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We express the response of a normal Fermi system to a weak external charge in terms of a one-particle
Wigner distribution function which obeys a generalized transport equation valid at all temperatures. The
derivation of this transport equation is closely related to the method developed by Prigogine and co-workers
in nonequilibrium situations, both classical and quantum; it is based on a reclassification of the perturbation
expansion of the autocorrelation formula expressing the response. The proof is greatly facilitated by the use
of a suitable diagram technique which describes both the dynamical processes in the system as well as the
effect of the interactions on equilibrium properties; full advantage is taken of the contraction theorem for

averages over the unperturbed equilibrium ensemble.

1. INTRODUCTION

URING the last few years, normal Fermi systems
have provoked much interest from the points of
view of both equilibrium and nonequilibrium properties.
Work in this field was mostly initiated by Landau® when
he formulated his phenomenological description of
Fermi liquids at zero temperature in terms of quasi-
particles. Since then, much progress has been realized
in the justification of this model starting from first
principles, mainly by Landau himself?> and by Luttinger
and Noziéres.?

The physical interest of this model is well known:
He? at low temperature and electrons in metals, are
strongly coupled systems which should behave in many
ways like normal Fermi liquids. Also, from a purely
theoretical aspect, a normal Fermi system offers almost
the only example where the full apparatus of modern
perturbation calculus may be developed and tested. It
is thus of great importance to have a good understanding
of the behavior of these systems.

In particular, the program which we will attack here
has a threefold objective: What is the general relation-
ship between a quasiparticle description and the more
usual particle description for studying transport prop-
erties in low-temperature systems?* What is the con-
nection between the Green’s function technique and the
usual transport equation approach? What is the finite-
temperature generalization of Landau’s model, if there
is any?

It is known indeed that, at zero temperature at least,
all physical properties of normal Fermi systems may be
analyzed in terms of a quasiparticle distribution func-
tion (d.f.), which roughly speaking gives the number of
dressed particles in a state of given momentum; as a
matter of fact, this remark was the main key in the
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success of Landau’s theory. On the other hand, usual
nonequilibrium statistical mechanics describes transport
properties of any system, weakly as well as strongly
coupled, in terms of Wigner distribution functions which
always refer to average occupation number of bare
particles in states of given momentum. As far as we
know, the connection between these two approaches has
only been clarified for equilibrium properties.® Also the
existing theories of transport in normal Fermi systems
have mostly been developed using the Green’s function
technique, which is specially useful in the zero-tempera-
ture limit; there is however a large amount of work in
quantum transport theory which is based on the deriva-
tion of kinetic equations*® for the density matrix or for
the above-mentioned Wigner distribution functions.
Here again, there is no clear understanding of the
relationship between the two methods.

Finally, it has to be stressed that, except for very
particular cases,” existing theories always refer to non-
dissipative properties: Indeed, at zero temperature (ex-
cluding the case of scattering by impurities) transport
coefficients like electrical conductivity, viscosity, etc.,
are not defined because the system has no dissipative
mechanism. It is then of great interest to develop a non-
equilibrium theory of Fermi systems at finite tempera-
ture, in order to be able to compute such transport
coefficients.

In this paper, we shall derive the transport equation
for the one-particle Wigner distribution function of a
Fermi system submitted to an external test charge. The
line of thought we shall follow is very similar to the one
used in the general theory of nonequilibrium processes
of Prigogine and co-workers, both for classical and
quantum systems.® However, the mathematical tech-
nique we shall utilize is somewhat different because we
want to benefit from the fact that we are interested in
the simple case of the linear response to the external
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perturbation; it is well known that the response of the
system may then be expressed in terms of the auto-
correlation of the current operators, averaged over the
equilibrium distribution. We shall thus be allowed to
use the familiar contraction theorems® for the mean
value of creation and destruction operators while in the
general theory of approach to equilibrium, the initial
ensemble describing the system was arbitrary and no
such theorems could be used.

In the first section, we present the general formula-
tion; we perform a perturbation analysis of the auto-
correlation formula valid for our particular problem and
we decompose the elementary processes describing the
dynamics of the system according to their time ordering.
In the next paragraph, the well-known contraction rules
are briefly recalled and a diagrammatic representation
is developed for the perturbation expansion derived in
the previous section; the diagrams we shall use are
essentially the same as the one introduced previously
by Fujita and co-workers'® and we shall thus be very
brief.

There is however an essential difference with Fujita’s
method in the correspondence rule between a diagram
and a contribution: A diagram will correspond to a term
of the perturbation series for which ke time ordering
between the various elementary processes is fixed. This
point is very important because it will allow us to define
in a unique way a collision process.

After these preliminaries, the main part of the work
is given in Sec. 4, where an exact transport equation is
derived for the one-particle Wigner distribution func-
tion. This equation is discussed and briefly compared
with previously derived general transport equations.!!
We also give the limiting form of this equation when the
external field is slowly varying both in time and space.

In order to illustrate the method, we analyze in Sec. 5
two very simple situations: the weakly coupled, spatially
homogeneous gas and the collision-free, spatially in-
homogeneous gas; we recover, respectively, the well-
known Pauli and Vlassov equations. Of course, these
trivial examples should only be considered as tests for
the method we outline here; more complicated situations
will be analyzed in further publications. Also, in Ap-
pendix C, we briefly summarize a simple model calcula-
tion which clearly shows the connection between the
present Wigner distribution function method and the
quasiparticle formalism, in the zero-temperature limit.

2. GENERAL FORMULATION

We consider an N-particle Fermi system enclosed in a
box of volume Q. We decompose the Hamiltonian into a

9 C. Bloch and C. De Dominicis, Nucl. Phys. 7, 459 (1958).
10§ Fujita and R. Abe, J. Math. Phys. 3, 350 (1962). S. Fujita
and F. Mayné, Physica 29, 1201 (1963).
11 ), Konstantinov and V. Perel, Zh. Eksperim. i Teor. Fiz. 39,
197 (1960) [English transl.: Soviet Phys.—JETP 12, 142 (1961):]
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kinetic part Ho and the perturbation AV

H=H+\V (2.1)
with
HO=Z €xr ap P (2~2>
&
AV =(\/2Q)
X 2 v(k—r)aitala,a, 6% (k+1—p—r), (2.3)
klpr
v(k~—7)=/dx V(x) exp—i(k—r)x, (2.4)

where V(x) is the pair interaction between the particles.

In these formulas, we have used the well-known crea-
tion and destruction operators ' and a; obeying the
anticommutation rules:

Law,ar' ] = 8 ¥,

Larar Jv=[artap]4=0.

(2.5)
(2.6)

We assume that, at time zero, the system is at
equilibrium; its density matrix

pt=exp(—pH)/Tr exp(—BH). (2.7)

We further suppose that all the particles have the charge
¢ and we introduce as usual a continuous background
in order to ensure electroneutrality. We then submit the
system to a small external test charge

q“(r,t) = ery exp—i(wt—qr) (2.8)
which creates an electric field
Ee=14,* exp[ —i(wt—qr)]
= —(4mig®/q)rq exp[—i(wi—gr)]. (2.9)

Applying the well-known linear response function
formalism,'* it is then easy to show that a current (J,.),
is created in the system; it may be written, in the limit
of long times

(Jao®)e=(Jof)eiet, (2.10)
Egf
gl ) =~ T X wT
{el)= Q Tr exp(— BH)/ 4 / @y exp(ier)
X Tr{exp(—BH)J_A(—iy)J,2(r)}. (2.11)

The derivation of (2.11) is very simple and is reported
in the appendix. The remarkable feature of this formula
is of course that the long-time response is given by the
average over the equilibrium distribution (2.7) of the
autocorrelation of the current operator

Jo(r)=exp(iHr)J = exp(—iH7)  (2.12)
with

]qa= [ Zk kadk+q/2Takuq/2 . (213)

12 P. Nozieres and D. Pines, Nuovo Cimento 9, 470 (1958).
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However, (2.11) is still a purely formal expression be-
cause if involves the unitary operator of motion
exp(—iH7) describing the dynamics of the N-particle
system.

In order to get an explicit expression for (jq.*), we
shall thus have to analyze further this formula (2.11)
by some adequate technique. Before proceeding in this
direction, we want to make the following remarks:

(1) The model considered here is rather unrealistic;
indeed a direct consequence of the assumptions that all
particles have the same charge e is that, by conservation
of momentum, the system has no mechanism to dissipate
the current and the real part of the conductivity tensor

O'qu: <jqwa>/Equ (2-14)

is infinite. It would however introduce no new feature
in the theory—except a heavier notation—to take a
two-component system (with charge ¢ and —e) in which
case we would get a dissipative part in (2.14).

(2) We have supposed that the particles are charged:
there is thus a Coulombic part in the interaction V(x);
this in turn leads to divergence difficulties in perturba-
tion calculus. As the procedure to eliminate these
divergences is well known,'® we shall not consider this
point any further here and we shall merely assume that
the potential V(x) is short ranged.

(3) The two aforementioned difficulties would have
been avoided by discussing thermal flows (like mo-
mentum flow) for neutral particles. Formulas similar to
(2.11) have indeed been proposed for thermal transport
properties. However, as we have shown recently for the
classical case,'* a satisfactory justification of their
validity is rather involved; we preferred thus to limit
ourselves to the simpler case of external disturbances.
There would, however, be no new difficulty in discussing
a formula of the type (2.11), with the current operator
(2.13) replaced by any thermal-flow operator. '

Let us now consider the perturbation expansion of
(2.11). We first extend (2.11) to a grand ensemble with
given chemical potential p= —a/B3; we have

Euf (= [*
(Gas®)= / dr / dy expliaor)
EQ 0 0

X Tr{exp[—B(H—uN)JT_f(—iy)J2(r)}, (2.15)

]
/ dy K*&(t,y; 8)
0

P © © B Yntm+1 Y2
=2 X Z(—)\)’H’”‘/ d7n+m+1/ . / d’h(
n,m=0 p=0 r==0 0 0 0
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where now

E="Tr exp[—BH—uN)], (2.16)
N being the operator for the total number of particles:
N=3 i ailax. (2.17)

We then use the well-known perturbation expansion

exp(—iHr)=exp(—iHyr) U(r;0) (2.18)
with

Lf(T;O)z[:;G)" /0 " /0 v

></0 S dr V(r)- -V<n>] (2.19)

and
V(r)=exp(iH,r)V exp(—iH,T). (2.20)
Similarly, we have
exp(-+tH7)=U(0; 1) exp(:Hor)
=U'(7;0) exp(iHor), (2.21)
exp(—yH) =exp(—yHo) U(—iv;0).  (2.22)

Inserting (2.18), (2.21), and (2.22) into (2.15), we obtain

Eop 1= 8
(aur)y =2 / 1 exp(ic) / dy K*5(iy;8), (2.23)
Q Jy 0

where
KeB(1v; 8)
={Tr exp[ — (BHo+aN)JU(—1iB; 0)U(0; —iv)
Xexp(yHo)J_of exp(—vHo)U(—iy; 0)U'(t; 0)
Xexp(tHol)J ,* exp(—iHp)U(1;0)}/
X{Tr exp[— (BHo+aN)JU(—18;0)}. (2.24)

If we define a current operator in interaction repre-
sentation

J (7)) =exp(iHot)J o« exp(—iH,1) (2.25)
and set for an arbitrary operator A
(A)o=(1/E0) Tr exp[— (BHy+aN)]4  (2.26)

we may write for (2.24)
KeB(tyy; 8)=(U(—i8; —im)I - (—iv)U(—iy; OU(0; 1)
XTHOU(t;0))o/(U(—1B;0))o.  (2.27)

If we put the expansion (2.19) into the numerator of
(2.27), we obtain

>\ » t ta’ )\ r t to
-—_) /dt,,’---/ dtl'(j) [ dt,---/ dy
7 0 Jo 2 0 0

X(V(‘“i’YnerH)‘ T V(—i’YnH)]—qB(—i‘YnH) V(‘i’)’n) e V(_i’)’l)

XV(t) - V(6T 2OV () - - V(E))o/(U(—1i8;0)).

13 See for instance Ref. 3.
14 P, Résibois, J. Chem. Phys. 41, 2979 (1964).

(2.28)
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The order of the terms appearing in (2.28) should be noticed: Reading from right to left, we first have a series of
7 interactions classified in order of increasing times, a current operator taken at time ¢, another series of p inter-
actions written in order of decreasing times, and finally a sequence of #-+m interactions taken at increasing tempera-
tures with a current operator at y,.1. We see thus that in (2.28) we have no relative order between the first set of
dynamical interactions and the following sequence of dynamical processes: They both run independently on the
whole term scale 0 — ¢.

As was discussed in detail elsewhere,'® there is a great advantage in classifying these two classes of events
relative to each other; this is in fact the whole key for the definition of a collision process, as will appear clearly

in Sec. 4. Tn order to realize such a classification, we notice the following identity for arbitrary functions f;(1):

/dtnr ] iy / i / A fo ) ) ol -+ (1)

/ b f T e / T et Fultfult) - 1), (229

where @ represents all possible permutations of the arguments such that

<---<ig,

-8 exhausts the set of indices 1, 2--

and such that a---By--
recurrence, for instance, we have for n'=1, m=2:

/0 t dty /; t dts /0 : dtyfrr () falts) fo(ty)

Ly> >,
n'++m. The proof of (2.29) is readily obtained by

_ / iy / iy / 1y S O ) ) Fi0)

E/ dtafadizf dirf fr(ts) folte) fr(tD) + fro(t2) folts) fr(t) + fr (20) falts) f1(12)} . (2.30)

Other examples are discussed in Ref. 15.

As may be seen from (2.30), the use of this identity amounts to expressing two series of integrals running both
from O to ¢ as a sum of integrals ordered along a single time scale 0 to 1.

We obtain from (2.28) and (2.29):

MNP/AN\T B 72 ¢ t2
/ t ko= £ 5 (=) () [ i [Can S [t [
n,m=0 p,r=0 1 1 0 0 @ 0 0

XV (= tYnimyr) "

This formula is the basis for the diagram technique we
shall discuss presently.

3. DIAGRAM TECHNIQUE

As may be seen from the definition of V() and J,2(¢),
the evaluation of (2.31) involves the calculation of
grand canonical averages of the type

(@t (=Y ngmir) - - arE(—iy1) - - @ (la) - -
Xant(®): - a,E(ts)), (3.1)

where we have set, for ¢ real or imaginary
a+()=a," exp(iat) , (3.2)
a; ()= a; exp(—iet) . (3.3)

15 P, Résibois, Physica 29, 721 (1963).

V(=iyn) T (—iyar) V(=
XO{V(ta)- -

V(‘i’)’l)
V(t8)})o/(U(—1B; 0))o.

i’)’n) RPN

V(te) T2V (Ey) - - (2.31)

As was shown by Bloch and De Dominicis,!® averages
of that sort are obtained by taking all possible systems
of contraction of creation and destruction operators, the
only nonvanishing contraction being

{axt(D)ar(t))o=exp[ies(t—1t') JF4°, (3.4)
(@i () axt(0))o=explie(t—¢)JA—Fr?), (3.5)
where we have introduced the unperturbed Fermi

distribution

Fi0=[exp(a+Ber)+1]". (3.6)

Moreover, the proper sign has to be attached to each
system of pairings, according to rules which will be
made precise in the following.

16 See Ref. 9.
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(@) (b)

Fic. 1. Schematic description of a diagram. (a) Representation of
the various vertices. (b) Ordering of the vertices in (2.31).

At this stage, it is most convenient to introduce a
diagram technique in order to represent the various
contributions to (2.31). To each interaction V(r) (r real
or imaginary) as well as to the two current operators
J*(7) appearing in (2.31), we shall associate a vertex
(provisionally represented by a cross). As may be seen
from (3.4) and (3.5), the factor associated with a con-
traction depends upon the relative position of the crea-
tion and destruction operators which are averaged; let
us use the following device:

(1) We draw 7 vertices, ordered from right to left and
corresponding to V(i)---V(ty), above an horizontal
axis 0-f; we then represent the operator J,(¢) by a
vertex at time ¢ [see Fig. 1(a)].

(2) We represent the p interactions V(#s)- - - V(la) by
vertices below the horizontal axis and ordered from
left to right.

(3) Finally, we draw the (#-+m) remaining inter-
actions V along a vertical axis running from 0 to —i8,
with a current operator inserted at —iy,1.

/ i f A=) V)T OV (1))
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% Y,

(@) p=4,r=4 ,n=m=o0 , t, >t (bp=1,r=1,n=m=o0, t, >,

I16. 2. Examples of simple diagrams.

This procedure provides us with a rule for deciding
whether a given vertex appears before or after another
one in a given contribution of (2.31): it is easily checked
that the various vertices of a given diagram are ordered
in (2.31) according to their positions on the oriented line
in Fig. 1(b).

With these definitions, we may now proceed according
to the usual rules for writing down a diagram and its
corresponding contribution: a vertex ¥ will be repre-
sented from now on by two points joined by a wavy line
expressing the transfer of momentum k—7 [see Eq.
(2.3)]; a vertex J,* will be indicated by one point from
which starts a wavy line with momentum ¢; a con-
traction is indicated by a line joining the two vertices
where the operators a; and a,! appear, with an arrow
orienting the line from the creation operator to the
destruction operator. A simple example is given in
Fig. 2(a). Before proceeding further, we still have to
stress one important point; in going from (2.29) to
(2.31), we have decomposed each term of the initial
series (2.28) in a sum of terms corresponding to different
relative time orderings of the two sets of p and
dynamical interactions appearing in (2.28). For in-
stance, we have written:

= / dy / Ats(J_F(—iy) V()T 2OV (t)+T-F(—iv) V() T 2OV () o (3.7)

As we wish to associate a diagram to each contribution of (2.31), we shall be led, in this particular example, to
consider the diagrams of Figs. 2(a) and 2(b) as different; they both correspond to a possible system of contractions,
respectively, of the first and of the second term of the right-hand side of Eq. (3.7).

More generally, we shall consider as distinct the diagrams with different relative orderings between the vertices
above and below the horizontal axis. This rule is the only one which differs from Fujita and co-workers’ technique!?;
as we shall see later, it is, however, fundamental in order to derive a transport equation in a simple form.

Expression (2.31) may be considerably simplified if we use an appropriate “linked cluster expansion theorem'®”;
it is indeed a very simple matter—although rather long—to prove that the denominator (U(—i8;0)), of (2.31)
is precisely cancelled by the sum of all disconnected diagrams in the numerator; we are then left with vacuum-

vacuum connected diagrams, i.e.:

B o « INSZ2N A 72 : f2
/ KeB(ty;Bdy= 2. 2 (*M"er(‘“‘,) (“) / Y ntmir / d’YIZ/ Alpyr - / di
0 n,m=0 p,r=0 1 7 0 0 ® Jy 0

X < V(— i’Yn+m+1) T V(“ 'i')’n+2)]—qﬁ(”‘ Z"Yn+1) V(— TYn)-

17 See Ref. 10.

V(=)@ () - V)T OV (L) - V(Es)})oe (3.8)

18 See Ref. 9 as well as P. Nozieres, “Le Probléme d N Corps’’ (Dunod et Cie, Paris, 1963).
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From (2.23) and (3.8), one obtains readily the rules which allow to calculate the current (j,,%) to an arbitrary
order in the coupling constant; we first draw all distinct connected vacunwm-vacuum diagrams, involving an arbitrary
number of interaction vertices and two current operators, one, J,%, at time ¢ and the second, J_.8, at time —4y,,1.
The contribution to (7,.%) of a given diagram is then obtained through the following rules I:

(1) To each interaction vertex, associate a factor
(1/2Q)v(k—7) 6% (k41— p—7).

(2) To the vertices J,* and J_.# associate, respectively, a factor ek* and ek?.

(3) Label the vertices along the horizontal axis by 1, 2, - - - p+7 in the order where they appear starting from
{=0; in this labeling, no account is taken from the fact that a vertex is above or below this horizontal axis; similarly,
label the vertices along the temperature axis by 1, 2, ---n, n+42, - - -n+m-+1 in order of increasing temperature;
the current operator is labeled with an index »-1.

(4) To a line with momentum £k, associate a factor

expliex(la—1p) J(A1—F4"), (3.9)
if the line is parallel to the contour of Fig. 1(b), and
(=) explienta—1g)JF:°, (3.9)

if the line is antiparallel to the contour of Fig. 1(b). In (3.9) and (3.9’), the times /., and /s (real or imaginary)
refer to the label of the vertices where particle % is respectively created and absorbed.

(5) Integrate over
B 2 0 t to
/ d71L+m+1‘ : / d’yl/ eiwtdt/ dtp#"" ' / dtl . (310)
0 [1] 0 0 0

g=(—=N"(=N)P(\/i)(—1)*s, (3.11)

where L is the number of closed loops and s the symmetry factor of the diagram (see especially Ref. 18).

(7) Sum over all momenta.
(8) Multiply by E..5/<.
For instance, after expressing all conservation of moments, the diagram of Fig. 2(a) corresponds to

B t a)o)
Daa =_.£_z_2( 1)( )( 1)]‘”// dyl/ di e /d[g/ dll(/e—l-l—{~l)1@15‘——*—w

XA=F ) (— Frprrr 10" ) (1= Frpir ) (A= F i ) (= F10) (= F142°) explier v (t2—1) ]
Xexp[iertirr—o(t—1t2)] expliersiro(ta—14) ] explierso(titivi) ] explies(—ivi—t2) ] expliera(ti—12)]. (3.12)

As is seen from this example, the explicit expression associated with a given diagram becomes rapidly complicated
and it is often much simpler to work with diagrams. However, the rules given above may be somewhat simplified
if we reorganize properly the integrals over times and temperatures. Let us first consider the case of (3.12); we may
write the time-temperature-dependent factors as

B © t ta
/ d'Yl/ dat exp(iwt)/ dfz/ dty exp[ —i(exsryr — erpirrq) (t—1t2)]
0 0 0 0

Xexp[ —i(ers1— €rtirq) (la—t)] exp[ —i(ex— exq) (1—0) ] exp[ — (exro—€x) (v1—0)].  (3.13)

In this way, we have expressed these integrals as convolution (both in time and in temperature) involving the
“lifetimes” (t—1ts), (fa—t1), (11—0), (v1—0) of each intermediate state; the energy factor associated with each of
these intermediate states is just the difference in energy between the particles propagating in the forward direction
(i.e., 0 to ¢ or 0 to —¢8) and in the backward direction.

More generally, it is easily verified that the time-temperature factor associated with an arbitrary diagram may
always be expressed as

w0 t ty 8 2
/ ei“"dﬁ/ dlpyr / dh/ Y nimi1 / dy1 exp[—iAeprr1(t—Lpir) ] expl—ilAepir(lprr—tprr) ] -
0 0 0 0 0

(6) Multiply by

Xexp[ —iAe(11—0)] exp[ —iAentmsr (Yngmpr—Ynim) ] - -exp[—iAe/(v1—0)], (3.14)
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where we have introduced the notation
A= i viler, (3.15)

which represents the energy difference in the ith intermediate state on the horizontal axis [i.e., (t;—ti1)]; we
have »,i=+1 if particle k£ is propagating in the forward direction, »;*=—1 if particle & is propagating in the
backward direction, and »;'=0 if state % is not excited (see Fig. 3). Similarly,

Ae'j'—‘z V/kjek (316)

is the energy difference in the jth intermediate state on the temperature axis [i.e. (y;—v;_1)] with: »'/=+1 if
particle % propagates from 0 to —i8, »';/= — 1 if particle k& propagates from —i8 to 0, »';?=0 if state & is not excited
(see Fig. 3). In order to apply (3.15) and (3.16) correctly, one has to keep in mind that all the dynamical events
(along the horizontal axis) take place at —¢y=0, while all temperature-dependent effects occur at time {=0. As
is seen in the example of Fig. 3, a line may participate botk to Ae; and to A€';. It is now a simple matter to perform
formally the time integrations in (3.14); introducing a convergence factor w — w4-ia in order to give a meaning
to this expression we have indeed

@ t t2
/ exp[i(w—l—ia)l]dt/ dtpyr - / dty exp[ —iAeprri1(t—tpir) - - - exp[—iAe(ti—0)]
0 0 0

pir4l [®
=11 exp[ — (Aej—w—ia)r; Jdr;
=1 J,

P41 1
=] —— (3.17)

=1 i(Ag—w—ia)

It is of course also possible to calculate explicitly the (6") Multiply by g= (—N\)"*"(—=N\/i)2(\/3)7(—1)%s.

temperature-dependent part, but we shall not need (7") Integrate over the temperatures

it here. 8 v
Using (3.15) and (3.17), we may reformulate the rules / dvy o / dy

for calculating the contribution of a given diagram. o nbmtl . ’

Rules I': (1) To each interaction, associate a factor ) . .
(1/2Q)0(k—7r) 8% (k41— p—7). (8’) Sum over all r}lomenta [including k<]
(2") To the vertex J_f, associate a factor ekf [and (9") Multiply by Zq.* [and by @~1].
a factor ek* to J,~].
(3’) To a line with momentum £, associate a factor 4. THE GENERALIZED TRANSP OR'T EQUATION
(1—F}Y), if the line is parallel to the contour of Fig. 2(b), From (2.11) and (2.13), we may write
or (—FyY), if it is antiparallel to this contour. o on i
(4') For each intermediate state 7 in the range 0 to (Jau)=% 1% ek f (k) 4.1)
{, write a factor

1 "
1/i(Ae—w—ia) (3.18) e P
qw .
where Ag; is defined by (3.15). faoll)= - / di / dy exp(iwt)
(5') For each intermediate state j in the range O to = Vo 0
—14B, write a factor exp[—iAe/(v;j—7vj-1)], where Ae/ X Tr{[exp— (BH+aN)1J_A(—i)

is defined by (3.16), except for A¢'=0 when v;=8. '
X exp(—tH)apyqr2 ar_op exp(iHE)]}. (4.2)

As is physically clear, f,.(k) is nothing but the Fourier-
Laplace transform of the Wigner distribution function
of our Fermi system submitted to the external field
(2.9). We thus expect this function f,.(k) to obey a
transport equation which generalizes to normal Fermi
systems transport equations derived previously for

Vo classical systems!®: We shall try to obtain an integral
k¢ =- A —
¥ R. Balescu, Physica 27, 693 (1961). P. Résibois, in Many
Particle Physics, edited by E. Meeron (Gordon and Breach, New

Fi16. 3. A diagram with the corresponding factors vz and ;. York, to be published).

:1" KR L : v.‘! +4

' |
[9|‘u -4 :v.~n -4



B 288
hOQh

k-9

(@) (b)

F1c. 4. Examples of normal contributions. (a) The \° diagram.
(b) A second-order collision process.

equation for f,.(k) expressing the balancing between the
collision processes on the one hand and the free flow plus
acceleration due to the external field on the other hand.
As usual, this equation will be derived through an
adequate classification of the diagrams contributing to
feo(k). These diagrams are the same as the one discussed
in the previous section for computing (7,.%); as a matter
of fact, it is immediately seen from (4.1) that the rules
for obtaining f,.(k) are the ones given at the end of
Sec. 3 (Rules I'), except that the bracketed prescriptions
should be omitted.

Our classification of diagrams will be based on the
generalization of the concept of collision operator, which
was used extensively in our previous analysis of irre-
versible phenomena in quantum spatially homogeneous
systems (see Refs. 4 and 15); in this latter case, the
collision operator was defined as the most general transi-
tion bringing the system from a state Ae=0 to a state
Ae;=0, with no intermediate state having this property
(irreducibility condition). In the present formulation,
each intermediate states implies an energy denominator
[see (3.18)]

(4.3)

AEj—'w.

Of course, for finite frequency and wave number
(w, g#0), this quantity will never vanish identically;
for instance, the simplest possible diagram (A°) repre-
sented in Fig. 4(a), involves the factor:

Ae—w= €kt.g/27 ek--q/r—w#(). (44)
However, in the limit w, ¢— 0, this energy difference
becomes identically zero for all &; the general criterion
we shall use for defining a collision process is that it is
a transition process such that in the limit q, w — 0, we
have an initial state and a final state with Ae=0, while all
intermediale states are such that Ae;0. An example is

kenpy
)

(@) (b)

F16. 5. Example of an anomalous contribution
and its normal skeleton.
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F1G. 6. The destruction region: examples.

given in Fig. 4(b). It is easy to check that

Iim A€1= lim AE;;:O.
0

7,00 7, =/

(4.5)

From (4.4), it is of course very tempting to say that
the most general collision process involves a transition
from a particle-hole state (k+g/2, k—q/2, with Vi,
=41 and Vi_gp=—1) to a similar state (&'+q¢/2,
k’'—q/2). These contributions, which we shall call nor-
mal, do not, however, exhaust all possibilities; indeed,
one has also to take into account enomalous contributions
where we have in addition an arbitrary number of pairs
with the same momentum and opposite energy: these
supplementary pairs do not alter the energy denomi-
nators (4.4). An example is given in Fig. 5(a). These
anomalous diagrams pose a somewhat tricky problem
because the number of anomalous pairs is in principle
arbitrary and makes it difficult to obtain an integral
equation for f,,(k). However, the following simplifies
the matter considerably.

Theorem I

(a) the only anomalous graphs which contribute to
fau(k) are such that the interactions on these anomalous
lines are purely temperature-dependent (i.e., along the
vertical axis 0, —i8).

(b) Moreover the sum of these graphs will properly
be accounted for if we retain only normal graphs and
replace everywhere the unperturbed Fermi factor (3.6)
by the exact momentum distribution:

(Fry=(1/8) Tr; exp[ — (BH+aN)]. (4.6)

The proof of this theorem is rather long and has been
reported in Appendix B. However, its physical content
Is quite clear. Let us consider a particle which is per-
turbed by the external field. As we are working in a
linear theory, this particle only interacts with particles
at equilibrium. These fermions at equilibrium are how-
ever not described correctly by (3.6) in the presence of
interaction, but rather by the exact distribution (4.6)
The role of the anomalous diagrams is precisely to
“renormalize” the fermion distribution to its correct
value (4.6). Using the second part of the theorem, we
shall thus limit ourselves to normal diagrams, replacing
everywhere F°— (F}); in Appendix B, we shall indi-

Z ——+ + *

———————

———p e

T16. 7. The meaning of the dashed lines.
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Fic. 8. Examples of diagonal fragments.

cate how a perturbation expansion for this (F;) may
be obtained.

The most general normal graph contributing to fq.(k)
is then decomposed in a desiruction region and a sequence
of diagonal fragments.

The destruction region is the region of the diagram
starting at ¢t=0 and including thus all temperature-
dependent inleractions 0 — —iB, and ending with a pair
particle-hole state. A few simple destruction diagrams
are indicated in Fig. 6. In general the destruction region
of Fig. 6, we have represented the outgoing lines by
dashed lines, which correspond to the four possibilities
of Fig. 7. Indeed, it is readily verified from the rules
given previously that the statistical factor associated
with a line only depends on the position of the vertex
from which it starts (i.e., in the “box ”’®) and not at all
on the vertex where it ends. In this way, the box D is
a completely defined entity, independent of the remain-
ing part of the diagram.

A diagonal fragment is the most general transition
from a pair-hole state to another pair-hole state; it will

[i(ertq/2— €r—qp—w—1ia) |1 Dgu(k; B) =2 ® [all destruction diagrams of fao(k)]

Fi1c. 9. Schematic expansion for fg., (k).

be represented by a box ¢ (see Fig. 8) and, for normal
diagrams, which we consider here, it only involves
dynamical interactions; indeed all temperature-depend-
ent processes have been included in the destruction
region. In order to be able to apply in a simple fashion
the rules I’ of Sec. 3 for evaluating a diagonal fragment,
we shall always close the corresponding diagram by a
current vertex taken at temperature —#y=0; the con-
tribution associated with a diagonal fragment will then
be obtained from the rules 1" omiiting points (2), (5'),
(7"), and (9') aliogether. Examples of d.f. are given in
Fig. 8 and the correspondence between a graph and its
contribution is exemplified in Sec. 5. With these defini-
tions, we represent thus f,.(k) by the schematic equa-
tion of Fig. 9. It is now a simple matter to obtain a
transport equation for f,.(k); we have just to express
our results in analytical form.

We define a “destruction” function D4,(k;8) and a
collision operator ¥q.(k,k';8) through the following
equations:

4.7)

Cilerrarz— er—qrp—w—1ic) T [i(ertqp— err—qp—w—1ia) W eu(kE'; B)
=—Y",(all diagonal fragments & — /, excluding the statistical factors

of the ingoing lines &'+q¢/2, k'—q/2). (4.8)

The minus sign in front of this latter expression is justified because whenever we factorize a diagonal fragment
we introduce a supplementary closed loop which is not present in the expansion of Fig. 9; also the statistical
factors corresponding to the ingoing lines (k'+¢/2, ¥’ —¢/2) have to be suppressed because they are already counted

in the destruction region.
We have thus

qu(k) = [i(5k+q/2_ fk-—a/2‘_w"ia):|_l®qw(k§ ﬁ)

+Z [i(6k+q/2— €Ic—q/2"‘w_ia)]_l¢qw(k7k,; B)Ei(flc’+q/2_fk’—q/2_‘°_ia>]_13)qw(k§ 5)"|‘ Y (4-9)
B

or, in integral form

faull)="[i(errq/2— ek—qﬂ"“’*ia)]—ls)qw(k; B) 42 [ieriare— fk—qIZ“w”'ia)]—l‘l/qw(k)kl; B)fau(k').
P

Multiplying on both sides by [#(extq/2— €r—q2—w—1a) I
and taking into account that we are interested in values
of ¢ which are small with respect to the Fermi mo-
mentum, we obtain

i(k”(I”“w)qu(k) - $qw(k; B)
zg ‘pqw(k)k,; ﬂ)qu(k,) . (411)

(4.10)

From the rules given above, it is clear that Dy, is a
linear functional in the external field; we express this
explicitly in writing

Doolk; B) = Gau*(k; B) E g™ (4.12)

which is a definition for the function G..*(%;B). Also,
we may take into account that, in the limit of small ¢
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and w(g/kr<1; w/er<<1) we have,

Wou(ksk'; 8)
Yook k'3 B) =Yo(k,k'; B) e
dw 0.0
Y qu(k,k5 )
+¢——— +---, (413)
a9 0,0
Geo®(k; B)= Goo*(k; B)+ - - - . (4.14)

The zero wave number and frequency operatory(k,%’;53)
is, in this particular problem, identical to the linearized
form of the asymptotic collision operator in a spatially
homogeneous system, introduced by the author in the
analysis of the approach to equilibrium.?* We shall not
prove this identity here, but we just want to mention
that this operator has the equilibrium distribution func-
tion (Fj) as eigenfunction with eigenvalue zero. Also,
in (4.14), we have limited ourselves to the lowest order
approximation for G,.* because, as may easily be
checked, higher order contributions only give rise to
negligible corrections to the one-particle d.f. fq.(k).

Inserting (4.13) and (4.14) into (4.11) we get the
final result:

Y g0
i(k*q*—w) fou(k) _%7(‘*’

ow

o

+q
0,0 dq

- Sooa(k; 5)Eqwa: % l//go(k,k,; ﬂ)qu(k’) . (415)

o,o)qu(k/)

This is the final expression for our transport equation of
a Fermi system submitted to a weak external field. The
physical interpertation of (4.15) is quite clear and may
be given in complete analogy with the classical case?!:

The first two terms of the left-hand side represents the
free motion of the particles, with wave number ¢ and
frequency w.

The next two terms, involving the derivative of ¢,
express the modification of the latter free motion due to
the interactions; one sees indeed that these terms give
rise to a “shift” in frequency and momentum. We want
to come back with greater detail to these renormaliza-
tion effects in a future publication, and we shall thus
not comment about them any further here.

The last term on the left-hand side describes the
acceleration of the particles by the external field; it
generalizes to an interacting system the well-known
free-particle expression??:

Bel (1 —F0)k*L ™. (4.16)

It involves the interference effect between the collision
processes and the external field. This term will also be
discussed with great detail in future publications.

2 See Ref. 4.

2 See Ref. 19.

2 R. Peierls, Quantum Theory of Solids (Oxford University
Press, New York, 1955).
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Fic. 10. The diagrams contributing to the Vlassov equation.

LA

Finally, the right-hand side of (4.15) represents the
usual collision term; it describes all dissipative effects in
a finite temperature system and is responsible for the
real part of the transport coefficients.

We would like to stress that an equation of the type
(4.11) was derived previously by Konstantinov and
Percel (see Ref. 11) using a technique rather similar to
the one we have presented here. However, their defini-
tions of the various quantities Dq.(k; B8), ¥qu(k,k"; 8) did
not take in consideration the delicate question of
anomalous diagrams, which play a very important role
in the discussion of strongly coupled systems. This
gives rise to divergence difficulties in the limit ¢, w — 0
and makes it very difficult to apply their formalism to
specific problems.

5. SIMPLE APPLICATIONS

In order to illustrate the method, we shall consider
here two simple situations where Eq. (4.15) reduces to
well-known results: The weakly interacting collision-free
gas (quantum Vlassov equation) and the weakly coupled
gas submitted to a stationary spatially homogeneous
external field (Pauli transport equation). Of course,
these cases may be treated by much more elementary
methods and will serve only as examples.

In order to derive the Vlassov equation, we limit
ourselves to the \° approximation for describing the
destruction region which is given by Fig. 4(a). Applying
the rules of Sec. 3 and the definition (4.7), we obtain:

8

Ou(ki8)= (= Ve | dr(=F)1=FeEr (1)

0
and thus

goo(ﬁ)a(k;B):eﬁ[f‘ko(l“Fko)ka. (52)

The diagonal fragment is approximated by the six A
contributions of Fig. 10 (we shall not write down the
exchange terms explicitly). It is an easy matter to write
down all these contributions and from (4.8), we obtain

MWao® (k,E; B)

==/~ Vurk+q/2)+Var.(b—q/2) 161"
— (/) [w(k—k")=0(0) J(Fi—g/®=Frtqre”),  (5.3)
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where we have used the short-hand notation

Var.(k)= ——Zk; [2(0)—v(k—E&)](—Fr®. (54)

It is easily verified in (5.3) that g™ vanishes; expand-
ing in ¢ and w, we get

g0/ 0w=0, (5.5)
a¢qw(l)/6q“= ——ik(aVH,p,/ak")ékk:Kr
+iN[v(k— k') —v(0) Jk*BF X (1—F°). (5.6)

Inserting (5.2), (5.5), and (5.6) into (4.15), we obtain
) . Vn.r.
’*wqu(k)‘f‘W“[k“‘i'Ea—:lqu(k)

—ig°k*BF (1= F k")% [o(k—&")—v(0) ] feu(k)

— eBFO(1—F OB 2 =0. (5.7)

This equation is the low-temperature generalization
of the Vlassov equation; indeed, in the classical limit,
we may neglect the exchange term in (5.7) and we also
assume

> F 0 =exp—(a+Bk%/2).

We obtain then
—iwqu(k)+iq“k“qu(k)
— iga(0)(OF 3/ Ok (k')
o

(5.8)

— el g (0F°/9k*)=0 (5.9)

which is nothing else than the Fourier transform (valid
for small ¢) of the well-known Vlassov equation in an
external field. Another interesting limit is the zero tem-
perature case; neglecting the Hartree-Fock term in
(5.7), which merely amounts to a redefinition of the
energy of the free particles, and realizing that

lim BF0(1—Fi)= (e~ 1), (5.10)

we obtain

—iwfqo(k)+igk[ foo(k)+ 5(6k°—ﬂ)§ Frw fou(R')]
=ed(e'—wkL*  (5.11)
with

Frw=v(k—k)—2(0). (5.12)

This equation is the weak-coupling version of the
Landau equation for Fermi quasiparticles.* However,
it should not be inferred from this result that the func-
tion fq.(k) may be identified with the Landau quasi-
particle distribution function #..(k). Indeed, the equiva-
lence obtained here is only valid in the lowest order and

2 See Ref. 1.
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T16. 11. The eight diagrams contributing to 4@ (k,k; B).

differences appear already at order A2, as we shall discuss
in the next paper of this series (see Ref. 26 and App. C).

The second example corresponds to a weakly coupled
homogeneous static system: Setting ¢, =0 in (4.15),
we obtain

— Goo®(k,B) oo = %: Yoo(k,k’; B) foo(k') . (5.13)

The field term in the left-hand side of (5.13) is treated
as in (5.2); the collision operator is treated in lowest
order, which for an homogeneous system is A2 (Born
approximation). As an example, we have indicated in
Fig. 11 the eight diagrams (without exchange) corre-
sponding to the direct term k=%’ in Yoo (k,k’; 8). The
evaluation of these various contributions is easy al-
though rather lengthy. For instance, the first diagram
of Fig. 11, is associated with the contributions

C11a=(—1>2<—2>2§|v<l)12 : _

1(ester— er1— €pr— 1)
X(I—Fko)(l—-Fk_lO)(l'*—Fs_],lo)(—FsO). (5.14>

In order to obtain this result, one has to keep in mind
that, by definition, the diagonal fragment does 7ot in-
clude the current vertex operator on the temperature
axis; also, by (4.8), its contribution is obtained by
omitting the outgoing and the ingoing propagators as
well as the statistical factors associated with the two
ingoing pair hole %.

The other diagrams of Fig. 11 are computed similarly,
with the result:

Noo(kok; B) faw(R)
=—2m\2 3 |o(D) |28(ex+ e1— €x1— €sy1)
l,s

X{(1—=FO)F 1 ,0F;_,°

T(A=F’)A=F)F 0} foo(k) . (5.15)

In order to get the final answer, one still has to consider
diagrams with &'5£k, as typical examples are shown in
Fig. 12. From a practical point of view, it should be
pointed out that in drawing normal diagonal fragments,
one is not obliged to place the dynamical vertices close
to the time axis although they are all taken at tempera-
ture 8=0; indeed, no temperature-dependent factor
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I'16. 12. Typical contribution to oo ® (k,k"; 8) (k=Fk’).

appears in the definition of a diagonal fragment and the
current operator on the temperature axis in Figs. 11
and 12 is only introduced in order to make sure that the
diagram is closed; in other words, the ordinate of the
dynamical vertices with respect to the temperature axis
is completely irrelevant in this case. The case of the
destruction region is more delicate and should be treated
with great care.

When these supplementary diagrams are evaluated,
the following result is obtained:

N2 Yoo (kR 5 B) foo(R")
&

=2m\*8 IZ [o())+exch[*{ (1= fi) A= f2) futferi

== fic) (A= foy) fafs}

X 6(ertes—ex—1—es1), (5.16)

where we have set

fe=F+ foolk) (5.17)
and £ is a linearization operator which only keeps in
(5.16) the terms which are linear in the deviations from
equilibrium (i.e., proportional to fy).

Inserting (5.2) and (5.16) into (5.13), we obtain the
usual linearized transport equation for a weakly coupled
gas in an external field.

From the two examples treated in this section, one
realizes the great complexity which arises in the explicit
evaluation of the various terms in the transport equa-
tion (4.15), even in the weak coupling case. This im-
portant drawback is common to all diagram techniques
developed in the N-body problem and is still more
apparent here because we have both a dynamical prob-
lem (along the time axis) and a purely statistical prob-
lem (along the temperature axis). However, as is usual,
many important results may be obtained by considering
very simple models; also, it may be hoped that many
properties of low-temperature normal Fermi systems
depend on the topological structure of the diagrams that
contribute to their evolution and not on the explicit
evaluation of these diagrams. It is known for instance
that this is the case at zero temperatures as Landau,
Luttinger, and Noziéres have shown, using Green’s
function technique. Work in those two directions is now
in progress and we hope to report about it soon. As a
preliminary step in this direction, we discuss briefly in
Appendix C the zero-temperature limit of our basic
transport equation (4.15) in a very simple but nontrivial
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model and compare it to the Landau equation in the
same approximation.

APPENDIX A. RESPONSE TO AN
EXTERNAL CHARGE

For the sake of completeness, let us briefly derive
(2.11). In the presence of the test charge (2.8), the
Hamiltonian is

Hy=H-30/, (A1)
where
/=3 eV(rst) (A2)
with
O(r,t) = (4me/q*)r expli(gr—at)]. (A3)
We may write
3C/ =3 exp(—iwt), (A4)
3" = (4me?/ g2 ap_q, (A5)

where we have introduced the density fluctuation

py= Z@ exp(—igrs). (A6)
The Von Neumann equation is
idp=[Hyp], (h=1), (A7)
and if we linearize the density matrix around equilibrium
p=p*4+Ap, (A8)
we obtain the well-known result
1 rt
200~ [ explitt(=) s
e Xexp[iH(i—¢)dr. (A9)
We write the current per unit volume as
(Jaa)e=(1/Q) TrJ *Ape=(jau")et,  (A10)
where J,* is the current operator
J=(e/ Z)Zi(Pie_iq”‘l‘e_iq”Pi) ) (A11)

From (A9) and (A10), we obtain in the limit { — :
. 1 °
(]qw"‘)=—/ dr exp(iwr)
iQJy
XTr{J~ exp(—iHr)[3C 00 ] exp(iH7)}. (A12)
We now use the identities?*
[3¢pea]= (47"62"41/92)[P—qapeq]
dme’r, exp(—BH) [
e 1,
7 Z 0
Xexp(vH)[p—q,H] exp(—vH) (A13)
# R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
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and

Lo—aH1=—¢T_F/e. (A14)
Inserting (A13) and (A14), we get for (A12):

) AmiregP [ B
(Jgo®)=— / dr exp(iwr)/ dy
2 Jo 0
XTr{J “p*[exp(—ill) Lexp(vH) ]/
X [exp(—vH) ] exp(iH7)}. (A15)

Using (2.9) and the cyclic invariance of the trace, we
recover (2.11).

APPENDIX B. THE ANOMALOUS DIAGRAMS

We want to prove that the contributions of the
anomalous diagrams are generated by the normal graphs
if we replace in rule I’ the contraction /7,° by (F;) as
given by (4.6). As a preliminary result, let us consider

F)=3,

The expansion for (B3) is similar to (B4) with the re-
striction that p=r=0; we conclude thus that the sum
of all graphs in (B4) having a dynamical component
(p, r#£0) vanishes while the purely temperature-depend-
ent part gives the correct equilibrium distribution (F).

The contributions to (B4) are obtained by drawing all
connected graphs with an arbitrary number of dynamical
interactions (above and below the time axis) and an
arbitrary number of temperature-dependent interactions
(along the vertical axis), with one supplementary
vertex, indicated by a circle, taken at time / and corre-
sponding to 7,=ai'ar. Examples are given in Fig. 13.
All these graphs are of the anomalous type because a
pair particle-hole (,k) is absorbed at time £. From what
we have seen, the dynamical graphs (a) and (b) do not
contribute to (B3) while (c) gives a nonvanishing result.

After these preliminaries, let us analyze the structure
of anomalous graphs in the expression (3.8) for the
current : We first notice that any anomalous graph may
be generated from a normal graph (which we call its
skeleton) by the replacement of an arbitrary number of
contractions by anomalous insertions. An example is
given in Figs. 5(a)—(b) of the text and the two possible
types of insertions are exemplified in Figs. 14(b), (b"),
and (c). Indeed the insertions may in principle be put
on the left or on the right of the initial line. However,
it is immediately seen that the sum of all left insertions
gives zero, as a consequence of the left-multidentate
structure theorem (see Refs. 10, 11): to each left in-
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T'1c. 13. Contributions to (F7;(f)).

the following average:
(Fr(1)y="Tr{exp(iH ) exp(—iH7) exp—BH}/E, (B1)
=(U(—1B; 0)U(0,)7:U(1,0))o,c, (B2)

where we have used (2.21), (2.26), and the linked cluster
expansion theorem.

However, we have also, using the cyclic invariance
of the trace:

Fr()=(Fr)=(U(—1B; 0)fir)o,c. (B3)

If we expand (B2) as was done for (jz,*), we obtain

. w AN Z/A\" [ iz : 2
£ EE(—) (5) [ o [Canz [ [
n=0 p=0 r=0 1 (2 0 0 ® Jo 0

XV (—=iyn) - V(—iy){V{te) - - V{ta) V(i) - V(is)}o,e-

(B4)

sertion, we may associate another graph where the last
vertex on the left is symmetrical with respect to the
horizontal axis; from rules I’; this amounts merely to
replacing a factor (\/7) by (—\/4) and the sum vanishes
[see Fig. 147]. As a consequence we have: The only
anomalous graphs which contribute to the current in (3.8)
are such that the anomalous insertions are on the right of
the line of the corresponding skeleton.

The next step is to show that all right anomalous in-
sertions with a dynamical part also vanish. The proof
of this theorem makes use of a factorization property
for independent parts of a given graph which was
demonstrated previously in other contexts.?s In order
to avoid unnecessary repetition, we shall merely illus-
trate it by a simple example. Let us consider the anomal-
ous graphs of Fig. 15(a) and (b); as is immediately seen,
these two graphs only differ by the order of the inter-
action 1 (involving the anomalous lines) with respect to
the interaction 2 in the main part of the diagram.

.
- l P l ~p
a/ b/bl <
F1c. 14. A contraction and examples of anomalous insertiops.
(a) Normal contraction. (b)(b’) Left anomalous insertion. (c)
Right anomalous insertion.

25 See Ref. 9 and P. Résibois, Phys. Fluids 6, 817 (1963).
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From the rules I, we have, respectively,

Cisq=

RESIBOIS

Eqwﬂ A A\ 2 B @ t 3 t2
23(— 1)4<—.><—~-_> / dy exp(—'yAel’)/ dt ei“‘kf’/ dt;;/ dtz/ dty exp[ —iAe(t—t3) ]
Q 1 1 0 0 0 0 0

Xexp[—iAe](tg—lz)] eXPE* iAfl(h‘tl)] eXP[-iAﬂfl]VH.F.(k— q/2) VH.F.(k—q/Z) V}I,F.(k+Q/2)
K(=Frgq®) (1= Py 2) (A= Fr_gpp?) (1= F g2 (— Fr_ge),  (B3)

F B
Cim=

A\ 2 B @0 t t3 ty
___23( 1)¢ ( ><—j> / dvy exp(——'yAel’)/ di exp(iwt)kﬂ/ dlg/ d22/ dily exp[—iAe(1—13)]
1 1 0 0 0 0 0

Xexp[ —iAe(t3—12) ] exp[ —ilAe(ta—11) ] exp[ —iAerty Vv (k— /2)Vur.(k+9/2)Varw.(k—q/2)
X (= L) (1= Frp o) (1= F i g p) (= Frgp") 1= Fr_g ), (B6)

where

A61= €rpq/2— €r—g/2-

We may then write

C15a+ C15b

(B7)

_E —(2)(~ 1)4( )( > / dy exp(—yAer’) / dt exp(ivt)k / ds / ds

Xexp[—iAel(t——fg)] exp[—lAh(ls—lg)] eXp[—iAEIZIJV}[_F.(k—'(]/2) VHF(/e—{-(]/?.)

ts
X (= Fryq®) (1= Frpqp®) 1= F_ ") !/ At Vu v (k—q/2)(1—=Fr_ ) (—Fi_yg®)t . (B8)
0

In the bracketed part of (B8), we have extracted a con-
tribution to (F4(t5)), given by the diagram Fig. 16; as
this contribution is purely dynamical, it gives a vanish-
ing contribution (when properly associated with other
graphs), which we wanted to show. The first part of

I1c. 15. Examples

of anomalous con-

1 C - tributions.
(a) (b)

F16. 16. The contribution to (Fy(t3))
involved in (B8).

Fic. 17. Purely
+ temperature-depend-

ent anomalous in-
sertion.

(@ (b)

,"‘Vz
I16. 18. The skeleton
of Fig. 17 and the con-
teibution to (Fr_q/2).

(a) (b)

theorem I is thus demonstrated for this simple example:
The only anomalous graphs which contribute to f,.(k)
are such that the interactions on this anomalous lines
are purely temperature-dependent.

The proof of the second part follows the same scheme;
however, it will not be reproduced here and we leave as
an exercise to the reader to verify that the sum of the
graphs of Fig. 17 is identical to the contribution of
Fig. 18(a) where the heavy line is given by the graph
18(b) for (7).

Finally, we should mention that from these results a
perturbation expansion for the diagonal fragment
Yeo(k,k’) is easily obtained; in any normal diagonal
fragment one has merely to replace the statistical factor
(Fx) by its perturbation expansion, which, as we have
just seen, is given by all purely temperature-dependent
anomalous insertions.

APPENDIX C. A SIMPLE PERTURBATIVE MODEL

For equilibrium properties,? the relationship between
the quasiparticle d.f. (#;) and the momentum d.f. of
bare particles (Fy) has been studied by Luttinger (see
Ref. 5); in the zero-temperature limit, it was shown that

(Fr())=zi(ni(0))+Fy, (C1)
where (F,(B)) is given by (4.6) while
(n(8))=[exp(a+BEi)+1]1. (C2)

26 For more details, see P. Résibois, Bull. Acad. Sci. Belgique
51, 1288 (1965).



FINITE-TEMPERATURE TRANSPORT PROPERTIES. I

In these formulas, z; is a normalization coefficient
(1), E, is the quasiparticle energy and F is a function
regular at the Fermi surface which does not contribute
to characteristic equilibrium properties.

On the other hand, transport theory for quasiparticles
is well known in the zero-temperature limit (see Refs.
1-3); Landau has shown that the quasiparticle d.f.
n4.(k) obeys the following equation:

[ig*Vi*—iw neu(k)
+1g*V %0y > Fkk’nqw(kl) —E4*Vi%0:=0, (C3)
Y

where the first term represents the “free” motion of

quasiparticle (with velocity V;® and frequency w), the
second term expresses the nondissipative interaction
between the quasiparticles and the last one corresponds
to the acceleration by the electric field. Moreover the
factor

ensures that transport takes place only at the Fermi

. 1 1 Vi
— 252 fqu () — i z; Ve qu(k’)[-—+—]+iqa[ fao(R)+

2 B Zk2

Ve

Zk, 2k

+ig 3 'Ykk’(
Y

+E)qu<k'>—b‘qw(—
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surface, i.e., we have

”qw(k) = ng(k) o ,

where gq.(k) is a well-behaved function; the electric
current is given by

(CS)

€

jqwa(k) Z'é /d3k k“nqw(k) . (C6)

3

The question immediately arises to see what the con-
nection is between the transport equation (C3) and the
zero-temperature limit of Eq. (4.15). We have investi-
gated this problem in the frame of low-order perturba-
tion theory; indeed it is well known that most of the
physical information of interest is contained in a second-
order calculation for all ‘“‘irreducible” quantities; for
instance, Eq. (C1) is already nontrivial at this order.

We have thus analyzed Eq. (4.15) in this approxima-
tion: All irreducible operators are computed to order
A% and the limit §— is taken. The result may be
written as

Vi

Ox Z 212 L — B
k' 2k

J gw(k’):'

Vi*or

0,1,2)
+2 ’Yk/c'ka"f;/c')] =0, (C7)
kl

2k

where { } 1.2 means that the bracketed expression should be computed up to second order only, and all other
terms are negligible. The notation used here is the same as in Ref. 3 except for the new function vy :

1

{g Vi fao(R)} O1D = — )2 ; [2(1)+exch|?

er_1F €spi— €s—€x)?

X{LA=Fr)A=F o) (= Fi) = (= Fi®) (= Fo1") A= F%) 1 fou(s)
HL(=FO)(=F)(1=F )= (1= F)A=F ) (= F ") 1 fou(k—1)

HL(=F)(=F)(A=Fit®) = (A=F)(A=F) (= Fiet®) Mfau(s D)} -

The remarkable feature of Eq. (C7) is that it is related
to the Landau equation (C3) (computed to the same
order) by a linear relation which is exactly of the form
(C1), which was proved only for equilibrium.

More precisely, if we set

fau(k) =z1140(k) +Z’ Vi fau(k') (C9)

which defines a new function #4,(k), we have shown that
Eq. (C7) for fe.(k) may be reduced to Eq. (C3) for

(C8)

n4.(k); moreover, as we have the relation

> Ry @ ==k oy @, (C10)
3
formula (4.1) for the current reduces to Eq. (C6).

As the second term in (C9) is nonsingular through
the Fermi surface, one sees that the general conclusions
of equilibrium theory concerning the connection be-
tween quasiparticle d.f. and momentum d.f. may
be extended to transport theory without any deep
modifications.

We refer the reader interested in the details of the
calculation to Ref. 26.



