interaction of a real pro-
ton with a single virtual gamma ray of mass K2 and
polarization p is given by the vertex operator:

I'„(ck)= e{y„fi(ck')—-',p(y, x—xy„)fp(ck') ) . (2.9)

We have so far ignored the question of subtraction
"constants" (functions of ck') appearing in (2.4) or (2.5).
We shall return to this point later and discuss whether
or not subtractions are actually ~equired for the con-
vergence of the integrals (2.4) or (2.5). For the moment
we shall make one subtraction in the dispersion relation
for D. This is done only to facilitate the evaluation of
Eq. (2.2) and not for any fundamental reason.

d(cko) 2Kp

D(ck', kd) = +do(ck')
K4—4CO2

1 "kp'2kp'dkp' Im[D(ck', kp')]
(2.10)

7l g CO
—

CO M

If we compute D and G in the Born approximation using
the interaction (2.9) we find D and G as given by (2.5),
(2.7), (2.8), (2.10) with Im[D(ck', kp)]=0= Im[G(ck', kp)]
if ~)C and

dp(ck') =+'&fdp-
Writing (2.10) in the form

(2.11)

d(ck') 2ck'

+ o pfif p +Ldo(") 2pfifp]—
K4-4(u2

1 "kp'2kp'dkp' Im[D(ck' kp')]
(2.12)

7P g CO
—Gl M

The pole terms are the one-nucleon contribution:

d(ck )= i—p(cko+4) fifo f—i i—p ck fp (2.7)

g(ck') 4kp 1
G(ck' kp) =— —+-

K 4' 7l

"2kpdkp' Im[G(ck', kp')]

g2 2
C GO GO

gives an expression, the 6rst term of which is the Born
approximation.

(2 5) We now substitute (2.5), (2.12), into (2.2) and use
the following relationships:

where the cut starts with the inelastic pion-nucleon 3ck'X„uORu. (extended)
channel. =[2ck'+(p K)']D+[(p ck)' —ck'](p ck)G, (2.13)

C=-', (2m.+m. '—.p) . (2.6)

18 We use the abbreviations 6'(pvK+) 6p p Kpp Our normaliza-
tion for the current j„ofEq. (2.1) is not the usual; this is implicit
in our defining Kqs. (1.7), (1.8), (2.3).

1 N. N. Bogoliubov and D. V. Shirkov, Introduction to the
Theory of Quuntised Fields (Interscience Publishers, Inc., New
York, 1959), p. 610,

We obtain
Dp(ck )= [do(ck ),'pfifp] ~

68= bS(Born)+bh(cut),

(2.15)

(2.16)

ip ck=Kp Kcos|P, d4K=——dQxK'dK sin'|Pdf,
(2.14)8—=ko"/K', d4K= 47rK'dK sin'Pd|P
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88(cut) = —$DD(—E')+ Im[ D(—E', (u') j{9+128—88'—8(2—8)(818')'@}
0 E g XM~

+ ImLG( —E' co')]{—3—128—88'+88'i'(1+8)'i'} (2 17)

The Born terms we want are those for the difference of the extended and point proton:

8 $(Born) =— (E,2+2E2)
E'

E'{44(4—E') (fyfm
—1)+4(fP—1)—p'E'(fa' —1)}

+514(f~f2 1)—
2(4E0'+E')

+(E' E02)—

All form factors are evaluated at —E'. We have not
done the angular integration in (2.18) because we shall
give, in Appendix A, a more convenient formula for
8h (Born), suitable for use when the form factors are ex-
pressed as a sum over poles. Evaluations of 58 (Born)
are also given for a number of form factors vrhich fit the
more recent electron-scattering data. The results are
almost completely insensitive to the choice of form fac-
tor, 8b (Born) =—70 in all cases, and are in agreement
with a previous estimate. ' This is not surprising because
the Born contribution is exactly the term which vras cal-
culated before except that fq and f2 were taken as equaL
It was also noticed" that this rotation of the contour
was possible for the Born terms and that after this rota-
tion, 8$ (Born) depended only on the form factors in a
part of the physical region vrhere they are well known.
Thus the more recent data for the form factors makes
little change in 8h (Born). The point of this paper is that
contour rotation is also possible for the non-Born
terms, 8h (cut), and that the Born terms arise naturally
in a dispersion analysis.

In (2.17) and (2.18) we have achieved our goal; the
hfs nuclear size correction is expressed as an integral
over quantities which are, in principle, physically
measurable.

III. EXPERIMENTAL DETERMINATION OF
THE AMPLITUDES

We novr turn to the experimental determination of the
form factors and imaginary parts appearing in Eq.
(2.16). Determination of the form factors f& and f2 by
elastic electron-proton scattering has been thoroughly
discussed elsevrhere and vre shall simply assume that
they are known. "The experiment which determines the
imaginary parts of D and 6 is the inelastic scattering of
a polarized. electron by an initially polarized proton to a
6nal state with knovrn electron energy and momentum
and unknown electron polarization. The 6nal state of the
proton system is arbitrary. Alternatively, the 6nal
electron polarization could be measured rather than the
lnltlal polar1zatlon.

We shall describe the two possible spin states, in
direction s, of a fermion of momentum p by the co-
variant projection operators

I'(+s) = -,'(1ais75), (3.1)

p s=o, s'= —1. (3.2)

We consider electroproduction process shown in graph
J whereby an electron of spin direction +r, momentum

pq scatters from a proton of spin +I, momentum p
into a anal state of momentum pm. The cross section for
this process is given by

d'0 n'I p, I

Spur y„
dn, ~p20 vip, l

(p~+rr) (1+4m«) (p2+~)
Z(p &li (o) Ig&(ply'„(0) Ip, N)84(qp —p —&+pm).

2 Q

Using the relation implied by Eq. (2.1),

imLm„„j=(4~l16)Z, (p,~l q„(0)[g)(g I ~„(o) I p,~)8 (.+p q) {n p},— —

where «= (pg —p2) and «0& 0, we 6nd:

(3 4)

2n'[p~[
{(«'+2m'«') —1m[A(«') p»)]—[((p p&)'+(p p2)')«'+ '«4+2m'(p -«)'j ImB(»', p»)

dodpn' ~[pal»4

+2(» 44(» r) —»'(I r))e ImLD(»', p») j+2(» r(» p) «'(p r))(» N—)e Im[G(«', p») j}. (3.5)
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If the final spin s rather than the initial spin r of the electron is measured, the replacement r + —s is to be made in

Eq. (3.5). Clearly this formula enables us to find the imaginary parts of A, 8, D, G as functions of K', o1 for «'&0,
co+0. The kinematical problems involved in obtaining A and 8 are discussed in Ref. 17. Here we have the added
complication of the spin. It is clear that if we take the difference of the cross section for +u and —u and hold every-
thing else fixed, the A and 8 terms will drop out and we will be left with the terms involving D and G.

As an example we shall work out specifically what to expect for various spin directions in the laboratory frame.
We introduce coordinates as follows:

pl ——(el,y1,0,0),
r 1——(yl, 22,0,0)/m,
rs= (0,0,1,0),
rs ——(0,0,0,1),

Ps——(es, ys cos8, ys sln8, 0), P = (1,0,0,0),
ul ——(0,1,0,0),
us ——(0,0,1,0),
us= (0,0,0,1) .

(3.6)

An arbitrary polarization can always be described
as a linear combination of these vectors. Thus
r= (4rrt+prs+yrs). (With real n, p y n +p +y &1.)
Expressions for the dot products occurring in do- can
now be obtained in terms of scattering angle and initial
and final energies. For example,

K ' rl p2' rl (ylss elys cos8)/212 ~ (3.7)

The results are summarized in Tables I and II. Clearly
there are enough independent functions of angle and
polarization direction to enable us to find ImD and ImG
as functions of «' and 4o=—p K. The particular choice
made by the experimenter will depend upon the details
of the apparatus and the techniques used. For example,
if we confine ourselves to electron momenta, y&, y&, very
large compared to an electron mass, el/y1=1=22/ys,
we find

da(ut, rl)—Iml D+P «G5It(ul, rl) —(«'/2m) ImG (3.8)

do (u2 rl)=Iml D+ p' KG5I1(u2 rl)
—(«4/2m) cot8/2 ImG. (3.9)

Our point is only that both ImD and ImG are inde-
pendent contributions to da and can therefore be de-
termined separately. Table I and II may be used to give
information about the boundedness of the amplitudes.
We observe that in the lab system as

l yll —+~ holding
K' fixed that 8 1/Mlyll~0~ re= p'- lytl~~. If der

is bounded by a constant for any I, r we have

energy theorem" which states that the first two powers
of co in the amplitude C„,are correctly given by the Born
approximation. This means that Lcf., Eq. (2.15)5

Dp(0) =0. (3.12)

TABLE I. The invariant P~ N~ r z'44 rj as a function—of energy
and angle for various choices of the polarizations u and r. Quanti-
ties evaluated in the laboratory frame.

Polarizations

(r1,N1)

(r1,N2)

(r2,11)
(rs,N2)

(r4,444)

(rl,N4) (rs,N4)

(r4,N1) (r4,442)

{(p2 cos8—pl) pe& y2 cos8—42y1$+«'4&) (1/m)
p2 sln8(41p2 cos8—p&42) (1/m)
p2 sin8(ps cos8—p1)

(p, sinter)~+K~

K

TABLE II. The invariant L«r«p —«2p rg« I as a function or
energies and angle for various choices of the polarizations e and r.
Quantities evaluated in the laboratory frame.

Polarizations

As can be seen from Eq. (2.1/), if this did not hold there
would be a logarithmic singularity in 88 (cut)."If the
dispersion relation for D l Eq. (2.4)5 converges with no
subtraction then Do can be determined by evaluating
the integral over the cut at co=0. If the subtraction is
required for convergence then the hfs depends upon a

lImDI

l
ImG

l
&constant,

(3.11)

ImD+
l yl l

ImG& constant,
3.10

ImD&
l yl l

constant,

from I&, r&, and u3r3, respectively. These can both hold
only if

(r1,N1)

(rI,Ng)

(r2,NI)

(r2,442)

(rs,N4)

(r1,444) (r2,N4)

(r4,441) (rs,N2)

(pl cos8—y1) {(41—42) psrp2 cos8—42p&g —«sp&) (1/m)
(p2 sin8) {(41—42) (41ps cos8—p&42) —«'yl) (1/m)
P2 sin8(P2 cos8—P1) (6y 62)

(p2 21118) (el 42)

0

for fixed K'. Thus the dispersion relation (2.10) requires
at most one subtraction and (2.5) requires none.

Now let us look at the limit f{."—+ 0. The amplitude
must pass over into the forward Compton scattering
for real photons. For ~'=0 as z ~ 0 we have the low-

I F. E. Low, Phys. Rev. 96, 1428 (1954); M. Gell-Mann and
M. L. Goldberger, ibid 96, 1433 (1954)..

"Of course bound-state eftects and the Gnite electron mass
would prevent a real divergence at low E;however, the calculation
would be more involved. This was the motivation for making the
subtraction in D.
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function Do vrhich cannot be determined from electron
scattering alone. It is also possible that the dispersion
integrals themselves converge but that there are func-
tions Ds or Gs present. This means only that Re(D) or
Re(G) has a different asymptotic behavior than the
imaginary part. In either case, we have no proposal for
determining these functions. What is needed is an
analogue of the low-energy theorem but for x'& 0. We do
not know if such a theorem exists. In the absence of any
other information, we shall assume that Do ——0. For the
models considered in Appendices B and C, this is cer-
tainly true. We can see from Eq. (2.17) that the hfs is
quite sensitive to Do."

IV. CONCLUSIONS

The results of Secs. II and III show what physical
processes contribute to the proton-structure correction
to the hfs; there is no further question of double counting
or omitting terms. For example, a graph such as E is
included in the form factor [Fig. 1, graph (E)]."
There is one remaining uncertainty, the value of the
subtraction function Do. We do not know how large it
is; the low-energy theorem tells us only that it, is zero at
~'=0. All other contributions to the hfs can be deter-
mined experimentally by means of electron-proton
scattering experiments. Since these experiments are un-
doubtedly a long way o8, we have given two estimates
(Appendices B and C) of the contribution of a single reso-
nance, $*(3,3) electroproduction, to the hfs. Both esti-
mates are of the same order of magnitude: BS($*)(0.5.
The single photon form factors are well known and we
show in Appendix A that 5b (Born)= —70. Taken at
face value, this is exactly the same result obtained pre-
viously (Refs. 8 and 16). The previous conclusion that
the value of 0, from 6ne structure measurements is in
error, is not substantiated by a recent determination of
0. from the hfs of the pe system. '4 It therefore appears
that either there are many, possibly overlapping, higher
resonances which are strongly excited by photons or
that our assumptions about subtractions are unjusti6ed
or that both of these possibilities hold. Neglecting the
question of subtractions, even if there are, say, 6ve reso-
nances and each contributes about 2 to 88, all in the
same direction, there is still an over-all theoretical
BS~—60 so (P—(1—30X10 ')."There appear to be
no special interference effects which would give large
enhancement with more than one resonance. On the
other hand, if we allow a fairly wild behavior for Do

then (cf. Ref. 22) 88=10 from Ds and the total theoreti-
cal b8 (Born, Do and resonance terms) is = —50. So
(P=(1'—23X10 '). Thus even an extreme behavior of
Do will not account for the discrepancy. We can give
no reason to expect such behavior. At present, there-
fore, we are not able to account for the discrepancy be-
tween the measurements and our theoretical estimates.
It would be very interesting to have the results of the
electroproduction experiments to compare with our
theoretical estimates for D and 6 since functions of two
variables are then being compared rather than integrals
over them (as is the case for 8b).

A similar situation exists for the electromagnetic
neutron-proton mass difference. '" A cutoB calculation of
perturbation theory agrees with experiment. '6 The
Born terms, taken with form factors, give an answer of
the wrong sign and the contribution of a single isobar of
reasonable widths and mass does not account for more
than about 10'Pz of the discrepancy. 'r This problem can
also be investigated by means of inelastic electron-
scattering experiments and it is possible that any un-

usually large isobar production cross sections will con-
tribute to both the self-energy and hfs calculation and
thus could be detected in either. Thus it would also be
interesting to have the non-spin-dependent electro-
production data (for both proton and neutron).
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f,(s')= P p "i(»'—X„'). (A1)

APPENDIX A

Recent experimental results have shown that the
form factors have a more complicated structure than
was used in original estimates of bb (Born).' Accord-

ingly, we have assumed that the form factors are a
"sum of poles'"':

~ As an estimate, if D0 1 for 0.1&—f(."&1 and zero elsewhere
then the contribution to 8 E, (cut) is of the order of 4.5 ln, (1.0) =10.

'~ e have deliberately omitted terms like Fig. 1, graph (L)
although they are, in principle, present in the kernel for the bound-
state equation. A reasonable estimate of this graph gives the un-
interesting result 8 E,)Fig. 1, graph (L)j=0.002.

'4 W. E. Cleland, J. M. Bailey, M. Eckhause, V. . Hughes,
R. M. Mobley, R. Prepost, and J.K. Rothberg, Phys. Rev. Letters
13, 202 ~1964)."In these units (P—1—bg(0.453)&10 ) experimentally (see
Refs. 8 and 24) 58=+10+20.

~6 R. P. Feynman and G. Speisman, Phys. Rev. 94, 500 (1954).
~7 W. N. Cottingham, private communication and Ref. 17.
» See for example S. D. Drell and F. Zachariasen, E/ectromug-

neHc Strlctlre of Sucleogs (Oxford University Press, London,
1961).This is a reasonable form of approximation to the integral
representation. We are following the normalization conventions
that f;(0)=1. The derivative (sf~/ss')„s 0~A' is related to the
rtns radius R by Jt =3+6.We are using the convention that the
proton mass is 1 so that R is measured to be about 3.81 in these
units. The subscript i =1 refers to the Dirac part of the interaction
and i =2 to the Pauli term. Cf. Eq. (2.9).
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TABLE III. Hyperfine energy shifts, S s (Born), for various p'roton-single form factors. Logarithmic terms $9p in (2s )/4] omitted;
see text. Units of proton mass; all form factors except cases XII and XIII fit the experimental rms radius.

Case XP Asm final(D) is 1(p) 8 e(0) 5 g(1) 8 S(2) 8 STOT

V 04 0.511 22.2

VI 0.333 0.400 1.11

VI I 0.333 0.400 22.2

VI II 0.333 1.11

IX 0 333 22.2

X 0.637 5.73

XI 0.637 15.8

XII 0.4

XIII 1.0

XIV 1.0 10.0 15.0

I 0.52 2.06

II 0.75 0.924

III 0.4 0.511 1.11

IV 0 4 0 511 2.22

—0.696

-3.98

0.184

0.184

0.184

0.255

0.255

0.255

0.255

0.924

0.905

0.4

1.0

—0.696

—3.98

0.475

0.475

+0.475

0.333

0.333

0.924

0.905

0.4

1.0

+0.696

+3.98

0.298

0.298

0.298

0.261

5.22

-2.58

—7.16

655.0

+0.696

+3.98

+0.00859

+0.00859

+0.00859

0.475

0.475

—2.58

—7.16

826.0

—0.05

—0.10

-1.0
0.261

5.22

-968.0

—0.225

-0.450

—4.50

—0.255

-4.50

—1224.

—22.4

-22.5
—20.9

—2101

—21.3
—22.1

—20.3

—22.1

—20.3

-21.5
—20.7

—22.4

-12.7
15.4

-44.8
-45.2
—45.3

—46.1

-47.0
—44.7

-45,8
—47.0

—45.4

-43.2
—41.4

-44.7
-26.0

67.7

—4.8

-4.7
-4.80

—4.74

—4.74

—4.7

—4.7
—4.8
—4.8

-4.8
—4.9

—49
—5.6

—501.

-72.0
-72.6
—7101

-72.0
-73.0
—71.5

-70,8

-73.9
—70.5

-69.5
-67.0
-72.0
-44.3

—417.0

When we introduce (A1) into (2.1S), we obtain

bh(Born) = P P R;;(n)
ex=0, 1,2 i, j=l

17 9
g = fi ln(2smax)

16 4
(A3)

J'() ') =(I/) ')(5Io+4It —sIs) ~

J'() ') = (fi/X')(6Iq+4Ii —2Is), (A6)

J'() ') = (p'/) ')(-'Io —sIs+9/S»(~')) (A7)

Iq (cos 'x)/2x—(—1—x') '"
Ii——-', ln(4x')+ (1—2x') Iq, (A9)

Is ——1+(1—2x') ln(4'r')+ (1—Sx'+Sx4)Iq. (A10)

If i =j then BJ (),r)/rf);s is to be used in place of the
bracketed term in (A2). The logarithmic divergence
coming from C„„(p, point) has been separated ex-
plicitly in the term g; when the expression for bh (Born)
is added to the previously obtained expression for the
hfs, it will cancel a similar divergence there. For this
reason, we omit the logarithmic part of 5h (Born),—(9/4)p'ln2x„, and state only the finite part of 8h
(Born). The results for a number of form factors are
given in Table III.

Case I was done by hand computation also" and case
"See footnote 10 of Ref. 8.

where we put:

R„(0)=pi'pi', R;,(2) =ps'ps, (A4)

R i(1)=pepsi, x=-', (X;),

II simulates the form used in Ref. 7, Kq. (37) by two
poles, close together. The results agree, within the
accuracy of the previous calculations (1 part in 70) and
thus give an additional check of both the algebra and
computer program used to obtain Table I. Cases III,
IV, V are approximations to the form factors which fit
the more recent data. " The "hard core" (constant
term) which the experimenters used to fit their data has
been replaced by a pole, located farther from the physi-
cal region than the other two poles. As was explained
in Sec. I, a constant (in x') Pauli moment leads to a
logarithmic divergence in the expression for 8$ (Born).
There are other theoretical reasons for believing that as
x'~~, the Pauli form factor fs may vanish. At any
rate, we have assumed that this is the case and therefore
what the experimenters regard as a constant in fs,
we have replaced by a pole at very large, positive, ~'.
We have similarly eliminated constant terms in fi
although there is no particularly compelling reason for
doing so. As the results of Table I show, the hfs is not at
all sensitive to the location of this pole. Cases VI to IX
show by example that as long as the derivative of the
form factor is correctly chosen, its structure can change
radically with little e6ect on the hfs. Cases X and XI
are form factors chosen to fit the preliminary results oJ
Zichichi ef al." on p+p~e+e. Here the form factors
are measured at large timelike ~' and as is apparent from
the table, even a form factor which remains large at
much higher ~' than those of cases I and II makes
practically no difference in the hfs. All the form factors
in the table except XII and XIII have been fitted to the
correct slope and value at ~'=0. Thus the value of
58 (Born) seems dependent only on the slope of the

"C. de Vries, R. Hofstadter, and R. Herman, Phys. Rev.
Letters, 8, 381 (1962).

"M. Conversi, T. Massam, Th. Muller, and A. Zichichi, Phys.
Letters 5, 195 (1963).
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form factor at a'= 0, a region which has been thoroughly
investigated by experiment. This conclusion agrees
with those of articles I and II. It is possible to fit the
experimental slope at ~'=0 and obtain a different
value of 8 h (Born); however, brief consideration of the
form factor required, shows that it is definitely not in
agreement with experiment. Case XIV is included only
as an illustration of what would be required to change
the results appreciably and is not intended as a realistic
example. Thus it seems quite unlikely that any better
form factors will make much change in 88 (Born) from
its value of —65 to —75.

ImLD(0, (p)j=
81'„1V4L(21V'—1)pp, +a&,'1

nlV'(1V' —1)'(31V'+ 1)

Xpr(&(~ —(up) —b((o+a)p)), (81)

where &pp=-,'(1V' —1), IV is the isobar mass and I'~ the
partial width for decay of the isobar into p+y. (All
units are those of a proton mass. ) It should be realized
that although we use the bookkeeping system of the
spin-~3 theory to keep track of kinematical factors in
obtaining Eq. (81) this is only for the sake of conven-
ience; the imaginary part of D, in a zero-width approxi-
mation is quite independent of the method used to
obtain it. Employing a dispersion relation gives the real
part of D on the cut.

I'„(31V'—1) 21V'
ReLDj=

n (31V'+1) (1V'—1)'

-pep+07 cop —(0-
(82)

Following th, e usual line of attack, we shall depart from
the zero width approximation at this point and replace

APPENDIX B

We now consider an approximate evaluation of b8
(cut). First, we shall ignore the term involving G and
p«D(x', p «)=D(0, p x). If we consider only D(0,~)
we are asking for the forward spin-dependent, Compton
scattering of real photons, the contribution to the im-
aginary part is then given by the usual unitary condition
in terms of photon-production cross sections. In view of
the current state of knowledge, we think that the most
that can be done is to estimate ImD:in an extremely
simple, one pole approximation. We assume that the
only inelastic channel to which photon and proton are
coupled is the 3f1 ss ~ 1V*(3,3) channel and. that this
resonance has zero width for xE decay. Then to lowest
order the imaginary part of D is just the imaginary part
of the isobar graph (calculated in Appendix C)

ppp ln (82) by ppp ——,i1VF where F is the total width.

Re(Dj =
I' (31V'—1)21V'

n(31V'+ 1)(1Vs—1)'

X (83)
(pp —(ap)'+1Vs-,'I"' ((a+a&p)'+1V'-,'I"

V(ea)' V~(&a)..-.'
I"= r,=

1+(qa)' 1+(ka),
(84)

&=21~1+1
( —( + )')( —( —)')

(Pa), =a(s—1)/2+s, &op ——-'(1V' —1)
(85)

where y is the reduced width, yv the reduced photon
width, u is the channel radius. In making th, e widths
functions of the momenta in the c.m. system, we get a
better Gt to the experimental data" and to the thresh-
old behavior in co for D."

The dispersion relation for D is subtracted at co=0.
Since the form (83) vanishes here, we see that it satis-
fies Eq. (2.12) with Dp ——0, at x'=0. Substituting (83)
into (2.13) and (1.5), performing the integral over d'pp

we obtain
9 "Re[D(0,pp) jCko

88(1V*)=+—
2 () 07

(86)

o8(N*,II)=
8Ã'j. ~i

n~s(1VP —1)'

d4x (p x)pF'(x')

xs (P+a)' —1V'

F(x') =A4/(x' —As) ', A. =0.91.
(87)

"M. Gell-Mann and K. M. Watson, Ann. Rev. Nucl. Sci. 4,
219 (1954).

"We have not used the usual Breit-Wigner one-level form for
the width. See, for example, J. M. Blatt and V. F. Weisskopf,
Theoretical 3llcleur Physics (John Wiley 8z Sons, Inc. , New York,
1952), p. 410 and also Ref. 32. This is because the asymptotic
behavior of the usual form (f' ~ ~ as cp ~ ~) leads to conver-
gence troubles in the expression for the hfs Lace Eq. (86)g. This
lack of convergence is not physically signi6cant since we do not
expect our expression for the amplitude (B3) has much validity
outside the resonance region. Accordingly, we have chosen a form
for widths which approaches a constant at large frequencies, is
similar to the usual form near the peak of the resonance and has
the correct threshold behavior.

We have used the evenness of D in ~ so that we need D
only for positive frequencies —as given by (83). 6 8(1V*)
from Eq. (86) is to be added to bh (Born) as required
by. Eq. (2.16).There seems to be little to be learned by
doing these integrals (86) analytically so we have made
the change of variable ~=@/(1—x) and done them
numerically. The results are given in Table IV for
various values of the parameters.

A previous estimate of the X*contribution to the hfs
was given in. Ref. 16 and for the sake of completeness
we remark here that it corresponds to the choice of D
and 6 such that
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Tanr. z IV. b S (lit'*) all units in proton masses, energy shift to be added to that of Sec. II.

X
Isobar

l&s(11) I l&s(1) I

0.15
0.15
0.15
0.15
0.15

1.32
1.32
1.32
2.64
2.04

0.1
0.1
1.00
0.10
0.20

0.0003
0.003
0.0003
0.0003
0.001

5.86
5.86
5.86
5.86
5.86

0.91
0.91
0.91
0.91
0.91

—0.34
—3.41
—0.34
—0.0013
—0.027

0.10
1.02
0.10
0.00005
0.002

2.28
22.8
2.42
0.104
1.02

The kinematical factors were treated in a slightly
diGerent manner and the dependence on the mass of
the photon was taken as a multiplicativc form factor
F(ir'). (Cf. the discussion of Ref. 16.) We have also
evaluated 88 (S*,II) in Table IV.

Finally we give, 6$(III), the energy shift obtained
when 'tIM nucleon I'csonRncc ls tlcRtcd Rs Rn elementary
particle. The details of this "isobar" analysis are to be
found in Appendix C. Our reason for including bh(III)
here is to emphasize that although there are several
ad hoc assumptions in each of these expressions for
6h($*) they all represent quite different approaches to
the inclusion of nucleon excited states and the agree-
ment between the results is probably an indication
that the answers are reasonable. In particular the isobar
approach does not assume that 6 is zero.

CRsc I ls thRt with parameters RppI'opI'Ia, tc to thc
$*(3,3).All three 6h are of the same order of magnitude
and not signiieant as fa,r as the hfs is concerned.
L'6h(II) is a more accurate evaluation of the energy
shift than the upper bound given in Ref. 16.j Case II
shows that the shift is proportional to the partial width
I'~. Unless this reaches very Iargc values, there is little
CGect of a higher resonance on the hfs. Ca,se III shows
that a larger width slightly raises the value of

~
6 $(I) ~.

$88(II) and 8h(III) do not depend upon this width I'.j
CRsc IV shows thRt doubling the lsobal mass makes the
shift much smaller. Case V is the mass and width

appropriate to the second ~3 x-X resonance. We see that
this higher resonance contributes even less than the
S (3,3) by any one of our methods of calculation. Our
conclusion is that a single isobar contributes very little
to hfs size corrections. It is clear from Eqs. (86) and
(83) that, since the sign of the real part of D changes in
crossing the resonance, different regions in ~ give con-
tributions to bh which cancel. This is also the case for
the S* contribution to two-photon exchange in e-p
elastic scattering. '4

APPENDIX C

We shall now calculate 6h(&*) under the assumption
that the E* is an elementary particle described by a
Rarita-Schwinger spin-~3 6eM, q„or e„. The propa, ga-

~ See p. 1'I of Ref. 28.

tor for such a particle is"

j. 2
h.P p.~ ) — p.p—. — (C1)

3X 3''
The E* can be photoproduced and we take the inter-
action for this process as"

l.= (eC/sm )(v„y„ysN)(e„s„—~„e„)+H.c. (C2)

Experimentally, the Inagnetie dipole channel is found
to be most important in photoproduction of g~ and
(C2) has been chosen for this reason. Its limit for low
E, E*velocities is pure M j. photoproduction. '~ Vfe have
also included a form factor, F(s') =A'/(As —a')', at the
ElVey vertex (A/3E= 0.91).This is seen experimentally"
to be about the same as the form factor which is meas-
ured in e-p elastic scattering experiments and in certain
approximations, it is the same" but there is no general
agreement which requires the identity of the form fac-
tors in the two cases.

With this interaction, we Gnd for the S~ contribution:

(-,')C„„(p)=F'(s') (C/m ) '(b„o~g—s,b„),)
&&vsvP..(p+s)(~-s, &.y.)vs, (C3)—

When the traces are taken and the contractions of p,

3t' g is the isobar mass which we take as real and equal to 1.32
proton masses. %e compute diagrams according to the conven-
tions of R. P. Feynman, Phys. Rev. 84, 108 (1951). Thus
V&=707&V27» V& 1'

36 M. Gourdin and Ph. Salin, Nuovo Cimento, 27, 193 and 309
(1963).» The two other possible interactions correspond in the static
limit to linearly independent combinations of E2 and longitudinal-
quadrupole photoproduction of Ã*. Thus when the experiments
are 6tted, these interactions are expected to have very small
coupling constants. Gourdin and Sahn (Ref. 36) have used this
spin-~3 formalism in an "isobar model" to describe photoproduction
and they hand that this is the case; the interaction (C5) is by far
the most important.

38%'. K. H. Panofsky and E. A. hilton, Phys. Rev. 110, 1155
(1958);L. N. Hand, ibid. 129, 1834 (1963).

39 S. Fubini, Y, Nambu, and V. Wataghin, Phys. Rev. 111,329
(1958); S. Gartenhaus and C. N. Lindner, ibid. 113, 917 (1959);P. Dennery, sbsd 124, 2000 (19.61); M. Gourdin, Erooeodissgs of
the IriterNational Conference oe Eucleori Structure, Stanford, Joe
&63 (Stanford University Press, Stanford, 1964), p. M5.
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and w performed there results

(3m.) '
—

~
at„„mt„„=([(p ~)'+3p ~+2m'j[4(z'+p z)'—6~'E'j

&c&
+8[K'—(p K)'j[(E'+1)p K+K']+2$K'[31P(p K)+4K' —4(p K)'j)— (C4)

~'[(p+~)' —Ã' 1

In obtaining (C4) we have used the fact that we are going to integrate over solid angles dQ„so g, may be replaced
by its spherical averages 3K' = (p'K) K . We have not 111cluded Flg. 2~ graph (H)) only twice Flg. 1) graph (G)
since an mtegration. d g with a crossing symmetric X„„will give the same contribution for either Fig. 1 graph (6)
or (H). In the usual way this integral can be parametrized and finally expressed as:

&*(FQ +F4Q4+F4&+FOQO+QL, ),
I m, i E x&)

1"
p
—27)—— (X —1)~ ~+1+64'(~—1) +2X,

2X~~4 3

2~' 99m—21 ~X~+ 3(1—~)[5—23~(1—~)~+3X{3Z—2,),
9$'A 4& 2

Po (2——(1—x)[3)V'—2(1—x)'J—2Ã'),
3E'A4&3

Q,=-(G2)+-(F1)(G1)+~(F2)—(F3)(GL)+nq(F4)—(G1),
2 2

~(F3) ~(F4)(G1) ~{G2)
Q4

——-(G1)—0(F1)+(1&y+Sn)(GJ)— +
2 (F) 3{F)

u(F2) n(F3)(G1) n(F4)(G2) (G3)
Qg ——uy —(F1)(GI)—

{F) 2(F) 3(F) 4{F)"
7'(F1) v(F2)(G1) v(F3)(G2) v(F4) {G3) y(G4)

o=y' GL — --+—
(F) 2(F)' 3(F)' 4(F) 5{F)

'

—32m'(GL) A' —27 x' —3g+3~
QI.= — — +— (Ã' —1)+1+6% — ~[a(~+,)+p~&j

X'A4 3A.~e IS.- 2 e(F) )

(C7)

G2= 3p'+ 3yn+n', G4= (v+a)' —V'

(~+&)
GL,=~ in~ —I,

Tile analftlc forIQ of th$s de6nIte Integral Is not
pe&ted to give an/ particular Insight Into the pI'oton
structuie and therefore eve have evaluated it numeri-
cally with the result [parameters chosen for the
at+(3,3)j

bb = (C/m. )'(6/s')( —0.471) .

The value for C is taken froxn the photoproduction
width. If the cross section for y+p —+ Ã* is written as:



STRUCTURE OF PROTON AN 0 HYPERFI 8 E SHIFT IN H

teractions have the noncovariant forms:
Fio. 2. Processes

which contribute to
subtraction func-
tions in D or G.

The I'~ can be calculated by using the interaction (C2):

1V(E+1)rn
(C13)

where k is the photon (three-) momentum in the c.m.
system and E is the total nucleon energy in this system.
Putting F~—0.3 Mev, "we find

C'—0.03 (C14)

and 8$($*)= —0.34 the first entry in Table IV.
Since the interaction amplitude involves the field

strength, F„„=(e„a„—~„e„),it vanishes at zero frequency
if ~'= 0 and thus obeys a one-subtraction dispersion re-
lation with subtraction constant Do zero. If we had em-

ployed the dispersion approach to the calculation of b8,
we would have found no contribution from Do.

APPENDIX D (addedin proof)

This appendix contains a simple, physically moti-
vated, discussion of the subtraction functions and
kinematic singularities which may (possibly) appear in
the amplitudes D and G.

Figure 2(A) shows a typical graph which would con-

tribute to the subtractions. The imaginary part of this

graph is nonzero when V is on the mass shell. It is clear
that there is no way of obtaining such a term from the
inelastic eX cross sections. Of course, parts of such

graphs may be included in these cross sections. [For
example, if V is taken as two p's, each coupled sepa-
rately to one p then there is a partial contribution to
Fig. 1, graph (E) or (G).j Since terms which affect the
hfs involve a flip of the proton spin but no change of its
momentum, one unit of angular momentum is trans-
ferred by V to the photon; hence, V must have the
quantum number 1+. Because the two p and V are vir-

tual, they can couple although if the particles were

physical this would be forbidden. This is also clear from

the phenomenological terms which describe the Vyy
vertex. They are

B„V„B„V„)F„.Fy.e(vho g—),
Vp8pFpyFigc(phop) ~'

where F„„is the field tensor for the photon and V, is

the (four-vector) potential for the V particle. If the

photon (V) polarizations are described by the three-

vectors e, e'(v) and if the four-momentum of the V is

(A,O) and of the photons is (&o, +K)=—k then these in-

[(e xe' v)a&' —(e x e' K)(K v) jA

[(e xe' v)(vk'j.

For the scattering in the forward direction, A.=O and
the first term vanishes. The interaction of V and nucleon
is of the form

7[aV+b8„V„a„„jy~X

We conclude that the graph of Fig. 2(A) will contribute
to a subtraction in the amplitude D. Since the interac-
tion of V with 2y is not required by gauge invariance,
it must involve the photon field tensor P„„.Only if there
were some similar gauge principle which required that
the field tensor for the V particle had to appear in .the
Vyy coupling, could we assert that there is no subtrac-
tion coming from Fig. 2, graph (A). (For forward scat-
tering, the V field tensor, [B„V„—B„V„.j, vanishes. )
We see then, that if such a V meson were sufFiciently
strongly coupled to both X and y, the hfs could perhaps
be understood. Since tins would imply an effective ep
interaction other than that mediated by photons, its
influence in other processes might be measurable.
Recently, attempts have been made to understand
the electromagnetic mass differences in the terms of
"tadpoles" (Ref. 40). That is, the electromagnetic mass
di6erence of neutron and proton is due to an isotopic
spin 1, 0+ particle. The contributing graph is the same
as Fig. 2(A). In the hfs we see that the corresponding
particle needed as a 1+ particle, possibly of zero iso-
topic spin. It is interesting to speculate about the exist-
ence of such particles and the relative symmetry under
the. interchange of spin and isotopic spin. As far as the
author is aware; there is no experimental evidence for
these mesons. One final remark should be made. Even
if no new particles are found, nonresonant graphs such
as Fig. 2(B) with an intermediate state I of quantum
numbers 1+ could also give rise to subtraction functions
in D or G and thus aGect the hfs. We have not attempted
estimates of these processes since a dispersion treatment
would apparently have to consider nonzero momentum
transfers as well as forward scatterings. In this case, a
much more general form for C„„is required than that of
Fq. (2.3). There are, in fact, twelve amplitudes rather
than just four.

The absence of kinematical singularities in the ampli-
tudes ImG and ImD can be shown as follows. We
assume that the differential cross section given in Kq.
(3.5) is finite for fixed, arbitrary k', r, s and all &o. Then,
as is evident from this equation, any singularities in
ImG and ImD could produce singularities in the cross
section, in contradiction to our assumption.

A second proof is based on perturbation theory. We
suppose we have written an arbitrary graph X con-
tributing to C„„ofEq. (2.3). After integrating over any

40 S. Coleman and S. L. Glashow, Phys. Rev. 134, 3671 {1964);
S. Coleman and H. J. Schnitzer, ibid. 136, 8223 (1964).
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virtual quanta which appear, we are left with a term
which has the form (spinor invariant)X(amplitude).
We assume that the "(amplitude)" obeys a dispersion
relation with no kinematical singularities. In order to
cast X into the form given in Eq. (2.3) it is (possibly)
necessary to combine this graph with others so as to
obtain a gauge-invariant expression and (possibly)
divide the resulting (amplitude) by a function of k' or
co, thus introducing a kinematical singularity, but ob-
taining the invariants I~, I2. Here we have put

11——e(ppk'y)ysy Is= e(gvkP)~75.

Now we shall show that no division by functions of k'
or co is necessary and hence that in an arbitrary order
of perturbation theory, there are no kinematical singu-
larities in the amplitudes D and G. This proof is more
general than the first one given above which held only
for the imaginary parts of the amplitudes.

One simply writes down all possible terms which
could appear in the (spinor invariant). Since only for-
ward scattering is being considered, the only four-
vectors which can appear are k, p, and the photon
polarization which we shall temporarily denote by the
four-vectors e, e'. For reasons which should be obvious

by now, the following must hold: e and e' must appear
linearly and antisymmetrically; k can appear at most
once; P can be replaced by 1 and an invariant involving
a single boldbace italic quantity; 2e, 28', 2A can be re-
placed by a scalar quantity, (e p), (e' p), (k p). Using
these rules, it is quite easy to reduce the number of
possible invariants to five:

Ft (e ke'——p —e pe' k),
Fs= Le,e'j,
F,= Pe, e'ja [e—,I je'+Pe', kje,
F4——e kLe', kj—e' kLe, Jrj,
Fs——e pLe', k7—e' p(e, kj,

~h~~e fta, bj=ub b—a. Us—ing the fact that the matrix ele-
ment must vanish if e or e' is replaced by k, one can show
that Ft cannot appear and that Fs—k'F4 —p kFs ——0.
Hence F2 may be eliminated without introducing any
kinematical singularities. It is a simple matter to obtain
explicit expressions for Ii 3, F4, and Ps in terms of I1 and
I2 in the laboratory frame and to verify that replace-
ment of the Il's by the I's introduces no kinematical
singularities.
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Moflel for the First Nucleon Recurrence

P. R. AUvxx. mu J. J. BREHM

Northwestern Ueieersi ty, EvurIstorl, , Ill~rlois
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A calculation of the position and width of the f+ (1688) pion-nucleon resonance is made. inelastic uni
tarity is used to generate the dynamics where single-pion exchange coupling S'7r to Sf states provides an
approximation for the force. Good agreement with experiment is obtained. A similar mechanism for generat
ing higher N'm resonances is suggested.

A FAMILY principle has been proposed' to hold
among the resonant states in the 7|-E system. In

particular the —,'+(1688) resonance, being a T=-', state,
appears to be the 6rst Regge recurrence of the nucleon.
Carruthers' and Freedman' have considered models of
nucleon recurrence based on single-channel unitarity.
This note describes a dynamical model, based on inelas-
tic unitarity, ' which yields such a resonance and which

suggests a mechanism yielding all recurrences of both
the nucleon and the (3,3) isobar.

Our mechanism is a modihcation of the Cook-Lee
model. ' We invoke two-channel unitarity in which the

' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 8, 41
(1962);R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126,
766 (1962).' P. Carruthers, Phys. Rev. Letters 10, 540 (1963).' D. Z. Freedman, Phys. Rev. 134, 3652 (1964).

4 R. Blankenbecler, Phys. Rev. 122, 983 (1961).' L. F. Cook and B.%.Lee, Phys. Rev. 127, 283 (1962); 127,,

297 (1962). We denote the latter of these by CL hereafter.

coupled channels are En. and Sf, where f denotes the
2+ (T=O) ss resonance with mass go&=125() Mep. s

e assume that the force is purely inelastic and is
described by the s. exchange diagram of Fig. 1(a). For
7i-E states with positive parity, s waves can occur in the
Ef system so that absorption is maximal, and the sub-
sequent attraction can lead to elastic scattering reso-
nances below the inelastic threshold. In the following
we shall assume that s waves dominate in the Ef state
and treat both —,'+ and 2+ possibilities for the Sm system.

f //
a II

II

I
II

~ ~

7T
Fre. 1. 71. exchange diagrams

couphng elastic and inelastic
channels.

{b)

A H Rosenfeld A Barbaro Galtieri W Barkas PJ. Kirz, and M. Roos, Rev. Mod. Phys. 36, 977 (1964).References
to the individual experimental papers may be found here.


