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We express the response of a normal Fermi system to a weak external charge in terms of a one-particle
Wigner distribution function which obeys a generalized transport equation valid at all temperatures. The
derivation of this transport equation is closely related to the method developed by Prigogine and co-workers
in nonequilibrium situations, both classical and quantum; it is based on a reclassi6cation of the perturbation
expansion of the autocorrelation formula expressing the response. The proof is greatly facilitated by the use
of a suitable diagram technique which describes both the dynamical processes in the system as well as the
effect of the interactions on equilibrium properties; ful1 advantage is taken of the contraction theorem for
averages over the unperturbed equilibrium ensemble.

success of Landau's theory. On the other hand, usual
nonequilibrium statistical mechanics describes transport
properties of any system, weakly as well as strongly
coupled, in terms of %igner distribution functions which
always refer to average occupation number of bare
particles in states of given momentum. As far as we
know, the connection between these two approaches has
only been clarified for equilibrium properties. Also the
existing theories of transport in normal Fermi systems
have mostly been developed using the Green's function
technique, which is specially useful in the zero-tempera-
ture limit; there is however a large amount of work in
quantum transport theory which is based on the deriva-
tion of kinetic equations' ' for the density matrix or for
the above-mentioned Wigner distribution functions.
Here again, there is no clear understanding of the
relationship between the two methods.

Finally, it has to be stressed that, except for very
particular cases, ' existing theories always refer to non-
dissipative properties: Indeed, at zero temperature (ex-
cluding the case of scattering by impurities) transport
coefficients like electrical conductivity, viscosity, etc. ,
are not defined because the system has no dissipative
mechanism. It is then of great interest to develop a non-
equilibrium theory of Fermi systems at finite tempera-
ture, in order to be able to compute such transport
coefficients.

In this paper, we shall derive the transport equation
for the one-particle Wigner distribution function of a
Fermi system submitted to an external test charge. The
line of thought we shall follow is very similar to the one
used in the general theory of nonequilibrium processes
of Prigogine and co-workers, both for classical and
quantum systems. ' However, the mathematica, l tech-
nique we shall utilize is somewhat different because we
want to benefit from the fact that we are interested in
the simple case of the linear response to the external

j.. INTRODUCTION

URING the last few years, normal Fermi systems
have provoked much interest from the points of

view of both equilibrium and nonequilibrium properties.
Work in this field was mostly initiated by Landau' when
he formulated his phenomenological description of
Fermi liquids at zero temperature in terms of quasi-
particles. Since then, much progress has been realized
in the justification of this model starting from first
principles, mainly by Landau himself' and by Luttinger
and Nozieres. '

The physical interest of this model is well known:
He' at low temperature and electrons in metals, are
strongly coupled systems which should behave in many
ways like normal Fermi liquids. Also, from a purely
theoretical aspect, a normal Fermi system offers almost
the only example where the full apparatus of modern
perturbation calculus may be developed and tested. It
is thus of great importance to have a good understanding
of the behavior of these systems.

In particular, the program which we will attack here
has a, threefold objective: What is the general relation-
ship between a quasiparticle description and the more
usual particle description for studying transport prop-
erties in low-temperature systems'' What is the con-
nection between the Green's function technique and the
usual transport equation approach) What is the finite-
temperature generalization of Landau's model, if there
is any'

It is known indeed that, at zero temperature at least,
all physical properties of normal Fermi systems may be
analyzed in terms of a quasiparticle distribution func-
tion (d.f.), which roughly speaking gives the number of
dressed particles in a state of given momentum; as a
matter of fact, this remark was the main key in the
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perturbation; it is well known that the response of the
system may then be expressed in terms of the auto-
correlation of the current operators, averaged over the
equilibrium distribution. We shall thus be allowed to
use the familiar contraction theorems' for the mean
value of creation and destruction operators while in the
general theory of approach to equilibrium, the initial
ensemble describing the system was arbitrary and no
such theorems could be used.

In the 6rst section, we present the general formula-
tion; we perform a perturbation analysis of the auto-
correlation formula valid for our particular problem and
we decompose the elementary processes describing the
dynamics of the system according to their time ordering.
In the next paragraph, the well-known contraction rules
are briefly recaBed and a diagrammatic representation
is developed for the perturbation expansion derived in
the previous section; the diagrams we shall use are
essentially the same as the one introduced previously
by Fujita and co-workers' and we shall thus be very
brief.

There is however an essential difference with Fujita's
method in the correspondence rule between a diagram
and a contribution: A diagram will correspond to a term
of the perturbation series for which the finse ordering
between tke various elementary processes is fixed This.
point is very important because it will allow us to define
in a unique way a collision process.

After these preliminaries, the main part of the work
is given in Sec. 4, where an exact transport equation is
derived for the one-particle Wigner distribution func-
tion. This equation is discussed and brieRy compared
with previously derived general transport equations. "
We also give the limiting form of this equation when the
external fieM is slowly varying both in time and space.

In order to illustrate the method, we analyze in Sec. 5
two very simple situations: the weakly coupled, spatially
homogeneous gas and the collision-free, spatially in-

homogeneous gas; we recover, respectively, the well-

known Pauli and Vlassov equations. Of course, these
trivial examples should only be considered as tests for
the method we outline here; more complicated situations
will be analyzed in further publications. Also, in Ap-
pendix C, we brieRy summarize a simple model calcula-
tion which clearly shows the connection between the
present Wigner distribution function method and the
quasiparticle formalism, in the zero-temperature limit.

2. GENERAL FORMULATION

We consider an iV-particle Fermi system enclosed in a
box of volume Q. We decompose the Hamiltonian into a

9 C. Bloch and C. De Dominicis, Nucl. Phys. 7, 459 (1958)."S.Fujita and R. Abe, J. Math. Phys. 3, 350 (1962). S. Fujita
and F. Mayne, Physica 29, 1201 (1963).

» 0. Konstantinov and V. Perel, Zh. Eksperim. i Teor. Fiz. 39,
197 (1960l LEnglish trsnsl. : Soviet Phys. —JETP 12, 142 (1961lj.

kinetic part Ho and the perturbation At/"

with

Ho=+ slras as,

(2 1)

(2.2)

XU = (X/2Q)

&& P z~(k —r)aj,za~ta~a 8 '(k+1—P
—r), (2.3)

z(k —r) = ds: V(x) exp —i(k —r)x, (2.4)

where V(x) is the pair interaction between the particles.
In these formulas, we have used the well-known crea-

tion and destruction operators a&t and aI, obeying the
anticommutation rules:

[aj,as')+ = ~I, I;

[«,as )+= [as Z, as')p=0.
(2.5)

(2.6)

We assume that, at time zero, the system is at
equilibrium; its density matrix

p'& =exp( —PH)/Tr exp( —PH) . (2.7)

We further suppose that all the particles have the charge
e and we introduce as usual a continuous background
in order to ensure electroneutrality. We then submit the
system to a small external test charge

q'(r, t) = ers exp i((et qr)— —
which creates an electric field

(2.8)

E:Es exp[—i(cot ——qr))
= —(4zriq /q')r, exp[ —i(&ut —qr)). (2.9)

Applying the well-known linear response function
formalism, "it is then easy to show that a current (j,„~)&

is created in the system; it may be written, in the limit
of long times

+quiz

(2s-') =-
0 Tr exp( —PH)

oo P

dr dp exp(i~r)
0

(2.10)

Js =e 2 k as+, tszas, ts. (2.13)

"P.Nozieres and D. Pines, Xuovo Cimento 9„470 (1958).

&&Tr{exp( —PH)J,„o(—iy)J, (r)) . (2.11)

The derivation of (2.11) is very simple and is reported
in the appendix. The remarkable feature of this formula
is of course that the long-time response is given by the
average over the equilibrium distribution (2.7) of the
autocorrelation of the current operator

J;(r)= exp(iHr) J, exp( zHr)—(2.12)
with
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a o(2.14)

dt exp(z~t)

If we define

(2.25

s' g sentation
J (r)=exp z. Orator

q 7

an arbitrary opera, tor A

H„+ V)jul (2.26)
n of

(A)o ——(1/ "0) Tr exp[ — Howith
we may write orfor 2.24)

-'(,v;~)=( (—,——v)J,'(- v & —v;
XJ,.(t) V(t; 0))o/

ansion (2.19) into the numerator ofIf we put the expansion
2 15) (2.27), we obtain

~ P

dr d"r exp(z(0T)

—X J qa( iy)jq (r)), —XTr(exp[ P(H t )—j -~—

(2.16)
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X V(t, ') V(t„' J,
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tg tg
~ ~ ~ ~

t
)eg )(~ ~ i ~ ~ e g

tp tg
a

P x )&

x]

-i$
(aj p=&, r=c, n=m=o, t, ~t, (b)p=l, r=c, o=m=o, t ~t,

l'"IG. 2. Examples of simple diagrams,

(b)

Fro. 1. Schematic description of a diagram. (a) Representation of
the various vertices. (b) Ordering of the vertices in (2.31).

At this stage, it is most convenient to introduce a
diagram technique in order to represent the various
contributions to (2.31).To each interaction V(r) (r real
or imaginary) as well as to the two current operators
J, (r) appearing in (2.31), we shall associate a vertex
(provisionally represented by a cross). As may be seen
from (3.4) and (3.5), the factor associated with a con-
traction depends upon the relative position of the crea-
tion and destruction operators which are averaged; let
us use the following device:

(1) We draw r vertices, ordered from right to left and
corresponding to V(ts) V(t~), above an horizontal
axis 0 t; we then rep—resent the operator Js (t) by a
vertex at time t )see Fig. 1(a)].

(2) We represent the p interactions V(ts) V(t ) by
vertices below the horizontal axis and ordered from
left to right.

(3) Finally, we draw the (n+m) remaining inter-
actions V along a vertical axis running from 0 to —iP,
with a current operator inserted at —iy„+~.

This procedure provides us with a rule for deciding
whether a given vertex appears before or after another
one in a given contribution of (2.31):it is ea,sily checked
that the various vertices of a given diagram are ordered
in (2.31) according to their positions on the oriented line
in Fig. 1(b).

Q"ith these definitions, we may now proceed according
to the usual rules for writing down a diagram and its
corresponding contribution: a vertex V will be repre-
sented from now on by two points joined by a wavy line
expressing the transfer of momentum h —r Lsee Eq.
(2.3)];a vertex J," will be indicated by one point from
which starts a wavy line with momentum q; a con-
traction is indicated by a line joining the two vertices
where the operators a~ and aI,~ appear, with an arrow
orienting the line from the creation operator to the
destruction operator. A simple example is given in
Fig. 2(a). Before proceeding further, we still have to
stress one important point; in going from (2.29) to
(2.31), we have decomposed ea.ch term of the initial
series (2.28) in a sum of terms corresponding to different
relative time orderings of the two sets of p and r
dynamical interactions appearing in (2.28). For in-
stance, we have written:

dt, dt, '(J,e(—iy, ) V(t, ')J, (t) V(t, )),

dti dts(J v (—zyi)U(t, )J, (t)v(ts)+J, (—zyi)V(tz)J, (t)V(t,))s. (3.7)

As we wish to associate a diagram to each contribution of (2.31), we shall be led, in this particular example, to
consider the diagrams of Figs. 2(a) and 2(b) as diferent; they both correspond to a possible system of contractions,
respectively, of the first and of the second term of the right-hand side of Eq. (3.7).

More generally, we shall consider as distinct the diagrams with different relative orderings between the vertices
above and below the horizontal axis. This rule is the only one which differs from Fujita and co-workers' technique";
as we shall see later, it is, however, fundamental in order to derive a transport equation in a simple form.

Expression (2.31) may be considerably simplified if we use an appropriate ' linked cluster expansion theorem"";
it is indeed a very simple matter —although rather long —to prove that the denominator (U( iP; 0))s o—f (2.31)
is precisely cancelled by the sum of all disconnected diagrams in the numerator; we are then left with vacuum-
vacuum connected diagrams, i.e.:

dpi Z
0 (P

X(U( z'my~+i) —V(—zy.+z)J, (—zy.+i)v(—q n) . V(—zyi)n'(U(t. ) . V(te)J;(t)V(t,) V(t,)))s, . (3.8)
'7 See Ref. 10.
'8 See Ref. 9 as mell as P. No7ieres, "I-e Probleme d E CorPs" (Dunod et Cie, Paris, 1963).
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where we have introduced the notation

(3.15)

which represents the energy difference in the ith intermediate state on the horizontal axis [i.e., (t,—t; i)j; we
have vt,

' ——+1 if particle k is propagating in the forward direction, vt,
'———1 if particle k is propagating in the

backward direction, and vi' ——0 if state k is not excited (see Fig. 3). Similarly,

Ae =P v i~Ep (3.16)

is the energy difference in the jth intermediate state on the tempera, ture axis [i.e. (»—» i)j with: v i~=+1 if
particle k propagates from 0 to iP, v'i'' ————1 if particle k propagates from iP—to 0, v'i'= 0 if state k is not excited
(see Fig. 3). In order to apply (3.15) and (3.16) correctly, one has to keep in mind that all the dynamical events
(along the horizontal axis) take place at —iy=0, while all temperature-dependent effects occur at time t=0. As
is seen in the example of Fig. 3, a line may participate both to Ae; and to A6 j It is now a simple matter to perform
formally the time integrations in (3.14); introducing a convergence factor a& ~ co+in in order to give a meaning
to this expression we have indeed

exp[i(n+in)t jd dt, exp[ —ice~,~i(t—t~,)] . exp[—iAei(ti —0)]

exp[—(ae, ie in)r—;jdr—,

0

1(Bet M zn)
(3.17)

It is of course also possible to calculate explicitly the
temperature-dependent part, but we shall not need
it here.

Using (3.15) and (3.17), we may reformulate the rules

for calculating the contribution of a given diagram.
Rules I'. (1') To each interaction, associate a factor

(1/2n). (k—r)SK (k+l —p —r).
(2') To the vertex J,e, associate a, factor eke [and

a factor ek to J, ].
(3') To a line with momentum k, associate a factor

(1—Fi,'), if the line is parallel to the contour of Fig. 2(b),
or (—Fi'), if it is antiparallel to this contour.

(4') For each intermediate state j in the range 0 to
t, write a factor

(3.18)

where he; is defined by (3.15).
(5') For each intermediate state j in the range 0 to
ip, writ—e a factor exp[—ikey, '(» —» i)), where he,'

is defined by (3.16), except for Ae'=0 when». =P.

1™k~~ «», "g't s -A.

I rc. 3. A diagram with the corresponding factors vg, and v'I, .

(6') Multiply by g = (—X)"+'"(—X/i) v(&/i) "(—1)Ls

(7') Integrate over the temperatures

d&n+m+y

(8') Sum over all momenta [including k j.
(9') Multiply by 1'q„e Pand by Q 'j.
4. THE GENERALIZED TRANSPORT EQUATION

From (2.11) and (2.13), we may write

(4 1)

dt dy exp(ia&t)

XTr{[exp —(PH+niV)] J,e(—iP )

X [exp(—i') ui,+,t~taj, ,ti exp(iHt) j) . (4.2)

As is physically clear, f,„(k) is nothing but the Fourier-
Laplace transform of the Wigner distribution function
of our Fermi system submitted to the external field
(2.9). We thus expect this function f~„(k) to obey a
transport equation which generalizes to normal Fermi
systems transport equations derived previously for
classical systems': We shall try to obtain an integral

"R. Balescu, Physica 27, 693 {1961).P. Resibois, in 3farjy
ParticLe Physics, edited by K. Meeron {Gordon and Breach, New
York, to be published).
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(b) I'IG. 6. The destruction region: examples.

,d",""
11;",'; "„', „' ' ' '

given in Fig. 4(b). It is easy to check that

llm Bey= hm AC3=0. (4.5)

Of course, for finite frequency and wave number

(~, TWO), this quantity will never vanish identically;
for instance, the simplest possible diagram (V) repre-
sented in Fig. 4(a), involves the factor:

A6 —M = fk+~~g —
CIr. q~g— (4 4)

However, in the limit co, q
—& 0, this energy di6erence

becomes identically zero for all k; the general criterion
we shall use for defining a collision process is that it is
a transition process such that in the limit q, a& —& 0, we

have an initial state and a final state with he 0, while=all
ie/ermediate states are such that he, /0. An example is

equation for fz„(k) expressing the balancing between the
collision processes on the one hand and the free Row p1us
acceleration due to the external field on the other hand.
As usual, this equation will be derived through an
adequate classification of the diagrams contributing to

f,„(k).These diagrams are the same as the one discussed
in the previous section for computing (j,„);as a matter
of fact, it is immediately seen from (4.1) that the rules
for obtaining f,„(k) are the ones given at the end of
Sec. 3 (Rules I'), except that the bracketed prescriptions
should be omitted.

Our classification of diagrams will be based on the
generalization of the concept of collision operator, which
was used extensively in our previous analysis of irre-
versible phenomena in quantum spatially homogeneous
systems (see Refs. 4 and 15); in this la, tter case, the
collision operator was defined as the most general transi-
tion bringing the system from a state Ae&=—0 to a state
5&&—=0, with no intermediate state having this property
(irreducibility condition). In the present formulation,
each intermediate states implies an energy denominator
Lsee (3.18)g

(4 3)

From (4.4), it is of course very tempting to say that
the most general collision process involves a transition
from a particle-hole state (k+q/2, k —q/2, with V,+„~2=+1 and Vq „,2= —1) to a, similar state (k'+q/2,
k' —q/2). These contributions, which we sha, ll call nor
mat, do not, however, exhaust all possibilities; indeed,
one has also to take into account anomalous coetribltio~ss
where we have in addition an arbitrary number of pairs
with the same momentum and opposite energy. these
supplementary pairs do not alter the energy denomi-
nators (4.4). An example is given in Fig. 5(a,). These
anomalous diagrams pose a somewhat tricky problem
because the number of anomalous pairs is in principle
arbitrary and makes it difficult to obtain an integral
equation for f,„(k). However, the following simplifies
the matter considerably.

Theorem I
(a) the only anomalous graphs which contribute to

f,„(k) are such that the interactions on these anomalous
lines are purely temperature-dependent (i.e., along the
vertical axis 0, i3)—

(b) Moreover the sum of these graphs will properly
be accounted for if we retain only normal graphs and
replace everywhere the unperturbed Fermi factor (3.6)
by the exact momentum distribution:

(&I,)= (1/=-) Trn„exp[ —(PIT+ &~)j. (4.6)

The proof of this theorem is rather long and has been
reported in Appendix S. However, its physical content
is quite clear. Let us consider a particle which is per-
turbed by the external field. As we are working in a
linear theory, this particle only interacts with particles
at equilibrium. These fermions at equilibrium are how-
ever not described correctly by (3.6) in the presence of
interaction, but rather by the exact distribution (4.6)
The role of the anomalous diagrams is precisely to
"renormalize" the fermion distribution to its correct
value (4.6). Using the second part of the theorem, we
shall thus limit ourselves to normal diagrams, replacing
everywhere F&0~ (FI,); in Appendix B, we shall indi-

Fro. 5. Example of an anomalous contribution
and its normal skeleton. PM;. 7. The meaning of the dashed lines.
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Fn. 8. Examples of diagonal fragments. Fio. 9. Schematic expansion for fq„(k)

cate how a perturbation expansion for this (F/, ) may
be obtained.

The most general normal graph contributing to f,„(k)
is then decomposed in a destructioe region and a sequence
of diagonal fragments.

The destruction region is the region of the diagram
starting at t=O and including thus all temperature
dependent interactions 0 —+ iP, —and ending with a pair
particle-hole state. A few simple destruction diagrams
are indicated in Fig. 6. In general the destruction region
of Fig. 6, we have represented the outgoing lines by
dashed lines, which correspond to the four possibilities
of Fig. 7. Indeed, it is readily veri6ed from the rules

given previously that the statistical factor associated
with a line only depends on the position of the vertex
from which it starts (i.e., in the "box "X)) and not at all
on the vertex where it ends. In this way, the box Q is
a completely dehned entity, independent of the remain-

ing part of the diagram.
A diagonal fragment is the most general transition

from a pair-hole state to another pa, ir-hole state; it will

be represented by a box P (see Fig. 8) and, for normal
diagrams, which we consider here, it only involves
dynamical interactions; indeed all temperature-depend-
ent processes have been included in the destruction
region. In order to be able to apply in a simple fashion
the rules I' of Sec. 3 for evaluating a diagonal fragment,
we shall always close the corresponding diagram by a
current vertex taken at temperature —iy=o; the con-
tribution associated with a diagonal fragment will then
be obtained from the rules I' omitting points (Z'), (5'),
(7'), and (9') altogether. Examples of d.f. are given in

Fig. 8 and the correspondence between a graph and its
contribution is exemplified in Sec. 5. Kith these defini-

tions, we represent thus f,„(k) by the schematic equa-
tion of Fig. 9. It is now a simple matter to obtain a
transport equation for f,„(k); we have just to express
our results in analytical form.

We define a "destruction" function Sq„(k; P) and a
collision operator Pq (k,k', P) through the following

equations:

[i(«+q/q —
e/„. q/s

—
o&
—in)] 'g)q (k; P)=Q& [all destruction diagrams of f,„(k)] (4.7)

[i(e/+q/s e~—q/q
—o/ in)] [i(q/ +q» —« —q/s

—o/ —in)] Vq (kk ~)
—=—Pt, (all diagonal fragments k ~ k', exciudhng the statistical factors

of the ingoing lines k'+q/2, k' —q/2) . (4.g)

The minus sign in front of this latter expression is justified because whenever we factorize a diagonal fragment

we introduce a supplementary closed loop which is not present in the expansion of Fig. 9; also the statistical

factors corresponding to the ingoing lines (k'+q/2, k' —q/2) have to be suppressed because they are already counted

in the destruction region.
We have thus

f,„(k)=[i(e/+q/q q& q/i
—~—in)] 'nq„(kiP)

+P [i(eg+q/q eg q/q
—o/ —i—n)] lf q~(k&k & P)[i(ek~+q/2 e/o' —q/2 o/ in)] Sq&(k ~ P)+ ' ' '

&
(4,9)

or, in integral form

fq„(k) = [i(e„+q/, «. q/s o/ in)]—X)q~(k—; p)—+Q [i(ek,-q/q
—e/;-q/i —o/ —«)] Vq~(k~k i P)fq~( ) (4.10)

Multiplying on both sides by [i(q/, +q/& «q/s o& in) ]-——
and taking into account that we are interested in values
of q which are small with respect to the Fermi mo-

mentum, we obtain

From the rules given above, it is clear that Q,„ is a
linear functional in the external 6eld; we express this

exphcctly sn wnting

(4,12)
i(k'q ~)f, (k) —X), (k; P)—

(k k~. p)f (k~) (4 ll) which is a definition for the function gq„(k; P) Also, .
I we may take into account that, in the limit of small q
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and (o(q/kg«1; (o/cj.«1) we have,

Bgo.(k,k'; P)
Po (k,k', P) = foo(k, k'; P)+a)—

Bfo (k,k'; p)
+ I((

0,0

B. (k P)=Bop (k P)+ .

0,0

+ . (4 13)

(4.14)
FiG. 10. The diagrams contributing to the Vlassov equation.

The zero wave number and frequency operator/op(k, k';P)
is, in this particular problem, identical to the linearized
form of the asymptotic collision operator in a spatially
homogeneous system, introduced by the author in the
analysis of the approach to equilibrium. "We shall not
prove this identity here, but we just want to mention
that this operator has the equilibrium distribution func-
tion (Fj„.) as eigenfunction with eigenvalue zero. Also,
in (4.14), we have limited ourselves to the lowest order
approximation for &,„because, as may easily be
checked, higher order contributions only give rise to
negligible corrections to the one-particle d.f. f,„(k).

Inserting (4.13) and (4.14) into (4.11) we get the
final result:

Finally, the right-hand side of (4.15) represents the
usual collision term; it describes all dissipative effects in
a finite temperature system and is responsible for the
real part of the transport coefficients.

%e would like to stress that an equation of the type
(4.11) was derived previously by Konstantinov and
Percel (see Ref. 11) using a technique rather similar to
the one we have presented here. However, their defini-
tions of the various quantities $,„(k;P), P,„(k,k', P) did
not take in consideration the delicate question of
anomalous diagrams, which play a very important role
in the discussion of strongly coupled systems. This
gives rise to divergence difhculties in the limit q, co —& 0
and makes it very dificult to apply their formalism to
specific problems.

goo (k P)F =P Ppp(k k P)f (k ) . (4.15)
5. SIMPLE APPLICATIONS

W'o~ W'o~
~(s q

—)j,.(&)—Zl +q )j, (&).'

B(d oo Bg oo

This is the final expression for our transport equation of
a Fermi system submitted to a weak external field. The
physical interpertation of (4.15) is quite clear and may
be given in complete analogy with the classical case":

The 6rst two terms of the left-hand side represents the
free motion of the particles, with wave number q and
frequency ar.

The next two terms, involving the derivative of P,„,
express the modification of the latter free motion due to
the interactions; one sees indeed that these terms give
rise to a "shift" in frequency and momentum. We want
to come back with greater detail to these renormaliza-
tion e6ects in a future publication, and we shall thus
not comment about them any further here.

The last term on the left-hand side describes the
acceleration of the particles by the external 6eld; it
generalizes to an interacting system the well-known
free-particle expression":

PeF(, (1 Fj,')k L',„. —(4.16)

"See Ref. 4.
"See Ref. 19.

R. Peierls, Qumstum 2'heory of Solids (Oxford University
Press, Neve York, 1955).

It involves the interference effect between the collision
processes and the external field. This term will also be
discussed with great detail in future publications.

Soo(o&(k; P)= (—1)e dy( —Fjo)(1—Fjo)k E,„(5.1)

and thus

goo( ~ (k; P)=ePFq'(1 Fj,')k . —(5.2)

The diagonal fragment is approximated by the six 'A

contributions of Fig. 10 (we shall not write down the
exchange terms explicitly). It is an easy matter to write
down all these contributions and from (4.8), we obtain

Xf,„"'(k,k'; P)
= —(X/i) L

—Vn i' (k+(1/2)+ VH F (k —(1/2) 1&j ('"'
—(X/i) Lv(k —k') —v(0)](Fj, ,joo—Fj+,joo), (5.3)

In order to illustrate the method, we shall consider
here two simple situations where Eq. (4.15) reduces to
well-known results: The weakly interacting collision-free

gas (quantum Vlassov equation) and the weakly coupled
gas submitted to a stationary spatially homogeneous
external field (Pauli transport equation). Of course,
these cases may be treated by much more elementary
methods and will serve only as examples.

In order to derive the V1.assov equation, we limit
ourselves to the X' approximation for describing the
destruction region which is given by Fig. 4(a). Applying
the rules of Sec. 3 and the definition (4.7), we obtain:
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where we have used the short-hand notation

VH. F.(k) = —p [t)(0)—i)(k —k') j(—Fp') . (5.4)

It is easily verified in (5.3) that Ppp' & vanishes; expand-
ing in q a,nd co, we get

c&P,„)'&/c&o& =0, (5.5)
PIG. 11.The eight diagrams contributing to &ppp~p) (k,k; p).

Inserting (5.2), (5.5), and (5.6) into (4.15), we obta, in

BUH y—ip&f,„(k)+iq k + —f,„(k)
Bk

c&P ~&'&/c&q = —iX(c)VH.F,/c&k )bpi "'
+i)~ t)(k —k') —t)(0))k PFpo(1 —Fpo). (5.6

diRerences appear already at order X', as we shall discuss
in the next paper of this series (see Ref. 26 and App. C).

The second example corresponds to a weakly coupled
homogeneous sta, tic system: Setting q, o&=0 in (4.15),
we obtain

iq k P—F&,'(1 Fs')P—Lt)(k —k') —t)(0)ffp„(k') gpo (k,P)&oo =P Poo(k, k'; P)foo(k'). (5.13)

—ePF&,o(1—F&,o)k F.,„=O. (5.7)

))F o —exp —(riyP

Ke obta, in then

io&f,„(k)+—iq k fp„(k)

iq t)(0)(r—)P&,'/r)k )Q f,„(k')

(5.8)

This equation is the low-temperature generalization
of the Vlassov equation; indeed, in the classical limit,
we may neglect the exchange term in (5.7) and we also
assume

The field term in the left-hand side of (5.13) is treated
as in (5.2); the collision operator is treated in lowest
order, which for an homogeneous system is X' (Born
approximation). As an example, we have indicated in
Fig. 11 the eight diagrams (without exchange) corre-
sponding to the direct term k=k' in fpp(k k P). The
evaluation of these various contributions is easy a,l-
though rather lengthy. For instance, the first diagram
of Fig. 11, is a,ssociated with the contributions

lim PFio(1 —Fio) = 8(ego —p),
P—+oo

(5.10)

we obtain

io&f,„(k)+iq k—t f,„(k)+8( ,' ep)P F„„,f,„(.k—')]

eL&, (r)Fpo/—Bk ) =0 (5.9)

which is nothing else than the Fourier transform (valid
for small q) of the well-known Vlassov equation in an
external field. Another interesting limit is the zero tem-
perature case; neglecting the Hartree-Fock term in
(5.7), which merely amounts to a, redefinition of the
energy of the free particles, and realizing that

In order to obtain this result, one ha, s to keep in mind
that, by definition, the diagonal fragment does no/ in-
clude the current vertex operator on the temperature
axis; also, by (4.8), its contribution is obtained by
omitting the outgoing and the ingoing propaga, tors as
well as the statistical factors associated with the two
ingoing pair hole k.

The other diagrams of Fig. 11 a,re computed similarly,
with the result:

i'happ(k,

k; p)f,.(k)

with
= ef')(e&, o p) k "F,„— (5..11)

Fpp =i)(k —k') —t)(0). (5.12)

This equation is the weak-coupling version of the
Landau equation for Fermi quasiparticles. "However,
it should not be inferred from this result that the func-
tion f,„(k) may be identified with the Landau quasi-
particle distribution function &r,„(k).Indeed, the equiva-
lence obtained here is only valid in the lowest order and

23 See Ref. 1.

X ((1—F,')F,+,'F„,o
+ (1—Fi—&')(1—F.+io)F.o) foo(k) . (5.15)

In order to get the final answer, one still has to consider
diagrams with k'/k, as typical examples are shown in
Fig. 12. From a pra, ctical point of view, it should be
pointed out that in drawing normal diagonal fragments,
one is not obliged to place the dynamical vertices close
to the time axis although they a,re all taken at tempera-
ture p=0; indeed, no temperature-dependent factor
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model and compare it to the Landau equation in the
same approximation.

(a) k =-p (b) 4'=- j-( (c) 4' =- g ~ [
FIG. 12. Typical contribution to Ppp( )

(tlat, &k P) (k &k ).

APPENDIX A. RESPONSE TO AN
EXTERNAL CHARGE

For the sake of completeness, let us brieRy derive
(2.11). In the presence of the test charge (2.8), the
Hamiltonian is

appears in the definition of a diagonal fragment and th.
current operator on the tempera, ture axis in Figs. 11
and 12 is only introduced in order to make sure that the
diagram is closed; in other words, the ordinate of the
dynamical vertices with respect to the temperature axis
is completely irrelevant in this case. The case of the
destruction region is more delicate and should be treated
with great care.

When these supplementary diagra, ms are evaluated,
the following result is obtained:

~' 2 goo "&(k,k', P) foo(k')

=2~X'2 +~a(&)+exch~'{(1 fa)(1 f—,)fI, if'—y(

where
Hr H+3——C,',

X/ ——Q e'U(r;, t)

with
'U(r, t) = (4'/q')r, expLi(qr —cot)].

We may write
aC, '=ae' exp( —i~t),

3C'=(4ae'/q')rop o,

where we have introduced the density Ructuation

p, =Q exp( —iqr, ).

(A1)

(A2)

(A3)

(A4)

(A5)

l, s

—(1—f~-~)(1—f+~)f~f )

X~(%+&8 &o l &8+l) ) (5 16)

where we have set

The Von Neumann equation is

iBgp= $H,p], (6=1), (A7)

and if we linearize the density matrix around equilibrium

fa = ~I'+ foo(k) (5.17) p= p"+~p,
we obtain the well-known result

(AS)

a,nd Z is a linearization operator which only keeps in
(5.16) the terms which are linear in the deviations from
equilibrium (i.e. , proportional to foo).

Inserting (5.2) and (5.16) into (5.13), we obtain the
usual linearized transport equation for a weakly coupled
gas in an external field.

From the two examples treated in this section, one
realizes the great complexity which arises in the explicit
evalua, tion of the various terms in the transport equa-
tion (4.15), even in the weak coupling case. This im-
portant drawback is common to a,ll diagram techniques
developed in the A-body problem and is still more
apparent here because we have both a dynamical prob-
lem (along the time axis) and a purely statistical prob-
lem (along the temperature axis). However, as is usual,
many important results may be obtained by considering
very simple models; also, it may be hoped that many
properties of low-temperature normal Fermi systems
depend on the topological structure of the diagrams that
contribute to their evolution and not on the explicit
evaluation of these diagrams. It is known for instance
that this is the case at zero temperatures as Landau,
Luttinger, and Nozieres have shown, using Green's
function technique. Work in those two directions is now
in progress and we hope to report about it soon. As a
preliminary step in this direction, we discuss brieRy in
Appendix C the zero-temperature limit of our basic
transport equation (4.15) in a very simple but nontrivia1

J. = (e/2)Z(P e ""'+e ""'p ) (A11)

From (A9) and (A10), we obtain in the limit t ~~:
1

(j,„)=— Cr exp(ioor)
iQ 0

XTr{I, exp( iHr)$3C—',p'&] exp(iHr)) . (A12)

We now use the identities"

PC', p"]= (4~e'r, /qo) Lp „p"]
4a e'r, exp( —PH)

Xexp(pH)Lp „H]exp( —pH) (A13)

'4 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

t

6p(t) = exp L
—iII(t—t—')]PC„p'&]

XexpfiH(t —t')]Ct'. (A9)

We write the current per unit volume as

(j ) =(1/0) TrI Ap =(j )e '"' (A10)

where j, is the current operator
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[p „H]=—qadi, e/e. (A14)

Inserting (A13) and (A14), we get for (A12):

(i: )=—
~ p4xz~,q

dr exp(za)r) (b) (c)

Flo. T3. Contributions to (I't~,.(t) ).

XTr{ t p'"[exp( —iHr)][exp(y JJ J
X[exp( —yH)] exp(iHr)) . (A15

nce of the tra, ce, weUsing ~ . ~ an(2.9) d the cyclic invaria, nce
recover (2.11).

E ANOMALOUS DIAGRAMSAPPENDIX B. THE
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in rule I' the contraction &I, ya u
'

lt lt o 'dgiven byn b (4.6). As a prelimina, ry resu, e

the following average:

ex iHr —exp —PH)/", (81)(F~(t))=Tr{exp(iHr)nI, exp( —i r — 1

—= (U( iP—; 0)U(0, t)npV(t, 0))0, , (82)

w d q2.21) (2.26), and the linked clusterwhere we ha, ve used 2.
expansion theorem.

h 1 c invarianceHowever, we ha, ve also,
'

gusin t e cyci

(I.(t))=(I:.)=(U(—»0) ')o,'
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respective y)I the rules I ~ e avem

I"; } t }1 '-

3

H p —
p (tz —q/2) VH, r.(k+q—

q 2)(—zt1., (t.5 —t,)]eexP! —2651(t2—t1Xexp —i &
— e

X ( ~5+2/2

t3

t3 t2

t—t;,)]dt2 dt exp! —zh51( —,Idy exp( —yA5,Cis.= '"'k d/3

d]2 dt exp! —ih5, t-tz)]ioqt)kp dtzdy exp( —pt15,

where

6k—q/2 .~&l. &A:+q/2 &Iz:—q/ ~

Q'e may then write

dt, exp(

V„p —q, tz q/2) VH p, (k —It/2)Xexp- Z~ 5, ( t5—t2 —
2
—

1

X ( Ic+2/2 c

(B7)

Eq
C15cc+C155 dy exp( —yhet dt exp(ioIt)1~P dt2

I V . Ic q/2) V /Ic+—q/q. .

'l. 'I. p

—z)(exp —
tq exp( —i—t}51(tz—t2)] exp i V . —. tz It-yexpL —ih51(t —tz)] exp —

z. 51,2— —z V .651tz]

(B8~A;—q/2. . &—/2)(1 —J'5-2/2df2 VH F. k —
q

0I /c—q/2')(1—&'5+2/2X ( 5+2/2

(b)

'b tio11 to (F5(tq})he contribution
l d (88)

noma, ious

PE MODELPERTURBATIVE MC. A SIMPLE PE M

lt h bterties "the re a io
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where the first term represents the "free" motion of
quasiparticle (with velocity Vk and frequency &u), the
second term expresses the nondissipative interaction
between the quasiparticles and the last one corresponds
to the acceleration by the electric field. Moreover the
factor

4= &(Lk—
Zz) (c4)

ensures that transport takes place only at the Fermi

In these formulas, sk is a normalization coefficient
(&1), 1':k is the quasiparticle energy and Fk is a function
regular at the Fermi surface which does not contribute
to characteristic equilibrium properties.

On the other hand, transport theory for quasiparticles
is well known in the zero-temperature limit (see Refs.
1—3); Landau has shown that the quasiparticle d.f.
n, (k) obeys the following equation:

Liq Vk —i(sin, (k)

+iq"Vk tzk p rkk nq. (k') F~.g. —Vk 6k=0, (C3)

sul face i.e. we have

n,„(k)=g, (k)bk, (C5)

where g,„(k) is a. well-behaved function; the electric
current is given by

8
j,„(k)=—d'k k n,.(k).

Sx'
(C6)

The question immediately arises to see what the con-
nection is between the transport equation (C3) and the
zero-temperature limit of Eq. (4.15). We have investi-
gated this problem in the frame of low-order perturba-
tion theory; indeed it is well known that most of the
physical information of interest is contained in a second-
order calculation for all "irreducible" quantities; for
instance, Eq. (C1) is already nontrivial at this order.

We have thus analyzed Eq. (4.15) in this approxima-
tion: All irreducibl operators are computed to order
X' and the limit P —+~ is taken. The result may be
written as

ikzzk 'f—,„(k) —
-i(o Q y—kk f,„(k') —+—+iq

V„V„ f,„(k')
fqcg(k)+ '4 2 &k&k'f kk'

Sk k' ~k

Vk" Vk ) Vk 4 (0, 1,2)

+zq EVk' + ~f,.(k'}—&q. — +ZVkk Vk 4 =0, (C7)
k'

where { ) '"' " means that the bracketed expression should be computed up to second order only, and all other
terms are negligible. The notation used here is the same as in Ref. 3 except for the new function ykk .

{Qykk f,.(k')) "'"-'=—X' p ~z(l)+exch ~'
k' l, s (~k z+~.Pz

—~,—~k)'

&& {L(1—~k-z') (1—F +~') (—~k') —(—I"k-~') (—~ +z') (1—~k') 3fC-(~)

+L(-~. )(-~.)(1-~., )-(1-~.)(1-P. )(-P."»f,.(k-~)

+[(—J'")(—~.')(1—&'k-~') —(1—~k')(1 —I".')(—J'k-z')3f. -(~+t)) (Cg)

The remarkable feature of Eq. (C7) is that it is related n,„(k); moreover, as we have the relation

to the Landau equation (C3) (computed to the same 2 k vkk "'=—k"zk "'
order) by a linear relation which is exactly of the form k

(C1), which was proved only for equilibrium. formula (4.1) for the current reduces to
More precisely, if we set As the second term in (C9) is nonsin

(C10)

Eq. (C6).
gular through

the Fermi surface, one sees that the general conclusions
of equilibrium theory concerning the connection be-
tween quasiparticle d.f. and momentum d.f. maykt
be extended to transport theory without any deep
modihcations.

which defines anewfunction n,„(k),we have shownthat We refer the reader interested in the details of the
Eq. (C7) for f,„(k) may be reduced to Eq. (C3) for calculation to Ref. 26.


