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Effect of Deformation Vibrations on E2 Branching Ratios in Deformed
Even-Even Nuclei*
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Ratios of electric-quadrupole reduced transition probabilities are calculated using a collective model. For
transitions between positive-parity states the asymmetric-core model with p vibrations is used, while for
negative-parity states a similar model with g vibrations is used. The reduced transition probability can be
divided into two factors, the first an adiabatic term, and the second due to the vibration on the deformation
parameter. For small values of the stiffness parameter p, the vibrational contribution to the ratios is found
to be a factor close to unity. However, this factor can be large for greater p. Experimental branching ratios
of several deformed even-even nuclei are compared with theory.

I. INTRODUCTION

OW—LYING energy levels of positive and negative
parity in deformed even-even nuclei have been

explained with some success by the work of Davydov' '
and Davidson, ' 4 respectively, and co-authors. Reduced-
transition-probability ratios predicted by the adiabatic
or pure rotational models' ' are in reasonable agreement
with experiment at least for transitions within and be-
tween what are usually called the ground-state and
"p-vibrational" bands for the positive-parity systems
and their analogs in the negative-parity systems
(although in the asymmetric-rotator models used here,
both of these bands merge into a common rotational-
level sequence). Discrepancies between theory and ex-
periment are usually accounted for by the perturbation
mixing of the various bands both for energy differences
and for ratios of reduced transition probabilities. How-
ever, recent experimental investigations of the high spin
levels of deformed even-even nuclei indicate that such a
perturbation approach will not account for the observed
level structure' and that it is necessary to take the beta
(or deformation) vibrations into account more exactly
as is done in Refs. 2 and 4. Other observations of level
structure and gamma-ray branching ratios both in the
rare-earth deformed region' and in the actinide de-
formed region' suggest that the inhuence of the beta-
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band mixing is an order of magnitude greater than that
of the gamma-band mixing. In particular in Sm'" the
experimental branching ratio' from the beta band to the
ground state, B(E2:212~ 211)/B(E2: 212~ 011), is
greater by a factor of two than predicted by the simple
collective model. ' This in itself would suggest that a
perturbation approach to handling these vibrations is
probably not adequate. Since the eGects of y-band ad-
mixtures are much smaller, 'at least in the ground-state
band, perturbation methods will be more nearly ade-
quate to describe any deviations from theory for them.
It is the purpose of this paper to examine the e8ects on
gamma-ray branching ratios of the beta vibrations in
deformed even-even nuclei by a more exact method than
perturbation theory. We deal here principally with E2
transitions both within the positive-parity and the
negative-parity bands; however, the analysis is su%-
ciently general that the numerical calculations reported
can be easily extended to other electric transitions.

It is worthwhile saying a word about the principal
approximations used in this paper. As mentioned above
the deformation vibrations are treated exactly, but the
asymmetry degree of freedom (y or q) is removed by
considering this parameter as fixed (although not
necessarily zero). Asymmetry vibrations are not in-
cluded at all since their effects are apparently less im-
portant than those of the deformation vibrations. ' The
octupole treatment, while not complete, is probably as
detailed as the present state of experimental information
justices. It is known that the inclusion of more degrees
of freedom into this particular problem increases the
complexity of the theory a great deal. A further dis-
cussion of this truncation of the octupole theory is made
in the next section. Two further approximations have
been used. One is the form of the moments of inertia
which is taken to be the hydrodynamic one" propor-

8 The notation here is B(E2, IÃn —+ I'N'n'), where I is the spin
of the state, S the ordinal of that spin, and n the ordinal of the
beta-vibrational band. Thus the state 212 is the Grst I=2 level
in the 6rst excited beta-vibrational band. This is the notation
of Refs. 3 and 4.

~ M. G. Davidson, Ph. D. thesis, Rensselaer Polytechnic
Institute, 1964 (unpublished).' A. Bohr, Kgl. D'anske. Videnskab. Selskab, Mat. Fys. Medd.
26, 14 (1952).
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tional to Bgq'. The mass parameter I3q is assumed con-
stant for each nucleus, and the effect of centrifugal
stretching is accounted for by the quadratic dependence
in P. The form of the moments of inertia has recently
been discussed by Diamond, Stephens, and Swiatecki, "
and they show that, at least in the deformed region
150&3&190, this approximation is quite reasonable.
The other approximation is in the potential-energy term
which is taken proportional to Cq(pq —pro)' with Cq

constant. This potential function has been shown to be
a close approximation to empirical-mass-formula po-
tentials at least for spins up to 10—14." Further the
experimental investigation of Ref. 5 shows that the
ground-state band can be quite closely accounted for by
using these forms of the potential and moment-of-inertia
functions. Thus these calculations should be expected to
apply to those regions of nuclear deformation where
the even-even nuclei are known to have well-developed
rotational spectra (i.e., 150&A&190, A &224) and to
levels whose nature is largely collective and which have
moderate angular momenta, say I&16.

In Sec. II, we outline the vibrational treatment of the
problem and describe the resulting state functions both
as a review and to fix the notation, while in Sec. III we
examine the reduced transition probabilities and appro-
priate electric quadrupole operators for both parities.
Section IV is a comparison of theory and experiment.

II. THE VIBRATION PROBLEM

We begin by expanding the nuclear surface in the
laboratory coordinate system

R(8,&)=Rp[1+P„n),„*Fg„(8,$)],
X being 2 for m+ and 3 for m states. Applying small
oscillation theory to such a surface yields a Hamiltonian
of the form"

II,=-.'a, P.ln,.I +-,'C, P.ln,„l, II=K„II„. (2)

the pz being the Xth-order deformation parameter snd
the asymmetry parameters 0.),„can be subjected to the
further requirement

(4)

For the quadrupole and octupole cases the 0),„have the
familiar form" '

0 20 cosp y
42a 2~2 = s&n& ) X 2

0 30 cosp, V2a3~2= sing, A, =3,

the others in each case being zero. (For X=2 this is a
consequence of the degrees of freedom available, while
for X=3 it is a sufFicient condition to diagonalize the
inertial tensor. 4 While this latter reduction of the
degrees of freedom may appear arbitrary, it is supported
by a recent calculation of Soloviev et a/. ,

"which shows
that the states associated with the X=3, p= ~3 degrees
of freedom in deformed nuclei are almost pure two-
quasiparticle states and thus not to be associated with
a collective model. )

The Hamiltonian (2) so transformed consists, as is
well known, of three terms: one representing rigid rota-
tions, one vibrations, and the third a rotation-vibration
cross term. For the cases X=2, 3 the latter term vanishes
identically. In keeping with the desire to treat the de-
formation vibrations exactly leaving the effects of
asymmetry vibrations to be treated as a perturbation,
the pq are taken to be variables while the o&,„remain
as fixed fitting parameters. Thus the generalized curvi-
linear coordinate space with respect to which the system
is quantized contains the four variables 8;, Pq. The
transformed Hamiltonian is4

1 8 8)
p~'

8P~&

X(1/4p. ') Z l., /g, y-, C,(p„—p„,)

We now transform to the body-fixed reference system
where the surface (1L) is given by

R(8',p') =Rp[1+ Q„a),„*Y),„(8',Q') ]
and the expansion coeKcients are related by

ng„——Q„D„„"*(8;)ag„,

(18)

&&R. M. Diamond, F. S. Stephens, and J. Swiatecki, Phys.
Letters 11,315 (1964).

'2 M. E. Rose, Elementary Theory of Ang@4r 3fomentens (John
Wiley R Sons, Inc., New York, 1957).

the D„„~(8~) being components of the (2I+1)-dimen-
sional representaton of the rotation group" and are
functions of the Euler angles 8;. It is helpful if the body
expansion coefficients u),„are parameterized as'

where the potential term of the Hamiltonian (2) has
been generalized to permit oscillations about a non-
spherical deformation specifred by P&,&, I is the angular-
momentum operator in the body, and ds"=48&P&'res~
are the principal moments of inertia whose form is
known, "'

The Schrodinger equation separates into a rotational
part

[s Z a(Is'/gs") sr~"]pre(8~) =0, —

where the rotational eigenvalues have been given in
tabular form for various values of the spin as a function
of p for the quadrupole case" and as a function of p for
the octupole case.4

"V. G. Soloviev, P. Vogel, and A. A. Korneichuk, Izv. Akad.
Nauk. SSSR, Ser. Fiz. (to be published).

'4 R. B. Moore and W. White, Can. J. Phys. BS, 1149 lt960l.
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The vibrational Schrodinger equation is

h' i 8 8
Pi' +- piN"+ pCi(P& Pi—p)'

2B), P)F BP), &P), 4BiPi'

XC) IN(Pi) +IN iC) IN(Pi) (5)

By expanding the second and third terms of (5) about
the new equilibrium position PI,(IN), keeping only the
harmonic term for the new potential and de6ning a new
independent variable y by

y=Z, I P, P, (IN—)j/P, (IN),

and dependent variable D„(%2y) by

D ())2y) —PiP/PC) IN(P„)

then (5) can be placed in the form

[d'D (v2y)/dy']+ (2y+ 1—y') D„(V2y) =0,

which is just Weber's equation. "Here v is a real, but
not necessarily integral, quantum number determined

by the boundary condition

IN(pi —0)g pp

and Z~ is a known function of v.'

III. REDUCED E2 TRANSITION PROBABILITIES

For the reduced transition probability we use"

B,(INn—+ I'N'e') = ,
I 1/(2I+ 1)j

X+IIII I(I'N'II'M'IQ&„L'"IINIIM)I' (6)

where B~ is for the /th-order transition from the state
INe to the state I'N'n, ' and Qi„L'b is the appropriate
transition operator as seen in the space-fixed or labora-

tory coordinate system. The state vectors used are
products of the rotation and vibration functions dis-

cussed above. The laboratory transition operator is
related to the body-fixed operator by

Q
Lab —P Q

bo)iyD l4 (g .)

where the C(IIIpI; pbmpp) coefficients are Clebsch-
Gordan coeKcients. "For the positive-parity case, (8)
becomes

Qp„"'= (3ZeRp'/4n. )L4r/5 ji"ap„,

while for the negative-parity case

(9a)

Qp„"'———(-')'"(ZeRp'/pr)g ~ up Iip;
XC(233; p, p' p, p'—). (9b)

X
I
()t),i N

I f(pi) I ~ IN)
I

—=B,(E2: IN —+ I'N')S„„. (10)

«re B.(E2: IN ~ I'N') is the adiabatic or pure-rota-
tional reduced transition probability, and S„„ is the vi-
bration contribution. The functions g„(ai,) and f(Pi) are
those functions of the asymmetry and deformation
parameters, respectively, which result from expressing
the quadrupole operator in terms of the collective
parameters: in particular f(Pp) =P and f(Pp) =Pp'=i'.

The rotational contribution is well known as a sum
over Clebsch-Gordan coefficients in each case' ' and has
been machine-calculated for numerous sets (IN, I'N' )
as a function of the appropriate asymmetry parameters.

The vibrational contribution can be written in the
form

( Zi
D„I v2 —pi —Zi

Xp),~D„
I

v2 —pi —Z, ' Idp)„

The ai„are taken as real and written in the form (3).
Substituting the quadrupole operator (9a) or (9b) into
Eq. (6),

B(E2:INN —) PN'n')

= C1/(2I+1)j & I
&(I'N'~'ID'"g (ei.) IIN~) I'

MM' v

where
The electric-quadrupole operator in the body-Axed

coordinate system is
M=1, X=2, z+

)=3,=2- 1/27r

Qp.=—
5

r'Y p„(8,)t))p, (r)dr,

where p, is the static charge density and the integration is

over the nuclear volume, or p, =3Ze/4n. Rp', and inte-

grating from zero to the nuclear surface in r and using

(18), Eq. (7) becomes

Qp. = (3ZeRp'/4 )(4~/5)'"(&~.t'p~+(5/~)' Z. ~i. ~i, ,
XC(2M. ; p) Ii' y) p') C(2)iX; 000)),—(8)

N„'= Zi/pP pZI„,

p, being the stiGness parameter of the nucleus, being
(apart from a factor K2) the ratio of the deformation of
a pure vibrator to that of a rotor-vibrator and Z is the
positive real root of

(7) N is a normalization constant and can be written in
terms of these same parameters and a normalization
integral I„as

~~ F.T. Whittaker and G. N. Watson, 3foderN Analysis (Cam-
bridge University Press, Cambridge, England, 1927), 4th ed.

~6 M. A. Preston, Physics of the Xucleus (Addison-Wesley
Pgbbshjng Company, Inc., Reading, Massachusetts, 1962).

Z' —(1/~)Z' —Lp(PIN" +p) =0,

and p, =p, (IN) the new equilibrium deformation. gy
defining the ratio R.—=Zi'Z/ZiZ', we can rewrite the
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vibrational contribution as

~- =(Z Z /ZZ'I I')(Z/Z) ""~.W'"I-
with

Ivv' D„(v2+—Zgj)y~D„(v2LR, y—Zg'j) dy.

Since the Weber functions are in general not available
in tabular form, these integrals have been calculated
numerically by computer.

In actual practice we calculate only the ratios of the
reduced matrix elements so that we need evaluate only

5„„(Zg'Z" I„- I„
S„„(Zg'Zg" I„ I„
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Fxo. 2. Ratio of reduced E2 transition probabilities for the two
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the asymmetry parameter y for various values of ~.
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ratio B(E2:212 —& 011)/B(E2: 212 ~ 411) from the
beta-vibrational band to the ground-state band. This
ratio shows only a slight y dependence but a strong p
dependence. This is a general feature of transition ratios
between the beta and ground bands.

Figures 3 and 4 are similar ratios of E2 transitions
between negative-parity bands. Figure 3 is the ratio
B(E2:321 —+ 311)/B(E2:321~ 111)from the negative-
parity analog of the "gamma" band (sometimes called
the "g"band) to the ground-state negative-parity band.
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Fxo. 1. Ratio of reduced E2 transition probabilities for the
tvro @+ transitions 221 to 011 and 221 to 21i plotted against the
asymmetry parameter 7 for various values of p.

Iv. DISCUSSION

In Figs. 1, 2, 3, and 4 are displayed the ratio of com-
plete reduced matrix elements for E2 transitions both
within a vibrational band (Am=0) and between two
adjacent bands (he= 1) both for positive- and negative-
parity states. They are plotted as a function of y and
p, for transitions between positive-parity states and as a
function of g and p, for transitions between negative-
parity states. For p, zero the curves represent the ratios
for a rigid nucleus. "Figure 1 is the ratio of the reduced
matrix elements B(E2:221 ~011)/B(E2: 221-+ 211)
from the "gamma" to the ground-state band. It is a
strong function of y but shows only a slight p depend-
ence. It is plotted only to y=5' since the 221 energy
becomes infinite as y vanishes. Figure 2 is the transition
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beta band to the energy of the first excited state
&i.e., from E(012)/E(211)j.

In Table I we have compared this theory with experi-
ment. '" " and the adiabatic ratios for several E2
transitions in both positive- and negative-parity bands
iil %'" Rnd Th"' and interband transitioils in Sm'".
In W'82 there are two high-lying 2+ states below the
first 3+ state either of which could be identihed with the
second 2+ state of the ground-state vibrational band.
Choosing the lower 2+ state as the (212) level and the
upper as the (221) state, which satisfies the model
criterion

0
0 O. l 0.2 0.3 0.4 0.5 0,6 O.T 0.8 0.9 l.O

FIG. 4. Ratio of reduced E2 transition probabilities for the
interband transitions 312 to 111 and 312 to 112 plotted against
the stiffness parameter p, for diferent values of g.

This ratio is a strong function of the octupole asym-
metry parameter y but shows only a slight p, depend-
ence. The opposite situation is shown in Fig. 4, which
gives the interband transition ratio B(E2:312 —+ 111)/
B(E2:312 —+ 112), that is, for transitions from the zeta-
vibrational band (the octupole analog of the beta-vibra-
tional band) to the ground-state negative-parity band.
A strong p, and a slight q dependence is evident.

Figure 5 represents the ratio of Coulomb excitation
from the ground state to the 6rst 2+ states in the
beta- and ground-state bands, that is, the ratio
B(E2:011~ 212)/B(E2: 011~ 211). As with other
interband transitions, the p, dependence is Inuch more
marked than is the y dependence. This figure also shows
several recently measured Coulomb-excitation ratios
and quoted errors'" for nuclei near the lower edge of the
rare-earth deformed region. The values of p, have been
assigned in each case from the ratio of the energy of the
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FIG. 5. Raf io of Coulomb-excitation transition probabilities
for the excitation of the lowest 2+ states in the ground and beta-
vibrational bands from the 0+ ground state plotted as a function
of p, for difterent values of y, .The experimental values and errors
for Nd'~, Sm'~~, Gd'54, and Gd"' are from Ref. 1'E. The value of p,
has been assigned from the energy ratio Z(012)/E(211).

E(21)+E(22)&E(31),

yields a better fit to the level energies than the opposite
choice; however, the 6t to the E2 branching ratios, es-
pecially the ratios B(E2:221 ~ 211)/B(E2: 221 —& 411)
and B(E2:212 —+ 211)/B(E2: 212 —+ 411), is very poor.
Thus we have chosen the lower 2+ state as the (221)
state, which violates (11), and the other as the (212)
state and obtained only a slightly poorer fit to the level
energies while bringing the branching-ratio predictions
into line with the experimental data. The level designated
here as the (221) level has been interpreted as a 1—levels';
however, this assignment does not fit into the negative-
parity, collective-model systematics. ' Also Harmatz
et a/" have made the assignnlent Rs we have and for
SIIQllRI' Ieasons.

In Os'", it has been noted" one can 6t the level
energies at gamma of about 16.5', but the 6t to the E2
branching ratios is quite poor. Qn the other hand, one
can obtain reasonable branching ratio values including
the vibrational eGects with y between 10 and 13', but
then the fit to the energy levels is very poor. Unfortu-
nately, p, has been obtained only from the ground and
gamma-band energies which is the poorest method of
determining this parameter. It is more uniquely fit from
a knowledge of the (012) or (212) levels which are not
identified experimentally. Until this is done, it is only
possible to state that for this end of the rare-earth
deformed region the model is not consistent with experi-
ment. However, for the other end of this same region it
is as is seen from the comparison between theory and

'7 Y. Yoshizavra, B. Elbek, B. Herskind, and M. C. Olesen, in
Proceedirsgs of the Third Coeferersce ors Eeactiols Betsoeers Comptex
Nuclei, edited by A. Ghiorso, R. M. Diamond, and H. K. Conzett
(University of California Press, Berkeley, 1963),p. 289; B.Klbek,
M. C. Olesen, and S. Skilbreid, Nucl. Phys. 19, 523 (1960)."B.Harmatz, T. H. Handley, and J.%.Mihelich, Phys. Rev.
123, 1'758 (1961)."C.J. Gallagher and J. O. Rasmussen, Phys. Rev. 112, 1730
(1958).

~ E. E. Arbman, S. Bjgrnholm, and Q. B.Nielsen, Nucl. Phys.
21, 406 (1960).

» Ove Nathan and Solve Hultberg, NucL Phys. 10, 118 (19&9)."J.J.Murray, F.Boehm, P. Marmier, and J.W. M. DuMond,
Phys. Rev. 97, 1007 (1955), G. D. Hickman and M. L. Wieden-
beck, i''. 118, 1049 (1960); and E.Bashandy, A. H. El-Farrash,
and M. S. El-Nesr, Nucl. Phys. 52, 61 (1964).

"G. T. Emery, W. R. Kane, M. McKeomn, M. L. Perlman,
and G. Scharff-Goldhaber, Phys. Rev. 129, 2597 (1963).



Tsax.z I. Comparison between experiment and theory for E2 branching ratios of positive- and negative-parity bands of %'8'
and Th»8 and for positive-parity bands of Sm'". The 6rst column gives the initial and 6nal states for the transitions where I;N;e;

IfÃfÃf ) I is the spin of a level, S' the ordinal of the level, and e the ordinal of the vibration band. The second and third columns
give experimental values and references for Sm'~~, W'8', and Th~'8; the fourth column, the adiabatic ratio, while the Qth column gives
the ratio including the vibrational contribution.

Experiment
Transitions 8 (E2) Ref.

Theory
8,(E2) 8 (E2)

Experiment
Transitions 8 (E2)

Theory
B~(E2) 8 (E2)

Sm»2 ~+ ~=11.3' ~=0.396

Oii -+ 212
0.023+0.006 17

%'8', 2r, g =83.5', y=1.0
411 -+ 211 0.883

411~311 0.556

6.7 ai.8

0.048W0.015 6

0.44 ~0.02

0.386 0.088

0.502 0.453

0.09 +0.02

Th"8, x+, y=9.1, I1,=0.30
221 -+ 411

221 -+ 211
20 0.073 0.080

0.'lO

+is w+ y= 10 93 p=0 28~

221~ Oii 0.69

221 -+ 211

2.32 +0.28

&0.25 20 0.165

6.25 +0.8 20

0.708-

0.66 +0.08 20 0.600

0.2 0.158 0.150

Th~s, g, y=12.3', p=0.258

211~ 311
&03

211~ iil
20 ' 0.212 0.215

0.36 ~0.04 0.502 0.495

0.068 0.066 0.75 +0.02 20 0.371 0.379

ss Kxperimentai errors are not given for the transition ratios of VPS2.
b Unobserved.

experiment for Sm'" in Table I, and the Coulomb exci-
tation data'~ shown in Fig. 5. It is clear then that an
adequate test of these collective models must include the
vibrational contributions both to the energy-level sys-
tematics and the electromagnetic transition probabilities.
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