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The seniority-zero excited-state spectrum of the Hamiltonian

J (&Jf&r ++-I~~-I)—C
J&O k, s&0

is studied in detail. Approximate excited-state wave functions of the form

0"=Z P(l,o)Z D(~,s)o"o-'t Z D(oi)o~'o r'" I0)-

are developed. These solutions are compared with exact solutions of a small system and the agreement is quite
good. A somewhat larger system is studied in order to see how the excited-state spectrum changes as the
number of separable functions is increased. The method is applied to heavy nuclei and is in good agreement
with observed 0+ excited states for nuclei having 144 to 150 neutrons. A theoretical 0+ spectrum is displayed
for each even neutron system from 144 to 152 neutrons.

I. INTRODUCTION
' "N the past year or two, it has become increasingly
~ - clear how to obtain good ground-state wave func-
tions for the pairing Hamiltonian. The two general
approaches which have been followed are (1) making
improvements' ' of the quasiparticle method and (2)
developing non-quasiparticle methods " for handling
the problem. The various methods which have been
developed for the ground-state wave function can also
be applied with considerable success to obtain approx-
imate wave functions of the lowest energy state having
a set of speci6ed levels occupied by unpaired particles.
Such states, however, constitute only a small fraction
of the eigenstates of the pairing Hamiltonian. It is the
purpose of this paper to develop methods for obtaining
approximate eigenvalues and eigenfunctions of states,
other than those mentioned above, with an accuracy
approaching that obtained for the lowest energy states.

The reason for quotation marks in the title is that
our method is not restricted in applicability to states
of seniority zero. In an even-even nucleus, the states
which we are attempting to describe correspond to the
I=O, positive-parity excited states (beta vibrations)
which have been observed in many deformed nuclei.
Our method is also applicable in even systems to the
seniority-two states which appear at roughly the
energies of the lowest seniority-four states, etc. In an
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odd-mass nucleus, the states which we describe corre-
spond to seniority-one excited states having the same
spins and parities as the ground state and other low-

lying single-particle levels and should. have energies
roughly comparable to the lowest seniority-three states.

II. FORMULATION OF THE PROBLEM

In the course of this paper, we shall use the notation
S=R to mean a state of seniority R, i.e., there are R
unpaired particles in the conhguration of interest. We
shall use the symbol P to indicate the number of pairs
of particles in the system of interest and I. to indicate
the number of levels.

The Hamiltonian which we are investigating is

EI=+ es(astas+a sta k) GP bj, t Q b—t,
k&0 A&0 L&0

where eI, is a single-particle energy and the sum over k
means some specified finite number of levels in the
vicinity of the Fermi surface. ast(as) is a fermion
creation (annihilation) operator; G is a constant pairing
interaction energy; —k indicates the time reversal
partner of k and

bI =~I~~—a &

b~= a ~a~.

The fundamental approximation which is made in
most" approaches to the ground-state wave function is
the separability of the amplitudes of the various con-
Ggurations; a somewhat less restrictive approximation
was made in II. If we examine exact solutions for the
Hamiltonian of Eq. (1), which are obtained by diagonal-
ization of a matrix for systems of small P and I,, it
becomes immediately clear that separability is a totally
inadequate approximation for the excited states which
we are now studying. If we give up separability, it
becomes quite dificult to solve for the eigenstates of
Eq. (1) directly as we did in I and II. Furthermore,

"See, however, Refs. 7 and 8.
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nonseparable amplitudes are not very useful in comput-
ing matrix elements between various states of a system
having reasonably large numbers of pairs, and must be
computed one by one for each configuration. The
compromise that we wish to pursue in this paper is to
describe the excited states of the pairing Hamiltonian
as sums of separable functions.

The separable ground-state wave function (tp of
Eq. (1) for a system having an even number of particles
is of the form

Pp
——P D;b, t P D,b, t 2 D&b»

l
0),

where
~
0) indicates the vacuum state and the number of

summations in Eq. (3) is equal to P The. factors D;
are numbers and a method for obtaining them is given
in I. A method for obtaining an improved set of factors
D; is given in Appendix A. The form of excited states
that we shall consider is

P„„,=P P D(n, s)b, t P D(nj)b, t

XgD(~,~)b.t. I0), (4)

and our problem is to determine the factors D(n. ,i) and
over how many values the index a is to run. It is clear
that our excited-state solutions are in a considerably
messier form than the ground-state solution, but this
is inherent in the problem because of the inadequacy
of a function. of the form of Eq. (3) to represent the
excited states.

The approach that we shall take in this paper is to
make a very detailed study of S=O excited states in
two limiting cases, namely G —+ 0 and G~ . From
our analysis of these two limits, we can generalize to
more physically plausible values of G and we shall 6nd
that wave functions of the form of Eq. (4) give good
descriptions of 8=0 excited states over the entire
range of values of G.

III. S=O EXCITED STATES AS 6 —+ ~

In the limit G/he ~ pp, where Ae is the single-particle
energy level spacing, the BCS method" gives good
ground-state wave functions and is a useful guide to
the low-lying S=O excited states. We shall use P c

to indicate the BCS wave function and fP to
indicate that part of the BCS wave function which
contains the correct number of pairs of particles.

AsG~ ~,

lng functions

&,.- =(1«~..)(1-b..) rr"" (1+b') 10), (6)

and identifying these states as the $=0 excited states.
In fact, the BCS method does give the energies of the
S=O excited states correctly in this limit. However,
there are difhculties. In general

(P PBCS~Q PBCS)~0 (7)

p p, =4,(Z bi' 2 b ' ~0),
l&kp m )l

m gko

(9)

where the number of summations in Eq. (9) is P 1. —
We must then diagonalize the Hamiltonian using this
set of I. functions as our basis. If we carry through this
procedure, we obtain the ground-state wave function
and the (L 1) S=O lowes—t excited states. If the
single-particle energy levels are degenerate, our results
are exact.

Because the functions p&, are not mutually orthogonal
the problem that we must solve is of the form

Hp, , i,—) (OV) p, ,4= 0, (10)

where Hpp ~p is a matrix whose elements are (happ~ H~ q ~p)

and the elements of OV (the overlap matrix) are
(q», t q &,); the main point here is

(OV) p, , (,alp, , &, .

Fortunately, a computer subroutine'4 has recently
become available for just this problem and extensive
use has been made of it in the course of this work. The
necessary matrix elements for diagonalizing the Hamil-
tonian are given in Appendix 3.

It is interesting to note that this approach can be
immediately extended to higher 8=0 excited states by
considering the set of functions

In the special case that L= 2P, fp P s will be orthog-
onal to PpP s; but even in this special case we still
have the difhculty that

(P PBCS~P PBCS)~0

The nonorthogonality problems of Eq. (7) and (8)
are intimately related" to the fact that there are L
functions of the form of Eq. (6) but only (L 1) S= 0—

excited states at the energy of the lowest S=2 states.
The changes that must be made in the BCS point of

view are comparatively slight in this limit. We define
the set of functions

0o'"= (1/V'Xo) II" (1+b„') lO), 4p, i,=4,'bt, ' Z b ' Z b ' ~0) (12)
where fpBcs is the ground-state wave function and Xp
is the normalization. The BCS method then goes on
to obtain the low-lying excited S=0 states by construct-

"J.Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).

m gko, lo m )m
e Wko, lo

in place of the functions ppsp of Eq. (9). There are P 2—
"D.R. Bes, Nucl. Phys. 49, 544 (1963).
'4 B. S. Garbow, Argonne National Laboratory AN-F204

(unpublishedl.
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summations in Eq. (11). If we diagonalize this set of
functions, we obtain the ground-state wave function,
the (L 1) l—owest S=O excited states and the Rg S=O
excited states at the next highest energy where

Lt
(13)

This approach can be extended to the RI highest S=0
excited states where

Lt
Rp ——

(L ~)!~' (L—~+1)!(f'—1)!

although the size of the matrix will probably be prohib-
itively large long before we get to the RI highest states.

gg&, =b),,t Q D(kp, l)bit Q D(kp gig)b„t IO)., (15)
lgk0 m&L

m gko

such functions being a natural generalization of the
functions defined in Eq. (8).We compute the amplitudes
D(kp, t) by blocking the level kp with one pair of particles
and determine the ground-state amplitudes of the
system having one less pair and one less level than our
original system, using the method of Appendix A. We
choose the amplitudes D(kp, l) in this way in order to
treat the effects of pairing in the L functions from which
the L—1 excited states are to be constructed. It is
clear that the amplitudes D(0,1), i.e., those appropriate
to the ground state of our original system are not quite
right for the excited states. In the ground state, all
configurations have their amplitudes in phase with
each other; whereas in the excited states, which must
be orthogonal to the ground state, not all amplitudes
can be in phase. This means that the pairing term in
the Hamiltonian will be comparatively more effective
in mixing in configurations of higher single-particle
energy in the ground state than it will be in the excited
states. The blocking procedure that we use has just
this eBect, although we make no claim that this is the
best possible way to fix the functions q», . Our choice of
functions q», is to be either justified or modified by its
utility in describing excited states.

If we construct the functions pI, O
as described above,

and diagonalize the appropriate Hamiltonian matrix,
we find that some of our eigenvalues are rather poor for
the L—1 lowest S=O excited states, when we compare

IV. S=O EXCITED STATES AS 6 —+0

Next we consider the limit G/Ap-+ 0. In this limit
the BCS approach is not too useful; in fact it breaks
down completely. As G —+ 0, we make the obvious but
useful observation that the excited states should
be similar to what they would be in the absence of
pairing forces. We again start out by defining a set of
L functions

with exact results for rather small systems. The reason
for this becomes clear if we consider yI„ for ko&P. As
G —+0, all P of these functions will approach each
other and for G= 0 they will all be the same. To make
this more explicit, we consider a set of six equally
spaced levels and three pairs. As G —+0, using our
recipe for determining the amplitudes D(kp, l), we find

tb tlO)

gpg ~ bi'bg'bg'I 0),
pgg

—+ bitbgtbgtl0), (16)

q 4~ bi'bg'b4'I0),

q'p~ bitbgtbp IO) ~

gpp +bitbg-tbpt
I 0),

but if we want all of the (L 1) lowe—st excited states in
the limit G —+ 0, we should have beside these functions,
an additional three functions

v, +b,'bg'—b4'
I o),

g g ~ b~'bgtb4'I o)

gpg
—& bitbgtb pt

I 0).
(17)

D(7,g) =D(4,g), iW2, 3

D(7,3) =D(4,2),
D(7,2) =D(4,3),

(18)

and we construct p8 in a similar way by switching

D(4,1) with D(4,3) and finally we obtain q» by switching

D(5,2) with D(5,3). As we shall see in our discussion of
numerical results, the eigenvalues that we obtain by
diagonalizing the matrix of Eq. (10) for this expanded
set of functions are quite good.

V. 8=0 EXCITED STATES FOR INTERMEDIATE
VALUES OF 6

For the values of G/hp that one expects to find in

deformed nuclei, it will be necessary to include the
functions introduced in Sec. IV if one wants a good
description of the S=O excited-state spectrum. In this
case of intermediate values of G, an additional complica-

From this examination of the G —+ 0 limit, we can see
that it will be necessary to diagonalize a matrix that
is somewhat larger than L&&L if we want the (L 1)—
lowest excited eigenstates to be correct in both limits.
Again, it is not entirely clear how to construct functions
which are most suitable for y~, ps, and cp9. Our approach
is to impose asymptotic restrictions on these functions,
i.e., as G —+ 0 these functions should reduce to those of
Eq. (17) and as G —+ ~ they should become identical
with the functions p&, of Eq. (9). There are many ways
of choosing such functions, so we choose one which is
calculationally convenient and gives good numerical
results. To construct y~, we set
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tion arises. We computed our factors D(ko, l) by solving
for the ground state of a system having one less pair
and one less level than our original system. This
procedure, while not mixing in as much of the higher
energy configurations as we have in the ground state,
does still not take into account sufficiently the fact that
we have out-of-phase mixtures of functions yj„ in the
excited states. Because of this out-of-phase mixing,
the configurations of high single-particle energy may
be even less likely than our functions pl„would lead us
to believe. For explicitness, we consider again six
equally spaced levels and three pairs. The lowest S=O
excited state is roughly

where q4 and q3 are now normalized functions. The
eftect that we are discussing shows up most strongly in
the first excited state. The second most probable
configuration in both y4 and ya is bitbatb4t ~0). Because
of cancellation, this configuration becomes much less
important in the excited state than it is in either q4
or q 3. This means that we should also have less of the
configurations bitb4tb&t

~
0) and bitb, ~b&t

~
0) than we

computed in the functions q 4 and p3. We can alleviate
this difhculty to a large extent by computing the
factors D(ko, l) in the same way as we do in Sec. IV, but
using some G,gf rather than the correct value of G.
Our calculations indicate roughly that

G,ii (0.8—0.9)G

takes care of this problem, by reducing the amplitudes
of the higher energy configurations in the functions p&.

The same value of G,~f will not be the optimum one for
all of the excited states, but the values of G,f~ are
suKciently close to each other that one choice gives a
good excited-state spectrum.

VI. S&0 EXCITED STATES

As was mentioned in the introduction, the methods
we have developed are not confined in applicability to
even systems or to S=O. In a system having an odd
number of particles, the ground state and the lowest
lying S=1 excited states are computed by blocking
some one level in the vicinity of the Fermi surface with
the odd particle and treating the remaining pairs and
levels as an even system. Beside these S=1 states,
there are other S= 1 states at roughly the energy of the
lowest S=3 states having the same spins and parities
as the lowest S=1 states. We compute these higher
S= 1 states by blocking a level with the odd particle and
treating the remaining pairs and levels in exactly the
same way as we do for the S=0 excited states. The same
approach is also valid for S=2, 4, 6 . states in even
systems and S=3, 5, 7 states in odd systems.

VII. DISCUSSION OF NUMERICAL CALCULATIONS

In order to test our ideas about S=O excited states,
we have done detailed calculations for a system of six
equally spaced levels and three pairs of particles. The
single-particle spacing is 0.5 in some arbitrary set of
units and we vary G from 0.1 to 2.0. The exact solutions
for such a system may be obtained by diagonalizing a
20)&20 matrix and we compare the results of our
approximate treatment with the exact eigenvalues. In
Table I, we compare the exact results with approximate
eigenvalues obtained from the diagonalization of a
6&&6 matrix of the functions yi, defined in. Eq. (13).
We also compare with the approximate eigenvalues
obtained by diagonalizing a 9)&9 matrix. The three
additional functions in the 9&9 matrix are those that
we discuss at the end of Sec. IV. In Table I, we list
the ground-state energy as well as the first five excited
states. Although the ground state energy is not always
as good as that which we obtain using the methods of

Tcm, K I. S=0 excited-state spectra for 3 pairs and 6 levels.

EI
E2
jv3

+~4

jv5

jvp

J'I

EM 3

J'4

p5

Exact

2.656
3.671
4.678
4.678
5.686
5.686

Exact

—2.089
1.398
2.073
2.073
2.905
2,905

G= 0.1
6x6
2.656
3.671
4.678
5.099
5.686
6.078

G= 0.7
6x6

—2.080
1.404
2.079
2.141
2.912
2.933

9X9
2.656
3.671
4,678
4.678
5.686
5.688

9X9
—2.083

1.408
2.076
2.082
2.908
2.912

Exact

1.569
2.924
3.915
3.915
4.922
4.922

Exact

—5,353
0.065
0.528
0.528
1.218
1.218

G=0.3
6x6
1.572
2.926
3.918
4.123
4.924
5.070

G=1
6x6

—5.347
0,073
0.531
0,557
1.221
1.227

9X9
1.571
2.926
3.917
3.919
4.924
4.933

9X9
—5.347

0.076
0.530
0.534
1.219
1,220

Exact

—0.094
2.184
3,035
3.035
3.968
3.968

Exact

—16.935
—5.236
—5.053
—5.053
—4.643
—4.643

G=O.S

6x6
—0.087

2.190
3.041
3.147
3.975
4.030

G=2
6X6

—16.933
—5.232
—5.051
—S.049
—4.643
—4.642

9X9
—0.088

2.191
3.037
3.043
3.971
3.978

9X9
—16.934
—5.228
—5.051
—5.049
—4,643
—4.642
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Fxo. 1. Ratio of G.ff to G as a function of G.

2.0

values, with the exception of Ej. It seems fairly clear
that Ei can be improved by including two more func-
tions p3' and p4' which are computed in the same way as
p3 and q4 but with an even smaller value of G,~g than
the value which gives optimum results for the other
excited states. This is not worthwhile in the small
system that we are studying, but may be so in larger
systems.

Although we are using roughly —', as large a matrix in
our approximate treatment of the L=6 problem as we
would use in the exact treatment, we emphasize that
this will not be true for larger systems. In general, the
size of the matrices we use in the approximate treatment
will be roughly 1.5LX1.5L; whereas in an exact treat-
ment, the matrices are

TABLE II. 5=0 excited-state spectrum for 8 pairs and 16 levels.

~o
jV1

E2
Ps

gs
jvv

&s
&a
&1O

~11
~12
+18
+14
~15

16X16

19.456
20.916
21.607
21.976
22.338
22.643
23.093
23.358
23.863
24.088
24.643
24.822
25.431
25.564
26.229
26.332

23X23

19.451
20.914
21.593
21.617
22.324
22.369
22.755
23.084
23.162
23.570
23.591
23.605
23.854
24.096
24.631
24.809

29X29

19.453
20.915
21.590
21.611
22.322
22.348
22.747
23.084
23.123
23.505
23.560
23.571
23.861
23.927
24.348

. 24.373

II, it appears sufFiciently good that one does not have to
orthogonalize the excited states to some better ground-
state wave function. Looking at Table I, for G=0.1,
under the heading 6X6, we see that E3 and Es will not
be given correctly as G~ 0. As we increase the value
of G, E3 and Es approach the exact values, The 9X9
treatment seems to give satisfactory results over the
entire range of values of G. It appears that we get
equally good values for the 6rst excited state no matter
which treatment we use (6X6 or 9X9) and this should
be true in general since the 6X6 treatment gives the
first excited state in both limits (as G~ 0, p4 is the
first excited state). If we want a more detailed picture
of the S=0 excited-state spectrum, it becomes necessary
to use the larger matrices. In Fig. 1, we display the
ratio (G,ii/G), as a function of G, which we found to
give the best results for the excited-state spectrum. A
useful observation that we can make from Table I,
is that the difference in energies E3—E2 that we obtain
from the 9X9 treatment is a fair measurement of the
diGerences between the exact and approximate eigen-

Ll L)—X
p I (I —p) I (I—p) Ip l

We have also done an approximate treatment of a
system of 16 equally spaced levels (he=0.4 MeV) and
P= 8. Ke use a value of 0.2 MeV for G. In this case, we
do not have exact solutions for purposes of comparison.
In Table II, we examine the 16 lowest eigenvalues as a
function of the size of the matrix that we diagonalize.
The 16X16 matrix is made up of the functions q~„
given in Eq. (13); the 23X23 matrix includes an
additional 7 functions, which would be among the
lowest energy states as G —+ 0 and the 29X29 matrix
includes 6 more such states. We first note that the
ground-state eigenvalue is negligibly better than that
which one obtains from an optimaP separable treatment,
and poorer than the ground-state energy that one
obtains with the methods of II (which give 19.418 as
the ground-state energy). The first excited 5=0 state
is some 40 keV above the lowest S=2 state (which we
compute with the methods of II). As G ~ 0, the 5=2
state clearly lies lower, and as G —+ the two states
become degenerate in energy, so this result looks quite
reasonable. The spacing of roughly 20 keV between
E2 and E3 also suggests that our eigenvalues are quite
good. %'e note again that the 16X16 treatment gives
the energy of the 6rst excited state quite well, and
fails badly for the first time at E3. The 23X23 matrix
gives fairly good eigenvalues through Es, relative to
the 29X29 treatment.

Another interesting feature of this case is that the
lowest S=0 excited state is, to a good approximation,

i/i'*' ——(1/VXi) t.q9 —
q Sj, (21)

where qg and qs are normalized versions of the functions
defined in Eq. (15).This suggests a rough selection rule
for transition probabilities to the ground state and
other members of the ground-state rotational band in
deformed nuclei from the first excited S=O state. We
designate the one-body operator for the particular
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t
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Fn. 2. 0+ spectra for even neutron
numbers. The check beside a cal-
culated level indicates that the state
is S=2.
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VIII. APPLICATION TO THE HEAVY ELEMENTS

In this section, we apply our approach to neutron
excitations in the heavy-element region. The assump-
tions that we make are that neutrons and protons may
be treated as noninteracting systems and that the
Hamiltonian of Eq. (1) is adequate to describe the 0+
excited-state spectra of the heavy deformed nuclei. The
input quantities for this calculation are a set of single-
particle neutron energies and a value for G~, the
neutron pairing interaction constant. For the single-

particle neutron energies, we use the values of Mang,
Poggenburg, and Rasmussen" (removing the five
lowest and four highest single-particle states). We
determine a pairing force constant for neutrons GN, by
fitting the observed 0+ excited state for 144 neutrons
(U"' and Pu"') to experiment. The value of G~ which

we obtain in this way is

G~= (21.2/A) Mev, (23)

and this is in agreement with other values of G~.
In Table III, we compare the lowest observed and

calculated energies of 0+ excited states for even neutron
numbers between 140 and 152 neutrons. The agreement
with experiment appears to be good for 144, 146, and

'5 H. J. Mang, J. K. Poggenburg, and J. O. Rasmussen, Univer-
sity of California Radiation Laboratory Report UCRL-11213,
1964 (unpublished}.

transition of interest as M, and

A —(0
~
bpyiMbp+it ) 0)—(0 ) bpMbpt

~
0) . (22)

If A is considerably smaller than either of the two
matrix elements in Eq. (22), we may expect the
transition to be retarded.

TABLE III. Energy of lowest 0+ excited state (keV).

Neutron number

140
142
144
146
148
150
152

Calculated

940
1030
900
835

1100
650
840

Observed

634,.693b

730,b 810'
910,~ 935~

863,' 997b

590c

a See C. M. Lederer, University of California Radiation Laboratory
Report UCRL-11028, 1963 (unpublished) for references to experimental
measurements.

b See E. R. Marshalek, University of California Radiation Laboratory
Report UCRL-10046, 1963 (unpublished) for references to experimental
measurements.

& A. Friedman, K. Flynn, L. Glendenin, H. Griffin, and J. Milstead (to
be published).

'6 E. R. Marshalek, University of California Radiation I,abora-
tory Report UCRL-10046, 1963 {unpublished).

150 neutrons (144, of course, was fitted). 0+ excited
states have not been observed for 148 and 152 neutrons.
For 140 and 142 neutrons, the agreement between the
calculation and experiment is not particularly good.
There are several possible reasons for these discrep-
ancies. Residual two-body quadrupole interactions are
expected to be more important"" for these nuclei
than for those having larger numbers of neutrons. Also
the energy of the lowest 0+ excited state is quite
sensitive to small changes in G~. We find that 1 keV
changes in G~ can lead to changes of 20—30 keV in the
energy of the first 0+ excited state relative to the ground
state; e.g. , for 140 neutrons, reducing G~ from 91 to
85 keV gives a lowest 0+ excited state at 810 instead of
940 keV. In spite of these difFiculties, the results of
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Table III indicate that residual quadrupole interactions
may not be too important in determining 0+ excited
state energies, especially for 144 neutrons or more.

In Fig. 2, we present the calculated S=0, 0+ excited-
state spectra for 144—152 neutrons. We include all
neutron S=O, 0+ states up to 1.8 MeV and also give a
few neutron S=2, 0+ excited states which appeared to
be low in energy on examination of the single-particle
energies. The S=2 excited states are calculated with
the methods of II. We note that the ground-state
energies calculated with the methods of II are roughly
10—20 keV below the energies calculated for ground
states with the methods of this paper. We do not include
any 0+ excited states due to proton excitations, so the
actual 0+ spectra of deformed nuclei should contain
more levels than are presented in Fig. 2.

and obtained the result

Cl, t C2, m

Cg, „E E2+—G Q +G
tel C1,2 C1,2—

=G Q Cg, (+GC2,~, (I-15)

We introduce a variational parameter p into this equa-
tion and modify it to read

Cl, t C2, m

Cg, „y(E„E2)+G—Q +G
t/1 C1,2 C1,2—

=G Q Cg, ,+GC2 „, (A4)
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APPENDIX A

In this appendix, we wish to point out a method for
obtaining better ground-state (and lowest excited
state) eigenvalues than those obtained in I, subject to
the restriction that the amplitudes of configurations
are separable. By separable, we mean that the amplitude
C;,;,q... of the configuration b,tb, tbqt .10) is of th. e form

(A1)

as we have in Eq. (3).
In II, we showed that a better approximation than

(A1) for the amplitudes is

C',~,a" =~M'D, Du (A2)

where F„ is a numerical factor depending only on the
number of levels m which are occupied in the configura-
tion i, j, k and are unoccupied in the lowest energy
configuration. For the purposes of this discussion, the
important feature of F„is

F„&~1. (A3)

This suggests that we can get a better separable wave
function than that obtained in I by increasing the
magnitudes of the factors D~ for k&P relative to those
for k&P. We do just this with a one-parameter varia-
tional treatment.

In I, we consider a system of two pairs and I. levels

and we modify (I-16) and (I-18) with the substitutions

(E —Eg) —+ y (E Eg), —

(E„—Eg) —+ y(E L&) . —

For a given value of y, we solve for the coefFicients Cl,
and C2, as described after (I-18). From these coeffi-

cients we determine the factors D, using (II-21), (II-22),
and (II-23). y is varied to minimize the energy, which

is computed using (II-24). We find quite generally

(A6)

G —+ G/y, (A7)

which is the same type of approximation made by
Mikhailov' in his improved version of the BCS method.
There is, however, a difference in spirit between the
two approximations and this shows up in the fact that
one needs the largest percentage changes in G as 6~ 0
in the BCS treatment. This is necessary to keep the
BCS method from going trivial. In our case, y~1 as
6~ 0, because the first-order terms are the dominant
ones here in determining the energy. As the second-order
configurations become more important, but F2 is still

appreciably larger than 1, p takes on values quite a
bit below 1.

and this is to be expected.
The eigenvalues which we obtain in this way corre-

spond very closely to those obtained for optimized'
separable amplitudes but are not as good as those
obtained with the approximation of Eq. (A2) as
developed in II.

The approximation introduced in (A4) could just
as well have been written
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APPENDIX B

In this section, we give the matrix elements used in
the body of the text between functions qkp and q«,
which are defmed in Eq. (12).

First, the normalization Ek. is

Next, we have the overlaps

1
(OU) jo, &o—= (poop I 0'&o) = D (ko, lo) D (lo,ko)

Q(No, N(, )

X[ P D(kp, ~)D(lo ~)] ' (83)
mgkp, lp

No, =(q«,—I o o,)=[&D(ko, l)']' ',
lgkp

(81) We break up our Hamiltonian [Eq. (1)]as

lgkp l&kp m&l
m gko

where

[PD(kp l)'] -'=—P D(kp l)' P D(kp m)' (82)

H=Hg+Ho,
Hl=g «o(Q«fGk+8 otter o) —G Q k to@,

k&0 k&0

Ho= —GZ4t P k~,
k&0 i &0

l Wk

(84)

and there are P—1 such summations in the expression. and the matrix elements of B are

where we are to understand

(pI„IHgI pro, )= (Ego/Nko)[ Q D(kp, m)'E ]~ '—PG,
mWkp

EooE~~ =—2(«op+«„+«„),

D(ko, lo)D(lo, ko)
(po«, I%I po(,)= E«,Et,[ Q D(kp, ns)D(lp, m)E„]~—'—PGX(OV)o, i, .

Q(iV«plV), ) ~oo ~o

For the matrix elements of B2, we have

(87)

and

(yo, IH,
I qo,)= P D(kp, l) P D(kp, m)[ P D(kp, n)']P ',

l~kp ~ &l n~kp, l, m
m Wko

(too I
Ho

I pro) = {[ 2 D(ko, m)D(lop+)] +D(ko, lp)D(lo, ko)
Q(1Vo, iV(,) mwooto,

X[ Q D(kp, nz)D(lp, oo)+D(lp, es)D(kp, n)][ P D(kp, r)D(lp, r)]
m, n gko, lp rgkp, lp, m, n

'n &m'

+[D(kp, lo) P D(lp, m)+D(lp, kp) P D(kp, m)][ P D(kp, m)D(lp, e)]~-') . (89)
mgkp, lp mQkp, lp nQkp, lp, m

Next we consider a state p of the type discussed at the end of Sec. IV. Let us say that p is formed by interchange
of some of the amplitudes D(kp, i). The matrix elements between pp and pp~o will be the same as those between

pkp and pp with the following substitutions:

Noo —+ 1V „D(k„i)~ D(n, i),
and things such as D(lp, kp) and Eoo are not to be changed.

Finally, we consider matrix elements between p and 'pkp.

(810)

(OV)I„, =— [P D(kp, m)D(n, m)]
Q(N« N~) mwop

(811)

and

~kp
(qooIH&I q.)= [P D(kp, m)D(n, m)E ] ' —PGX(OV)o,

Q(N«, N ) ~~op

(yooIH«I op )= [ P D(kp, l)D(n, ohio)+D(kp, ohio)D(n, l)][ P D(kp, n)D(n, w)]
g(1V iV«, ) i,mao, ngkp, l, m

m&l

(812)

(813)


