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Treatrttent of Neutron-Proton Pairing Correlations
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The short-range correlation between neutrons and protons in the con6guration (j)~ is discussed in the
BCS approximation. The interaction is assumed to exist only in the J=0 and T= 1 state of two nucleons.
The ground- and excited-state energies are calculated and compared with the exact values.

1. INTRODUCTION

' N this paper we study the short-range correlations
~ - between neutrons and protons, making use of the ap-
proximate methods of Bardeen, Cooper, and SchrieBer
(BCS), Bogoliubov, and Valatin. ' For the sake of
simplicity we have considered a configuration of the
type (j)~, where the 1V nucleons (both neutrons and
protons) occupy the same shell-model orbital j. The
interaction Hamiltonian' we have chosen is a generaliza-
tion of the "pairing Hamiltonian" to include isotopic
spin. Such a Hamiltonian has been discussed by one of
the authors' and by I'lowers and Szpikowski, ' where
methods of group theory are used to obtain the energy
spectrum and the classification of the states.

The main purpose of this paper is to rederive the re-
sults of Ref. 2 using the approximate methods of
Bogoliubov and others. ' Similar methods have been
used by various authors4 to discuss the correlation of
neutrons and protons.

pairing Hamiltonian is

~/ t/ -(s-spy I» ).
X(s sP g ~

12 z)/tmo /t mq /Jm'y'/t —m'q' Z—Fz Ij(+z) i

T,= —1, 0, 1, (2.1)

where s; = (—1)™and the subscripts p and q refer to
the third component of the isotopic spin. p=-', (——,')
refers to a proton (neutron). The operators a „satisfy
the usual anticommutation relations

(a „,a „)=5 „5„„,t {am&,am & }=0.

Ps. gz(Nm+s/mt mitml/q it—m—1/2 ) ~
0) z (2.2)

We assume the ground-state wave function for such a
system to be of the BCS form:

2. THE GROUND —STATE WAVE FUNCTION AND
THE QUASIPARTICLE TRANSFORMATION

We will consider a system with equal numbers of
neutrons and protons so that the total T,=O. The

' J.Bardeen, L. N. Cooper, and J.R. Schrieffer, Phys. Rev, 108,
1175 (1957); N. N. Bogoliubov, Nuovo Cimento 7, 794 (1958);
J. G. Valatin, ibid. 7, 843 (1958);B.R. Mottelson, in The Many
Body I'roblem, edited by C. DeWitt (Dunod Cie. , Paris, 1959).' J. C. Parikh, Nucl. Phys. (to be published).' B. H. Flowers and S. Szpikowski, Proc. Phys. Soc. (London)
84, 193 (1964); see also A. R. Edmonds and B.H. Flowers, Proc.
Roy. Soc. (London) A214, 515 (1952).

'B. Bremond and J. G. Valatin, Nucl. Phys. 41, 640 (1963).
M. Baranger, Phys. Rev. 130, 1244 (1963);M. K. Pal and M. K.
Banerjee, Phys. Letters 13, 155 (1964); see also B. H. Flowers
and M. Vujicic, Nucl. Phys. 49, 586 (1963).

where the u 's and v 's have their usual meanings and
I„'+y '= 1. The wave function (2.2) has total T,=O,
but it does not have a definite value for the total iso-
topic spin T. It is in fact a linear combination of wave
function with different values of T. We now perform a
canonical transformation from the operators e „to the
quasiparticle operators n y, such that's. , is the vacuum
for the quasiparticles.

and

f nml/2 ) fNm &m +m1/S
(2.3)

ES/mn —m—i/2) z Om ttm tjm/t m 1/22——

n „~P, , )=0.
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The inverse transformation is

2+ V 2=X. (2.7)

Introducing the quasiparticle transformation in (2.6)
and evaluating the matrix element Q2., jn~fa2. , ) we

~ml/2 ) Nm
get from (2.5)

~~'m@—m—1/2

Note that the charge is a good quantum number for the
quasiparticles. The transformation (2.3) does not leave
the number operator n diagonal and so we must add to
the Hamiltonian a term Xe, where X is a Lagrange multi-
plier. X is determined by the condition that the expecta-
tion value of n is equal to the total number of par-
ticles i.e.

v = (A//40)'/2

I = (1—A//40)'/2
(2.8)

For our simple Hamiltonian all the e 's are equal and

therefore

The total number operator is

(2 3) where

20=2j+1.

(2 6) In te~ms of the quasiparticle operators the Hamiltonian

H=gr, H(T, ) becomes

{ n ) 4g g Sjmsjm E(Nmnml/2 +VmSjmn m 1/2—)(l-mn m 1/2 ——Vmsjmnm 1/2)
m, m, '

+(Nm'nan'1/2+Vm'Sjm'n m' 1/2 —){N—m'n —m'1/2 Vm'Sjan'nm'' 1/2 )j ~ (2.9)

A similar expression for H(T, = —1) is obtained by replacing 2 by —
2 and vice versa Fina. lly,

( n 0) 2g Zr Sjmsjm'L( Nmnml /2+VmSjmn m1/2)—(l,—mn —m—1/2 Vmsjmnml/2)
m, m'

+(+m'nm'1/2+Vm'S jm'n m' 1/—2 )(—2jm'n —m' 1/2 Vm-asjmanmal/2 )j (2 10)

3. REDUCTION OF THE HAMILTONIAN

Since we wish to evaluate the diagonal matrix elements of II, the only terms in (2.9) and (2.10) that will con-

tribute to the expectation value are the ones that conserve the number of quasiparticles. Following the usual nota-
tion we will call these terms H22(T, ). From (2.9) and (2.10) we obtain

H22(Tn 1)+H22(Tia 1) ng Z Sjmsjm'522m Nm' (nml/2 n ml/2 nm'—1/2n-m'1/2+nm —1/2 n—an—1/2 nm' —1 /2-n' m1/2)
mlm'

m&m &m qO'm'1/2~m 1/2&ml/2 O'—ml/2 mo'm' —1/2&—m' —1/2O'm —1/2 &—~1/2 g

+4Qmg v vsj sj''(n 1 ~/2n 1/2nm'1/2n ' 1/2 +n '1/2n ' 1/2 n 1/2 n 1/2) j (3.1)

22(Tz 0) 2g ~ SjmSjm'Lljm 2Sm' nml/2 n—m 1/2 nan'1/2-n —an' 1/2-
~&m ~m' +—m-1/2+ml/2+-m'-1 /2 &m'1/2 MNmlm'&mWm'~jm~jm'l, &ml/2 +ml/2&m'1/2&m'1/2 O'ml/2 &ml/2~m' —1/2 +—m' —1/22 2

n—m —1/2n-m —1/2 nm'1/2nm'1/2 +n—m-1/2n —m 1/2 n-m' —1-/2 n-m' —1 )/j2~ (3 2)

We will now evaluate the expectation value of H, in the ground state and the excited states of the system, and

compare with the exact expression'

E(A/, T,s,t) =—2'g L-,'(1V—s) (40+6—S—s)—T{T+1)+j(/+1)7. (3.3)

Equation (3.3) is the energy of an X-particle state with total isotopic spin T, seniority s, and reduced isotopic spin
j. We now rewrite the sum H22(T, =+1)+H22(T,= —1) in a suitable form, in order to facilitate the calculations,
and also to show explicitly the occurrence of T(T+1) and j(/+1) terms in the energy.

The various terms in (3.1) can be grouped and, after some manipulations, we get

H22(Tn= 1)+H22(Tn= 1)= 4g 2 Sjmsjm'(2j +V )(nml/2 n ml/2~nm'1/2—n m'1/2+nm' —1/2n m' 1/2n-m 1/—2 n-an 1/2—)——
m, m'

2g ~ &I & jt &m1/2 &m—1/2&m' —1/2 &m'1/2~ 2g ~ O'ml/2 &m—1/2&m'-1/2 &m'1/2
m, m' m m'

+g Zm(N nm —1/2 nm —1/2 v nml/2 nml/2)+g0(v I ) ~ (3 4)
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We have dropped the subscripts in I and v since they are independent of ns. Novr the three components of the
total isotopic spin vector T are'

~m ~ml/2 ~m—1/2 y

T = 2 ~m(/tml/2 /tml /2 /lm —1/2 /lm —1/2)

Substituting the transformation (2.4) in these operators we get for the product

Z (2t 2& ) /2ml/2 O/m 1/2/lm— ' 1/2 O-/ ml/2

m, m'

2 2&&&'mS&'m'I 2& (&ml/2 &m 1/2—/&/m&1/2/2 m'1/2+—O/m& 1/2/&/ —m& 1—/2/2—m 1/2 O—/ m 1—/2 )—& (3 5)
m&m

where again we have retained only those terms which conserve the number of quasiparticles. Now since the charge
is a good quantum number for the quasiparticles we can, in analogy with the operators T" and T above, write,

Q ml 2/O/m 1/2/2m' 1/2 &—ml /2—=+-
m, m'

{3.6)

for the quasiparticles. t+ and t are the components of the reduced isotopic spin vector t. Then from (3.4), (3.5),
and (3.6) we obtain

H22(T, =1)+H22(T, = —1)= —(-',g) T+1 +(-',g)t+t

4g ~ Ejm~j m' (0'm1/2 0! m1/2 O.'m'1/2& —m'1/2~&m —1/2O' —m—1/2+m' —1/2 &-m' —1/2 g
/

m m'

+g Zen(N /2m 1/2 /2m 1/2 —&& &ml—/&2ml/2)+gQ(2& 2t ) ~ (3 7)

It is clear now that the first two terms in (3.7), when
acting on a state with total isotopic spin T and reduced
isotopic spin t, will give the required T(T+1) and
t(t+1) terms.

4. CALCULATION OF ENERGY

The ground state of the system i.s the quasiparticle
vacuum and the excited states are those in which quasi-
particles are present. The state

f(+&&)= (O/m&1/2 /&/—m&—1/2 &m, l/2

X&—m&—1/2 '
'&m&/&1/2 &—m, /2—1/2 )&/t'g. &&. (4 1)

with s quasiparticles present, is a state of seniority s and
if the isotopic spin of quasiparticles is coupled to t, then
t is the reduced isotopic spin. The ground-state wave
function does not have a de6nite value for the isotopic
spin, but a state with defmite isotopic spin (say T')
can be projected out of &/, ., and then t and T' can be
coupled to give the total isotopic spin T. Then &/t (1V,T,s,t)
is a wave function of the form (4.1) with the proper
couplings to give the desired values of T and t. From
(3.2), (3.7)& and (4.1) we get after a straightforward

calculation

(P(N, T,s, t),H22&(E, T,s, t))
= (-,'g) L-,'((X—s) (4Q—X-s)+6s(1—E/2Q)
+-2¹/Q+4Qs(1—E/2Q)' —s2(1—1V/2Q) 2}

—T(T+1)+t(t+1)]. (4.2)

This result agrees with the exact expression (3.3) for
E(Ã, T,s, t) to within terms of order 1/Q, so long as
$+X.

S. DISCUSSION

+le have thus shown that the wave function f2., is
a good approximation to the exact wave function for
the simple model we have considered, These considera-
tions can be easily generalized to the case of pairing
interaction between particles in nondegenerate orbitals.
It is to be emphasized that this wave function does not
contain any explicit four-particle correlation. The
necessity of such correlations has been discussed in re-
cent literature. 4 Although we have considered only a
limited problem, our results indicate that four-particle
correlations may not be necessary in the general case.
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