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0L 0L
L= 6>\[—-—5¢L+“—"—51//R]
d (axlﬁL) d ((9 )&013)

-+meson contributions

= — [P Giau o, Ti+ia’ TN,
PR\ (31Bu oy T8 T W g+ - -]

= — 310w 00T Luy N — 3B’ ONS w27

—10INT 1A= 1B870\T r\Y,

B 423

where
T N=VinowTWr+ -+, Jid=0mnmT%+---

and similarly for Jg. Since the only change in the
Lagrangian is that of the free part,
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Properties of a Massive Neutral Gauge Particle*
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We have investigated the properties of a massive neutral vector particle which is assumed to be gauge
particle associated with the baryon number and to bear strong interactions. The strong resemblance to
quantum electrodynamics serves as a guide. Results are as follows: (i) A simplerelation between the mass
and wave-function renormalizations is obtained. (ii) The theory of mixing between two vector particles
cannot be applied in its simplest form if one or both of them are gauge particles. (iii) There are some re-
strictions on the form of the interaction with mesons, which can be tested experimentally. The analysis of the
production of two vector particles from a pion incident on a nucleon is proposed as an example.

I. INTRODUCTION

ROPOSALS have been made to introduce various

kinds of vector particles which bear strong inter-
actions, and are considered gauge particles associated
with some conserved currents, i.e., baryon number,!
isotopic spin, U spin, etc.? It is an interesting, but still
open question whether the experimentally observed
vector mesons are really these gauge particles or not.
While the question of finite mass is also still open in the
case of Yang—Mills-type mesons,? it is quite possible
that a singlet neutral vector meson has a finite mass.! 48
A strong resemblance to quantum electrodynamics is

*Work supported by the U. S. Air Force through Air Force
Office of Scientific Research Contract AF 49 (638)-1389.
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also expected in the latter case. In this paper we shall
further investigate the properties of a massive neutral
vector particle which we assume to couple to the baryon
number, which seems to be conserved as strictly as the
electric charge. By convention we call such a meson U;
it may or may not be identified with the experimentally
observed w(780 MeV), or ¢(1020 MeV).

It is convenient to describe such a particle in terms of
the Stueckelberg formalism,® in which the conven-
tionally defined field U, is decomposed into 4, and B:

Up= A4, (1/m)d,B, €©))
with m the mass of U. The Lagrangian is given by!
L=Lo+Li+Lr+Le,
Lo=—}A4,t—nid - mA,0,B—3 OB — e,
Li=igy vy U,= juU,,
Lr=—2¢(vdut M)y,

Lg=Lagrangian containing other fields,

)

9 E. C. G. Stueckelberg, Helv. Phys. Acta 11, 299 (1938); H.
Umezawa, Quantum Field Theory (North-Holland Publishing
Company, Amsterdam, 1956).

10 The formalism can be generalized to the case in which the B
field has a mass different from s, as already shown in the preceding
paper (Ref. 8) (also in the Appendix of this paper). Such a general-
ization is indeed necessary in discussing the renormalization of the
mass (Sec. II).
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where
Ap=0,4,—0,4,,
x=0,A,+mB, ®3)

and the summation in L; and Ly extends over all the
baryons. The equivalence of this formalism to the
ordinary one can be inferred by rewriting Lo in (2) as

L= =10, = iU~ e,
and by observing that the supplementary condition
x=0 )

should be imposed. The theory is invariant under the
gauge transformation

A= A9,
B— B—mA, )
(O—m»)A=0.

The interaction Lagrangian L; was obtained by the
substitution

0y — 0,—1igU,, (5)
in Lp. The part
(1/m)juauB

in L, can be dropped by partial integration and by
making use of the conservation law

aﬁju=0>

of the baryon-number current. In this representation*
(5) is replaced by

(&)
and the transformations (4) should be supplemented by
Y(@) — et @Y(x), P(a) > P@)eid@,  (4)

so that the analogy to quantum electrodynamics is
quite obvious.

It should be noted that many other types of inter-
action are possible if we consider only the general
requirement of invariance under (4); for example, the
so-called Pauli terms, and also any form which contains
A, and B in the combination U,=A4,+ (1/m)d,.B, are
gauge-invariant. In particular we cannot exclude the
gauge-invariant interaction in which U, couples to some
nonconserved current. Here we make a more restrictive
assumption that the fundamental interaction is the one
given by (2) derived from the formal substitution (5)
or (5'). This is the analog of the principle of minimal
interaction in quantum electrodynamics. In the latter
case this seems to be supported by several facts, namely,
that the magnetic moment of electron is the Bohr
magneton plus the higher order correction, and that the

0y — 9u—igdy,

11 Tn quantum theory the partial integration corresponds to a
change of representation by a unitary transformation.
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magnitudes of many other quantities in the electro-
magnetic interaction, however complicated, are of order
e, the electric charge.

Starting from the Lagrangian (2), the interaction
Hamiltonian in the interaction representation is given
by*

H=—jud,. (6

The scalar part B no longer appears. Therefore the
S-matrix elements, which involve only 4,, take a form
quite similar to that in quantum electrodynamics, and
should be invariant under the first transformation of
(4). This is the particular consequence of the strict
conservation of the current to which the vector field
couples. On this basis we should expect many features
in common with quantum electrodynamics. Among
them three points will be discussed in the following
sections.

II. MASS RENORMALIZATION

The problem of the mass renormalization of the
neutral vector meson has been discussed by several
authors,>! but no correct result has been obtained. We
shall show what the analog of the absence of mass
renormalization in quantum electrodynamics is.

We start from the Lagrangian (2) in which m is
replaced by the bare mass mo. After the interaction is
introduced, we add the renormalization term of the form

SLo=—3m#DA2~1CAL?, )

where no B field appears, as shown by the preceding
arguments. The first term on the right-hand side should
be zero according to gauge invariance, but it is left, for
the moment, in order to give another argument for its
vanishing. The sum of Lo in (2) (with # replaced by mz)
and (7),

Lo=Lo+3L,
=—-1(1+0C)4,2—3ime(1+D) A 2—mA ,.0,B
—3(3.B)*—3x*, (8)

should be the free Lagrangian for the renormalized
fields 4, and B, which may be defined by

A= (140 rA,=27104,,

B=B. )
Substituting (9) into (8) we have

ZO: -% ,‘,,2—%m2(1—|—D)/T,,2—m/T,,8,3

—3(3,B)—3Zx*, (10)

where _
X= 0, (mé/m)B, (10)
m=2Zmy. (11)

2 We confine ourselves to the case of a stable particle as the
first approximation.

3. Hara and H. Okonogi, Progr. Theoret. Phys. (Kyoto) 10,
191 (1953); R. J. Glauber, zbid. 10, 690 (1953).
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This Lagrangian can be compared with that in the
generalized Stueckelberg formalism! given by
Lo=—1Au*—3m* 4, —mA,0,B—3(0,B)*—3{x*,

with

(12)

x=0,4,+ ("Z/m)B ’ (12"

or after substituting (12') into (12) and integrating by
parts,

Ly= _%(avAM)Z_%mZAu2+%(1_§) (a/LAM)2

K2\ 2 P
—1(8,B)2—1 (—) B2+<m—§—)B6"AM. (13)
m m

The Lagrangian (12) or (13) describes, roughly speak-
ing, the system of (the covariant transverse part of) 4,
with mass m, and B with mass «; the negative energy
coming from the component 44 is completely canceled
by the positive energy from B, leaving only three
components with the observed mass .

For D=0, we find that (10) is nothing but (12) with
the particular set of parameters

mo=kK,
§=Z=m*/m¢. (14)

For these values the coupling between A4, and B
vanishes, as is easily seen in (13).

Equation (11) shows that the self-energy is com-
pletely determined by the Z factor. It is this fact that
corresponds to the vanishing self-energy in the case of
quantum electrodynamics. The observed mass is
evidently lighter than the bare one since Z<1 in a
consistent theory. It is also noted that the mass of B
remains the bare mass, being compatible with the fact
that the B field has no interaction. For D50, the cor-
responding Lagrangian must contain different m’s in
the second and third terms in (12), so that no consistent
theory follows. This argument gives another support
for a vanishing of the 4,2 term in the self-energy part of
a massive vector particle.

The above result can also be obtained in the method
of the Green’s function. The equation for the modified
propagator A’(k) is given by

Alog (k)= Dap(R)+ Aoy (R)IT*y; (R)A"5(K) ,  (15)

where a, 8, etc., run over u(=1, ---,4) and B (cor-
responding to the 4, and B fields, respectively), and

Agp (k)= Gap(k*+-mo?) .
Corresponding to (7) with D=0, we substitute
H*aﬂ(k) = C(k2) (k#kl'_ kza,,,,) ) for (ayﬁ) = (ﬂ,y) )

=0, otherwise, (16)

into (15) and solve the equation for A’ws(k). Then we
4 See the Appendix. By introducing an arbitrary constant { in

the last term of (12), this form has been further generalized from
the one considered in Ref. 8.
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IE

have a denominator given by
[14+C (5 Jk2+m?
B24mg

et | bug— Ay (B) T35 (8)| =[

which is zero at
R=—m?,
where m? satisfies
[1+C(—m?) Im*=m¢. a7

Simply setting C(%?) equal to a constant C=C(—m?),
we obtain the result:

kuk,\ 1 ki, 1
A'“,(k)=2[(6 - ] ,
m ) B4m?  m? kE+me?
A'up(k)=A'p.(k)=0,
A'pp(k)=1/(B+md),
with the same definitions for Z and m as given by (9)
and (11).15 These are precisely the propagators for the
Lagrangian (12) with the values (14). [See also (A10)
in the Appendix.] Furthermore, the modified propaga-
tor A/ (k) for U, (=A,+m¢'3,B) is obtained as
follows:
A,IW(k) = A,l-“'+ (7'/ ma) (kvA,uB - kuA’vB)
+ (1/m02)k,.k,,A'33
=2Z Bt kuks/m?) 1/ (R24-m?)

which is the ordinary form for a vector field with
mass 7.

(18)

III. MIXING BETWEEN TWO VECTOR PARTICLES

Usually the mixing between two vector particles, say

w and ¢, is discussed on the basis of an effective inter-
action term

Luix=fU,Vy, (19)

where V, describes another vector field.'® From the
viewpoint stated before, however, the coupling will
result from the interaction with a virtually created

16 We may conjecture that there is a spectral representation for
C(%*) given by

a1 ) o,
c@®) / ),
with v (A)>0. If m®<\?2, then m? satisfying (17) is certainly

found below m¢?. Furthermore the term to be added to the first
equation of (18) can be written as

1 kuk,
A,(,ﬂr

o (W) =Ny () |[[14+C(— M) IN—md?| 2,

if p0551b1e subtractions are neglected.

67 T Sakural, Phys. Rev. Letters 9, 472 (1962); Phys. Rev.
132, 434 (1963) ; M. Ichimura and K. Yazakl, Phys. Letters 6, 345
(1963).

a(\2) N
k2+)\2-—1e ’

with
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baryon-antibaryon pair, and involve only the part 4,.
Then the matrix element takes the form

4 » (k) (kz‘sw’_ kukx/)ﬁ (kz) v, (k) )

again due to the gauge invariance applied to U.}” We
assume B(k?) to be constant as the simplest approxi-
mation. Then (19) is replaced by's

Lmix= %’fAquuv‘:%fU,‘yV,‘y. (20)

By adding the term (20) to the free Lagrangian for U
and V, we can derive the equations of motion. The
supplementary conditions as given by (3') can be
consistently applied both to U and V, and we get
(A—mu?)Uu— fmy*V,=0,
(D_mVIZ)Vu_fmU,zUu:‘O, (21)
where
my v =myy?(1— )7,

with my, my the masses of the decoupled U and V,
respectively. If we write (21) in the 2)X2 matrix nota-
tion, the off-diagonal elements are different in general.
Except in the trivial case my=my, the matrix is not
Hermitian, so that the diagonalizing matrix cannot be
unitary. Thus the mixing effect cannot be described by
a single parameter, the so-called mixing angle, as is
usually done.!®

This conclusion seems to be quite strange at first
sight. It has, however, been suggested!? that if there is a
matrix element between two particles through the
interaction with other particles, say, baryon and anti-
baryon, and consequently it is generally energy-
dependent, then the unitary diagonalizing matrix is
obtained only if the intermediate state (baryon and
antibaryon) is taken into account in addition to the two
particles in question. In the present case, the matrix
element is essentially energy dependent as given by
(20) even in the simplest approximation. One may argue
that the form (20) is quite phenomenological and is not
satisfactory because it changes the nature of the propa-
gation of the particles for | f|>1, as also seen in the
expression of m'y,y% But, in any event, the idea of w-¢
mixing cannot be applied in its simplest form, as long as
w or ¢, or both of them, are the gauge particle.

17 The V field may or may not be the gauge field.

18]f V is a member of, say, the octet Yang-Mills fields, then
V. might be replaced by a ‘“covariant” tensor which involves
other octet fields through the structure constants. But the above
form is sufficient as long as we consider only the two-particle
interaction to discuss the mixing.

The difference between (19) and (20) can be seen most simply
by comparing their matrix elements, f8,, for (19) and f(k%,,— k.k,)
for (20). In the case of (20) we can always prove the equations
3, U= 0,V,=0, permitting us to drop the second term k,%,. Owing
to the factor £ in the first term, the matrix element of (20) takes
different values on the mass shells of U and V, instead of the same
values in the case of (19). This situation is closely connected with
the difference between the “off-diagonal” terms in (21).

® K. Yazaki (private communication). Also T. Kaneko,
Y. Ohnuki, and K. Watanabe [Progr. Theoret. Phys. (Kyoto)
30, 521 (1963) ] and G. Feldman and P. T. Matthews [Phys. Rev.
132, 823 (1963)] gave general formulas in which fields are mixed

by general linear transformations. Further discussions will be
made elsewhere.
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It is also worthwhile to note that we can avoid
discussing the mixing between photon and w, or photon
and p’, etc., because the form given by (20) also arises
when the gauge invariance is applied to the photon.?

IV. RESTRICTIONS ON THE FORM OF
THE INTERACTION

In quantum electrodynamics, the forms of various
matrix elements are restricted to some extent by the
requirement of gauge invariance. The same situation
can be expected also in the present case of a massive
vector particle. The form of the interaction with the
baryon is simply the same as in the electromagnetic
form factors of nucleon. We are here mainly interested
in the interaction with a number of mesons.

For the interaction of U(/=0, G=—1) and an odd
number of pions we obtain, however, no restrictions
which are of practical interest. To see this we first
consider the interaction U-3r. From Lorentz invariance
and charge independence, the matrix element has the
form

e,,y)\,k'y('*')k)‘(o)k,(_)A,‘(k)F(k(+), k(O), k(—)) , (22)

where k™), for example, stands for the momentum of
the positive pion, k=k®4k@ £ is that of U, and
F is a function of the invariant combinations of %’s.
Replacing 4,(k) by k, gives zero, so that the form (22)
is already gauge-invariant and no additional restrictions
are obtained.?* For the interaction of U and more than
five pions, the matrix element should have the same
form as in (22), where 2™, for example, is the sum of
the momenta of all the positive pions. (Because of the
Bose statistics, only the sum of the momenta enters, if
the possible strong correlation among some of the pions
is neglected.) Then we again have zero on replacing
Au(k) by ky=Fk, D +k, O+,

One way to get around such a too restrictive condition
may be to replace some of the pions by resonant
“particles.” We shall consider the interactions which
involve (i) one gauge particle U, (ii) one meson, which
is assumed to have zero strangeness, spin and isospin
zero or one, and parity and G parity plus or minus, so
that it may or may not be identified with some of the
mesons already observed, and (iii) a least number of
pions to get a form which satisfies various invariance
principles.

In the first column of Table I, the types of such
additional mesons are enumerated. In the second
column the number of pions is shown. If both of the two
kinds of forms are possible, one gauge-invariant and the
other not, then the sign -+ is indicated in the third

2 See, for example, Eq. (1) in the paper by R. W. Huff, Phys.
Rev. 112, 1021 (1958). If the form (19) is assumed for the photon
case, and the usual diagonalization technique is applied for the
squared mass operator, then the photon will get an imaginary
mezlls SWe have another well-known example for the interaction
70-2v. The form eunF w7 which is obtained from the Lorentz

invariance, is already invariant under the gauge transformation
applied to the photon fields.
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TaBLE I. Possible interactions between U and a
number of mesons.

Coexistence
of gauge-

Type of meson Number invariant and Uniqueness

Distinc-

Spin o noninvariant of invariant tion of the
parity Isospin G parity pions terms terms mass shells
0+ 0 + 3 + + +
1 - 2 + -
0 - 2 + + -
1 + 1 -
0— 0 + 3 + + +
1 - 2 -
0 - 2 —
1 + 1 + + -
28 + + +
1- 0 - (% H T
1 + 1 -
0 + 3 + -
1 - 2 + + +
1+ 0 + 3 + -
1 - 2 + + +
0 - 2 -
1 + 1 + -

& Gauge particle,

b Nongauge particle.
column. The interaction between U and an odd number
of pions, already considered, belongs to the category of
“—.” In some cases, there are many alternative forms
which are all gauge invariant. An example will be shown
in the case of the vector meson ¢, which has I=0,
G=—1, but is not a gauge particle.

There are two forms which are not equivalent to each
other®:
(23a)

(23b)

The first form (23a) is not gauge invariant,? while the
second (23b) is invariant under the gauge transforma-
tion for U as well as for ¢. From these two forms we can
construct another form

= (2m Ut 0wlUw) =202 0, Us (23¢)

on the mass shell of U. This is invariant under the gauge
transformation for U, but not for ¢. Then an arbitrary
linear combination of (23b) and (23c), and so of (23a)
and (23b), can be allowed as long as the gauge in-
variance is required only for U. The form (23b) is
uniquely determined only if ¢ is also a gauge particle
(eventually ¢ is U itself). In such a case, “4” is
indicated in the fourth column.

There are also some cases in which the invariant form
is reduced to a noninvariant one on the mass shells of
the particles. An example is shown in the case of a
pseudoscalar meson % with 7=1 and the “abnormal”

Uy,
7 QU

2 For simplicity we give the expressions in the coordinate
representation, neglecting possible occurrence of form factors. We
neglect also the forms containing higher order derivatives.

2 This is indeed gauge-invariant, because U, receives no change
under the transformations (4). But such a term never appears if
we assume the principle of minimal interaction, as discussed in
Sec. I. In this sense the terms which involve U, not in the form
U, and do not give zero on replacing U, by 9,A, will hereafter be
called not gauge invariant.
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G parity 4 1. The noninvariant and invariant forms are
given by

(0ump—=-3,m)U, (24a)
and

(0ume- 9 — Ay 9,m) U, (24b)

respectively. By making use of the equation 8,U,,
=m?U,, the latter form becomes, apart from a four
divergence,

mz(an" K/ o aﬂ”) U,

which is equivalent to (24a). The sign + in the fifth
column shows that there is certainly a distinction
between noninvariant and invariant terms even on the
mass shell, so that we can expect a meaningful predic-
tion from the gauge invariance.
Some of such examples will be shown:

(4) Scalar meson o (I=0, G=+1): This interaction may
be related to a possible rare decay mode of w or ¢ into
3r and the ABC “particle” (310 MeV). The general
form is given by

€und 2 (X 9om) - Dyma 4y (wX 0o) -y JU,,  (25a)

with arbitrary constants x and y. For a particular
choice, x=v, the above form reduces to a gauge-
invariant one:

e (X 9om) o Uy . (25b)
(#) Pseudoscalar meson n(I=0G=-1): This meson
can be identified with the observed (550 MeV), and the

interaction may be related to a possible rare decay mode
of ¢ into 37 and 7. The general form is given by

[%9, (87X 0yx) - 7+ (97X 0ym) - = JU .

For a particular choice, x=1y, we have a gauge-invariant
form

(26a)

(0umX 9ym) - menU . (26b)

(#43) Vector meson ¢, (I=0, G=—1; gauge particle):
The general form is given by

“2 (x¢u U}L+y‘Puquv) . (273,)

For a particular choice, =0, the gauge-invariant form
is obtained;
(27b)

(1v) Awxial-vector meson U,(I=1, G=—1): This meson
may contribute to the axial-vector form factor of the
weak interaction. The general form is given by

e;w)\u[x(ﬂx 6,7!) N ay\[{)\‘l'y(a,m)( agﬂ) . 1.L')\] U#' (28&)

For a particular choice, x=¢, we obtain the gauge-
invariant form

72Uy

€urha (WX 6,1!) . \I{)\U“p . (28b)

It is possible in principle to test experimentally
whether the form is really the one required by gauge
invariance. In the next section, a more detailed dis-
cussion of example (iii) will be given.
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V. PROPOSED EXPERIMENTAL TEST

One of the most direct tests of gauge nature is to
evaluate experimentally the coupling constants to
various baryons and to see whether the universality is
really valid. But, in addition to the practical difficulties,
this test involves an extrapolation procedure from the
observed value on the mass shell of the massive vector
particle to the unphysical point corresponding to vanish-
ing momentum transfer, the only point at which the
theory predicts universality. Therefore it will be
worthwhile to look for other kinds of experiments for
which gauge invariance gives definite predictions. We
shall propose the measurement of angular correlations
in the momenta of decay products of two vector par-
ticles produced from a pion incident on a nucleon, as an
application of example (iii) in the preceding section.
The threshold momenta of the incident pion in the
laboratory system is 2.86 BeV/¢ for 2w, 3.53 BeV/c¢ for
wo, and 4.27 BeV/c for 2¢ production. The one-pion-
exchange process is relevant, as illustrated in Fig. 1.

By denoting one of the (gauge) vector particles by
U with momentum ¢, and the other by V with p (they
may be the same kind of particles), the matrix element
of (27a) takes the form,

(w+2ymE) (V-U)—2y(m/E)(p-V) (p-U), (29a)

in the rest system of U, where m is the mass of U, E is the
energy of V, U, V stand for the polarization vectors of
U and V, respectively. For the gauge-invariant form
(27b), we have

EL(V-U)—(1/E)(p-V)(p-U)].  (29b)

The polarization vectors are proportional to the appro-
priate relative momenta of the decay products; for
example,

kK— kE , (30)
for the decay into K and K (as in ¢), and
k1r+>< kﬂ— ) (31)

for the decay into 37 (as in ). Thus we can predict the
angular correlation among the relative momenta of the
decay products and the momenta of the vector particles,
as given by squaring (29b), with U and V replaced by
(30) or (31).

It is necessary that the momentum of one of the
vector particles in the rest system of another [denoted
by pin (29b)] be of magnitude comparable to its energy,

u
B —=—=7  F1c. 1. One-pion-ex-
change process in the
production of two vector
v - particles U and V.
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F16. 2. £, gives a measure of the “sharpness of the forward peak”
in the cross section coming from the one-pion-exchange process,

while £, gives that from the three-pion-exchange process. 61
represents the opening angle of the forward cone of the direction
of the center of mass of two vector particles in the laboratory
system, and is shown in degrees, divided by 10. The estimate is
made in a simplified case where two vector particles have common
mass equal to the nucleon mass M, so that the conventional
threshold momentum is 3.99 Mc¢ (indicated by an arrow). The
totalzmza(t)ss « of the two vector particles is chosen to be [ 2 (14-v2) ]1/2
M=2.20M.

otherwise the important second term of (29b) is negli-
gibly small. The total energy of the two vector particles
with the masses 7 (assumed common for simplicity) in
their center-of-mass system is denoted by «, and is
given by

k2= 2m[m-+ (p+m2)/?].
The condition
lplzm,
may be imposed to give

22 2(14V2)m2. (32)

Another problem which requires special consideration
is to distinguish the contribution of the particular
process shown in Fig. 1 from those of various other
processes. Since we have no definite idea about the
magnitude of each contribution, we can only make use
of the peripheral nature of the process under considera-
tion. The cross section includes a factor

fO)=t/(P+m)?, (33)

where ¢ is the momentum transferred to the exchanged
pion, which depends on 6, the angle between the incident
pion and the center of mass of two vector particles in
the over-all center-of-mass system. Then, for sufficiently
high energies, the center of mass of two vector particles
is emitted predominantly in the forward direction
(small ). In Fig. 2, we plotted the ratio &= f(0°)/
f(90°) versus the incident pion momentum, as a simple
measure of sharpness of the forward peak. We tenta-
tively chose k?=2(14V2)m? as a lower limit in (32), and
m=M, the nucleon mass. For the pion momentum
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around 8M¢, the ratio is as large as 10% so that we may
expect to separate the process in question well from the
background to which other kinds of processes contribute.

Next to the one-pion state, the three-pion state will
occur. The sharpness of its contribution may be
estimated by calculating also the ratio f(0°)/f(90°)
where an effective mass of approximately the nucleon
mass is substituted for the pion mass in (33). This is
also plotted in Fig. 2 (&,). For momenta somewhat
lower than SMc, &3, is of magnitude comparable to &,;
therefore the higher momenta will be more convenient
for separating the contribution considered from that of
higher mass states. The former peak is 40 times sharper
than the latter at around 8M¢. Finally the opening angle
of the forward cone of the direction of the center of mass
of two vector particles in the laboratory system is
plotted. This also favors higher momenta.

In all these respects, we may conclude, in spite of
crudeness of the estimate, that the proposed experiment
is possible for reasonable energies, namely, for pion
momenta larger than, say, 7 BeV/c.
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APPENDIX

The generalized Lagrangian for the Stueckelberg
formalism is given by (12) or (13). They are invariant
under the gauge transformation (4), but with m? in the
last equation replaced by «%. By introducing the field
U, given by

Us=4,+ (1/7”)6“3 ’ (Al)

Eq. (12) can be written in the form
Lo=—}Uw—3m*U2—35x, (A2)

which suggests that U, describes the vector field with
mass m, because x will be set equal to zero, as will be
seen in the next paragraph.
The field equations are
0,4,,—m?4,—md, B+{d,x=0,
OB+md,A,—¢ (k%/m)x=0. (A3)

By differentiating the first equation with respect to wx,
and combining the result with the second, we have

g‘(D_ﬁ)X:Oy (A4)
which enables us to put
(AS)

if the initial condition x=x=0 at, say, {=0 is assumed.

x=0,

B 429

We have, then, from (12')
B=— (m/x?)d,4,. (A6)

On substituting this together with (AS) into (A3), we
obtain
3,4, —m?4,0 =0,

(O0—=+)B=0, (A7)

where
A, @ = (8,,—0,9,/k)A,. (A8)

The first equation is the same with Eq. (2.22) of
Feldman and Matthews.® Using (A6) we find that
A,W=U, given by (Al), and that the first equation of
(A7) is nothing but the ordinary Proca equation for the
vector field. Equations (A3) can also be put into the
form,

(O —m2) Ay (1= £)0,0,4y— (m— 0/ m)d,B=0,
(O—¢it/m?) B+ (m—¢x2/m)8,A,=0, (A3')

by using the explicit form of x (12").

The quantum-mechanical discussion, including the
method of indefinite metric,* can be developed com-
pletely parallel to the case of {=1 in Ref. 8. The main
changes are as follows:

In the left-hand side of the second equation of (3.1)
in Ref. 8, m4is changed to {~'r4. The terms 3w in (3.2)
and (3.7) are multiplied by {~!. The right-hand sides of
(3.5) and (3.6) are multiplied by . Then, in the
Hamiltonian, all the terms containing { are made to
vanish by imposing the supplementary condition (3.8).
In the commutation relations (3.16), the factor m?—«?
in front of (9/9k*)A.(x—=') is changed to {'m?—i?,
which vanishes for a particular choice

F=m’/?, (A9)
as in (14), to give a simple form
(1/8)[4,(®),45(2") = (8ur— 8405y m*) Am(x—2")
+ 9,0,/ m*A(x—%') ,
(1/9)[A4u(%),B(x")]=0,
(1/9)[B(x),B(x') ]=Ac(x—a"). (A10)

These equations are closely related to the Green’s
functions given by (18).

According to the change of the Lagrangian (4.1) to
(13), the Hamiltonian becomes rather complicated. The
right-hand sides of (4.12) and (4.14) are multiplied by
¢ All the expressions for ¥, in Sec. V of Ref. 8 are un-
changed. In (5.12), the only change necessary is to
multiply all 72 by {7, so that there is no change in the
final result.

Note added in proof. It should be noted that the tech-
niques of the ordinary Stueckelberg formalism de-
veloped, for example, in Umezawa’s book (Ref. 9), can
also be used to derive the interaction Hamiltonian (6)
in our generalized formalism.
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