
OBSERVATIONS OF RADIATIVE v+ DECAYS

lated that branching ratio to be 9.5X10 4.4 The
agreement is reasonable.

A total of 5 radiative z+ decays have been reported
by other experimenters: Daniel and Pal' report one
event with y energy 30.2+1.5 MeV; O'Halloran et al,.'
report one event with p energy 32.6+1.0 MeV from

3000 7 decays; and Puschel et a/. 7 report three events
with y energies of 14.7~0.5, 10.3+0.6, and 10.5~5.2
MeV from 1389 w decays.

Event
No.

567
1866
1886
1903
1937
2146
2190

TI+
(Mev)

48
13.1
5.0
3.5

16.1
9.3
7.6

TQ+
(MeV)

21.6
20.5
35.3
28.5
27.3
13.8
27.3

T3
(MeV)

42.4
23.7
20.6
29.7
20.2
18.2
12.7

68.8
57.3
60.9
61.7
63.7
41.3
47.6

102'

0.66
5.6
7.1
3,4
6.2

33
8.2

(MeV)

6.3 +1.5
17.8 +1.3
14.2 ~1.4
13.4 ~1.4
11.4 &1.4
34.0 ~0.9
27.5 +1.0

P1
(MeV/t."}

9.1 &3.0
21.4 +3.2
13.0 &3.3
14.6 &4.3
8.6 +5.5

31.6 &1.4
28.1 +4.2

TABLE I. Data on the radiative v events. The T;~ are the
energies of the positive and negative secondary pions. E~ and p~
are the calculated energy and momentum of the y. gtt is the co-
planarity measure delned in the text.
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It is suggested that parity conservation in the strong interactions may be a consequence of the bootstrap
hypothesis, A model is presented to illustrate how this might come about.

I. INTRODUCTION

'N an earlier epoch, the invariance of interactions
- - under space reQection was, like their invariance under
other space-time transformations, "obvious" because
the transformation related observers in equivalent in-
ertial frames. The work of Yang and Lee clarified the
reliability of such arguments, leaving the true origin
of parity conservation in strong and electromagnetic
interactions obscure.

We suggest that the invariance of the strong inter-
actions under parity, like isospin invariance and other
internal symmetries, be viewed as a dynamical conse-

queuce of the bootstrap philosophy. Thus, parity con-
servation should follow as a consequence of a suK-
ciently accurate dynamical calculation (since it seems

to be valid in nature), rather than be put in as an
initial hypothesis. On the other hand, parity noncon-
servation might well emerge from an inaccurate calcu-
lation. To put this suggestion into context, we recall

*Work supported in part by the U. S. Atomic Energy
Commission.

three basic features of the bootstrap philosophy, as
they apply to internal symmetries':

(i) There is, first of all, the presumption —or faith—
that "dynamics" exists. By dynamics, we mean a set
of rules such that, given input data about a physical
system, physical consequences can be calculated. The
input data consist, presumably, of dimensionless quan-
tities such as the numbers of particles of various spins,
the ratios of their masses, interaction coupling constants,
and whatever else might be necessary to define the
system. The output will include, among other things,
an enumeration of the number of bound states produced,
their spins, the ratios of their masses, and, in general,
other numbers of the same character as the input
numbers.

(ii) The bootstrap principle is that the output num-

'The connection between bootstraps and symmetries has, for
exam le, been discussed by: R. Capps, Phys. Rev. Letters 10,
312 1963); R. E. Cutkosky, Phys. Rev. 131, 1888 (1963); E.
Abers, F. Zachariasen, and C. Zemach, ibid. 132, 1831 (1963);
M. Baker and S. Glashow ibid 128, 2462 (1962), S.ec. V Lremark
on the possibility of obtaining parity conservation from a re-
striction or vector functionj.
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hers, as calculated by dynamics, must equal the input
numbers. This principle produces a series of self-con-
sistency equations, one solution of which, corresponding
to the real universe, is presumed to exist. If alternative
solutions corresponding to other universes also exist,
at least their number will be severely limited.

It is important to keep carefully in mind the distinc-
tion between the bootstrap philosophy itself and the
exceedingly crude methods of performaing dynamical
calculations which are presently used to implement and
test it. The techniques available to us now do the same
disservice to any theory, whether it be a bootstrap
theory or a Lagrangian field theory with elementary
particles. What this means is simply that testing the
bootstrap hypothesis to see if it agrees with nature is as
difficult as testing individual Lagrangian field theories
of strong interactions has always been. The bootstrap
hypothesis is not tied to some particular method, that
is, to some particular way of calculating the dynamics
of strongly interacting particles, and is not auto-
matically discredited by the failure of the approximation
method.

(iii) When the self-consistent solution contains, as
nature does, a multiplicity of particles of like spin,
their masses and interaction strengths may well be
equal because the determining equations possess sym-
metry with regard to them. This is the dynamical
origin of internal symmetries. '

Parity conservation fits naturally into this program.
The effect of parity conservation is simply that a system
with a certain orbital angular momentum may not
couple to a system with a certain different orbital
angular momentum, even though the total angular mo-
mentum is the same in both cases. But since couplings
are determined dynamically, the fact that certain
classes of couplings vanish must also emerge dynami-
cally. The problem is to understand why this can
happen.

The remaining space-time symmetries are charge
conjugation and time reversal, related to P by CPT.
I'he general arguments on the origin of P apply equally
well to C and T.

In the next section, a simple bootstrap model of
pion-nucleon interactions is treated by the E/D
method. The system of spin 0 plus spin —,

' is a natural
one to study in a first exploration of parity conservation.
States of total spin j may have orbital angular mo-
mentum l,=j+,'and l=j —~~whic-h are coupled or not
depending on parity conservation. The only simpler
system is spin zero plus spin zero which has one state
for each j and does not need a subclassihcation by
parity. A model based on a world containing no par-
ticles with spin higher than zero would seem to have
little to say about parity, since in such a world there
is, without the assumption of parity conservation, no
feature by which the bootstrap mechanism could dis-
tinguish between scalar and pseudoscalar particles.

The model cannot prove that parity conservation in
the strong interactions follows from our mechanism. Its
purpose is to convince the reader that such an explana-
tion is plausible and, in fact, attractive. Moreover, it
emphasizes that the ultimate question of parity con-
servation, or invariance under any internal symmetry,
depends on values of kinematical factors or integrals
which cannot be predicted in advance. There do emerge,
however, certain quantitative features related to the
signs of the forces and the range of an exchange inter-
action which are not especially model dependent. These
may be of significance in some future rigorous calcula-
tion. Finally, the model makes it clear that the parity-
conserving situation does not arise in the bootstrap as
a sort of continuous limit of a parity-violating one. Thus,
one would not necessarily expect a small change in the
parameters of the parity-conserving solution to generate
a small amount of parity violation.

The general g/g interaction is taken as'

The nucleon should appear as a bound state in both the
S~~2 and P,~2 waves of m+X. The constants a, b are
determined by the bootstrap principle. Parity conserva-
tion, if valid, will be expressed by

ah=0.

We consider two cases: (a) ~ and X are simple par-
ticles (no isospin); and (b) n and cV are isovector and
isospinor, respectively. The difference between the two
cases lies solely in the sign of the force. In the first case,
a parity-conserving self-consistent scheme can be found
if the force is strong enough, but a parity-violating
scheme does not exist. The second case has the feature
that if the force is sufFiciently strong, there are two
bootstrap solutions, one conserving parity and one
violating parity.

Our model does not test C since (1.1) is automatically
C invariant when u and b are real, as they must be if
the interaction is to be Hermitian. A model which could
is the bootstrap of a spin —', nucleon as a bound state of
itself and a spin-1 meson. Such a model would be
similar to the one we are discussing here. An example of
a model which would test invariance under C, P, and
isospin separately is the bootstrap of charged and
neutral pions as composites of 3s. and kr states (and
2s states also, if you like) 3

We have no comments about parity conservation
in electromagnetism.

'Our y~ is anti-Hermitian. We follow the notation of Ref. 5.
Note that u and b in Eq. (1.1) must be real in order that the
interaction be Hermitian.

~ It is not sufhcient to couple ~ to 2m and 3m states alone, for if
I' conservation eliminates the m to 2m. coupling, then G parity is
conserved and C will follow from isospin conservation.
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C (a' ab (q/qs) )iout

s—m' Lab (q/qe) b'(q/qo)'I
(2.2)

The value of y ranges from about —,
' for m))p, to about

1/23 for m=p. qe is roughly (pm)'~'. For flexibility, we
suppose R, C, may take on any positive values.

First we consider the case of no isospin. The relevant
mathematics is worked out in Appendices A and 3.
A parity-conserving bootstrap with e= 0, b&0 is
impossible because the force is repulsive in the 8~~2
state. By (B.27), a, parity-conserving bootstrap with
a&0, 5=0 does work if

1&R/C& ~. (2.3)

Is a parity-violating solution possibles Applying
the prescription of Appendix 3 with r,=E, s=1,
R» ——R(a' —5'), R» ——R(—a' —yb'), and noting (B.15)
and (B.16), we infer

(Ra' —Rrr)/(Rb' —Res) =Js/Jr r (2.4)

which leads to

(a'/5') = LJr—(1+y)Js]/Js. (2.5)

But we now observe that J2&J~. It follows that either

4 G. P. Chew, Phys. Rev. Letters, 9, 233 (1962).' E. Ahers and C. Zemachr Phys. Rev. 131, 2305 (1963).

II. MODEL

Although our primary purpose in setting up a model
for the study of parity conservation is just to show that
it can be done, we may get some additional insight if
our choice of parameters is guided by actual physical
considerations. Accordingly, we shall simulate the
problem of building a composite nucleon out of tr+X
with the force given by the nucleon exchange diagram.
We already know4' that a parity-conserving bootstrap
is possible with isospinor nucleons and isovector pions
if both E and E*(1238) exchanges are used; the X
exchange force is too weak to do the job by itself. For
the sake of simplicity, we will ignore the extra force,
but the kinematical constants may be allowed to vary
in such a way as to increase the effective strength of the
X exchange force.

The actual magnitude of the force at threshold energy
is indicated by Eq. (A13) and Eq. (A14) of Appendix
A, forvaluesof themassratioin theinterva10&p/m&1.
In no case would we consider p&2m because the pion
would be unstable.

The range of possibilities can be approximated by
the one-pole formula

R a' b' —ab(q/qe)
[Born —

! (2 1)
s—s„ab(q/qs) —(q/qe)'(a'+yb') &

where b' has been replaced by 5'= pb'/(2m). (We shall
not worry about using the variable gs= W rather than
s for this system. ) For the output, we take

u' or b' is predicted to be negative. That is, the parity-
nonconserving bootstrap necessarily fails

The reason why J»J& can be expressed in general
terms. The Js integral contains the factor q/qo where

go
' represents the range of the force. The force in

question is of the exchange type (namely, a pole in
the u channel) and its range, as already indicated, is
qe

' (pm) '~'. This is in contrast to the range of a
direct force (a pole in the t channel) which would be

qo
' m ' in this case. But the integrands of Jy, J2 do

not cut off until q=m. Therefore, the factor q/qs
makes J» J&. Now any bootstrap in which one particle
is considered to be a bound state of itself and another
will have an exchange-type force contributing to the
interaction. If this force dominates, it is tempting to
speculate that this fact plays a role in guaranteeing
parity conservation. The argument is admittedly fragile.

It is worth emphasizing that the conserving and non-
conserving solutions come from completely diferent
conditions, (B.13) and (B.14). If we make a slight
perturbation in the dynamics, J& and J2 will be slightly
changed, but it does not follow that the system acquires
a slight amount of parity breaking.

Now we go to the isospin case. The formulation is
the same except that t~" changes sign. There is no
bootstrap with a&0, b=0 because the force is repulsive
in the S~~2 channel. There will be a bootstrap with
a=0, 5&0 if

1&Ry/C&2. (2.6)

1&R/C& ~ . (2.8)

For the isospin case, then, we have two solutions of the
bootstrap: one with parity conservation and one
without.

Finally, then, what may we conclude from these
models) Presumably two things: First, parity con-
servation in the strong interactions may indeed be a.
consequence of the bootstrap hypothesis; second, how-
ever, whether or not this is the case depends on what
world is being considered, and specifically on details
of that world such as how many particles there are,
what value various forces and kinematical factors have,
and so on.

APPENDIX A

We review the partial-wave analysis for zlV scatter-
ing, not assuming parity conservation, and ignoring
isospin.

Again we ask. if there can be a nonconserving bootstrap.
The reasoning which led to (2.5) now yields

(a'/b') = I~i+ (1—y) ~s]/(2~r+~s)

The ratio is now positive. If one pursues the rest of the
problem out to its end, one obtains R/C as the ratio
of two polynomials in n, where n is de6ned in (B.22).
This equation will have a solution for n, with 1&n& ,
and hence there will be a bootstrap solution, provided
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Let the S matrix be written

zm
5=1+ A&4(P),

2' E~EN
(A. 1)

with T defined by Feynman's rules and normalizations
of (22r) ' particles per unit volume. Then T will have
the form

nucleon pole.
1 a' ahq/2m

tOUC— (A.12)
W—m abq/2m b2q2/4m2

We may estimate the magnitudes of the nucleon
exchange matrix elements by evaluating them at
threshold, W~ m+p, . If we also set /4/m-+ oo, this
gives

abq/(2m)

—(q'// m) L-'pa'+ (//12m) b2]i
'

(A.13)where we follow the customary notation. ' The reduc-
tion to two-component spinors is

Alternatively, to get the other extreme, so to speak, we
may put p=m; then,T=244*[f1+(o"22) (o"22)f2+2(o"I o"n)—fp]242, (A.3)

where

f,=((8+m)/2W)(A+(W —m)B), (A4)

f2= ( (E m) 2W )—( A+ (W—+m)B), (A.5)

1 '(a' -b')— abq/(2/ )
tBorn (A.14)

/ abq/(2/ ) (—q'/24/') (23a'+b') &

Equations (A.13) and (A.14) give us an idea of the
signs of the forces in the diferent channels due to
nucleon exchange and the limits of variation of their

magnitudes for various values of /4/m.

(A.6)f2= (q/2W)C.

If the t matrix is mormalized to e" sinb/q, we have,
for spin j and channels labeled by orbital angular
momentum, APPENDIX B

1 a' —(/4/2m)b'
4o(p4)! ++2B'r(pl+pp)+Cvp]M(p, ), (A.2) tso»=

p, abq/(2m)

t(j~! j~l)

t(ja-,' ~ jw-,')

d*f.LP;,.( )-P„./. (*)] (A 8)

1 (Rll R, (q/qp) )
tBorn (s)—

s s„(R.(q/qp) —R22(q/qp)2/'

We consider the dynamics of a coupled channel
bootstrap in the single pole approximation to the X/D
method. This is the most simplified version of bootstrap

d*Lf'P/+'/'(x)+f' /+'/'(x)] r (A'") dynamics that may still have a qualitative similarity
to a correct calculation. We begin with the Born
t matrix:

For the case at hand, the input t matrix is given by
the nucleon exchange diagram. From this we find, with
the couplings defined as in Eq. (1.1),

t12= t21=t (Pl/2 ~ Sl/2)

interchanged, (A.10)

= (m/2Wq) LQp(x) —Ql(x)]at (A 11)

Here, x= 1—(s—m' —2/42)/2q2. The output t matrix is
given by the pole diagram. We are interested in the
matrix elements only in the neighborhood of the

tll= t(+1/2 ~ +1/2)

E+m
Qp (x)$(W—3m) a'+ (W m)b']-

48/q'

E—m
+ —

Q1 (x)p(W+3m) a2+ (W+m) b'], (A.9)
4Wg'

=—t(P / P,/ ) = t„with Q, , Q,

—C a' sab(q/q, ) q

s—m' sab(q/qp) spb2(q/qp)2/'
(8 3)

where C, s, qo are kinematic "constants. "
First, divide out the momentum factors in the usual

way, forming t ' and t, where

t,/B""(s)=R;;/(s s,), —

with 8~2——E2~=E„and
Im t; = t;pter;*qpC28(s s4), —

with momentum factors characteristic of S-wave and
P-wave channels. The E.'s are constants, and will
depend on the coupling constants u, b. The full t matrix
satisfies unitarity. '

Imt;, = t;&t»*q/8(s s,), q=—(s—s,)"', (3.2)

where s& is the threshold energy. We seek a bound
state at s=m', s„&m'&s&. This approach will have
some approximate validity if m is far from s„;it is
meaningless if m'&s„.At s=m', t must have the form
of the output matrix
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with ICi=1, C2= (q/q0)'. Then t=lVD ' where, by More important are the ratios
well-known'procedures,

J2/Ji= (si—sn)/(qo)'(1+2/o)

g . . ], .Born

(1—RiiJi —R.Ji
R.—A 1 %—2J2~

(3.6)

(8.7)

where

J,'/ J,=a/(m' —s,),
s,—s„(2+1/n)

J2 /Ji ——

qo' m' —s„

(8.20)

(8.21)

s—s y q'ds'

S —S $ Sp
(3.8) Then (3.17) becomes

(sg —s„
Esp —m

(8.22)

s—s„"q'(q'/qo)'ds'

„(s'—s) (s' —s~)'
1 2Q+1
—=nJiu'+ J2b's'
C a+2

(8.23)

Let d(s) = detD(s). The bootstrap requirement is that t

reduce to t'"' at s=m'. This leads to four (mutually
consistent) equa, tions for the three unknowns m', a, b,

namely,

d (m') = 1—RiiJ'i—R2gJ2+JiJs detR= 0, (8.9)

a'= (Rii—J2 detR)/L —Cd'(m' —s„)], (8.10)

z'b'= (R22 —Ji detR)/L —Cdi'(m' —s~,)], (3.11)

sub =R,/[ Cd.'(m—' s,)]— (8.12)

Here, d' means the derivative of d(s) with respect to s
evaluated at s=m', and the J's are all evaluated at
s= m'. In any model, R, must be of the form R = abr

where r, is not singular for ub=0; this is clear because
the two channels are not coupled unless ab/0. Then
(3.12) might be satisied in two quite different ways:

(8.13)

and

The procedure for solving the bootstrap can now be
simply sta, ted: First, determine the kinematical con-
stants r„C,s, qo, s&, s„,and the dependence of Rgg,
R» on u', b' from some theory or approximation.
Second, solve (8.15) and (3.16) for a', b' in terms of
Jj, J2. The solutions will be ratios of polynomials in
Ji, J2. Third, substitute these solutions into (8.23)
and use (8.19) to reduce the result to an equation for n
involving only the kinematical constants. This will
be a polynomial equation in o,. Fourth, solve for n and
obtain the self-consistent mass from (8.22). Finally,
the values of a', b', already known in terms of J&, J2,
can be calculated from (8.15), (3.16).

The permissible values for n corresponding to
s„&m'&s~ are 1&a&. If the calculated value of 0.
falls outside this range, or if one of u', b' is negative,
the bootstrap fails. Otherwise, it succeeds and gives a
self-consistent set of parameters violating parity
conserva. tion.

Finally, we return to the alternative (8.13). If
u/0, b=0, we have a single-channel problem with

r,= —sCA'(m' —s„). (3.14)
and

t ""=Rii/(s s~) =uR/(s —s~)— —(3.24)

t'"'= —Ca'/(s —m') .

n= R/C,

We temporarily put aside possibility (8.13), which

corresponds to parity conservation, and follow up the Then n is determined to be
implications of (8.14). In our model, r, is independent

of a, b, so that (8.9) and (8.10) can be simplified:

(8.25)

(8.26)

u'= (s/rg) (Rii—Js detR),

s'b'= (s/r, ) (R2g —Ji detR) .

By (8.9) and then (8.10) and (8.11),

giving a successful bootstrap if

1(R/C( ~ . (3.27)

If we take a=0, b&0, ts""=b'R/(s s„),and the con—di-
tion is found to be

d'= Ji'( R,i+J2 detR)+ J—2'(—R22+Ji detR)
(8 17)=Cd, ' (m' s~) $a'J i'+ b—'s'J2']

2n+1 R

a+2 Cs'
(8 28)

from which the b,' may be canceled.
Now the J's can be integrated explicity. We have

J =
(s$ sy)"y (si m')'" 2(si—sy)—'"—

which gives a bootstrap if

1(R/Cs'(2. (8.29)

If R/Cs'&2, the force is so strong that m'(s~ and
the single-pole model breaks down. A proper calculation
might still yield a bootstrap.


