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The problem of relating the semiclassical and quantum treatments of statistical states of an optical field is
re-examined. The case where the rule of association between functions and operators is that of antinormal
ordering is studied in detail. It is shown that the distribution function for each mode corresponding to this
case is a continuous bounded function, and is also a boundary value of an entire analytic function of two
variables. The nature of the distribution for the normal ordering rule of association and its relation to this
entire function are discussed. It is shown that this distribution can be regarded as the limit of a sequence ol'

tempered distributions in the following sense: One can find a sequence of density operators p&„) which con-
verges in the norm to the density operator p of any given 6eld (consisting of a single mode), such that
each member of the sequence can be expressed in the form o&„&

——1'e&&„&(rl ~
sl(s

~
&t's, where P&„& is a tempered

distribution.

I. INTRODUCTION
'

N the quantum description of optical coherence, one
~ ~ specifies the statistical state of a radia, tion Geld by a
density operator p. In terms of this opera, tor one can
de6ne' the coherence functions of arbitrary order
N=»+r&t:

~l& ss "' ni ssss&, "'sm (xlyx2& ' ' gni yl&ysr
' ' 'ym)

=tr{t&E' & &(g,) Z &
—

&(g )
&&&s&&+&(y&) &. '+'(y-)), (1.1)

where tr stands for trace and E;,& &(x,) and 8„,&+&(y,)
are the typical Cartesian components of the nega, tive
and positive frequency parts of the electric held
operator at the space-time points x& and y&, respectively.
These operators may be expanded in a complete set
of mode eigenfunctions

R&-&(x) =Q&, d&,f&"&(x);

E &+& (g) = {F &
—

& (g) ) t —Q ) &t)tf ix & a (g) (] 2)

Here, the suSx X specihes the mode which, in particular,
may characterize the momentum and the polarization
of the photon. dq and a},~ are the annihilation and. crea-
tion operators, ' respectively, of the photon in mode P,
satisfying the commutation relations

[&t&„~& ]=L&t& t, &tx tj= 0; I &t&„&tx']= ~&„&,' (1 3)

It will be found convenient to choose the eigenstates

I {s)) of the annihilation operator ax as our basis

(1 4)

&t&,
I sx) = s&,

I s», ;

&sxI sx&=1.

(1.5)

'Pl tip So 8)I, —
&[, Sg

»&,
——0, 1, 2, (1.8)

d~'d. l»~&=»I»~» a~I»~&= (»x)"'I»~—»
&t&[I»»= (»&+1)"'I»&+1)

in the form
& ny

I'~& =exp( ——'.-
Is~ I') 2 —„I»».

&& (&t [)[/2

They «iso furnish the resolution of the identity

(1.10)

I-"&&: I«'- =1
7r

where d'sq=—dx~dy~=rqdr~d8~ and the integration ex-
tends over the whole complex s plane. Any operator and
in particular the density operator p, which has the
following expansion in Fock representation:

p"=r. r. Pi-i, i-iI{~)&&{»)I, (1»)
Ins~ ~n~

where

Since a}, is not Hermitian, its eigenvalue s}, will, in

general, be a complex number

s&, = x&+t'yx rxe" &; (xx,yx——,r&„8&, real) . (1.7)

The sta, tes
I s», can be expressed as a linear combination

of the basis states of the Fock representation

pi-[, i-[=&{~)III {»)&,
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'R. J. Glauber, Phys. Rev. 130, 2529 (1963). Glauber con-
sidered only even order coherence functions of the type G(""),
which he calls nth-order coherence functions.' In this paper all operators are denoted by caret signatures.

can also be expressed in terms of the overcomplete
family of states

I {s})in a "diagonal" form

d'{ )4 ({ })I {-))&{ ) I (1 14)

where g({s})is a suitable distribution over the complex
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variables {s}.A formal expression for this distribution
has been given by Sudarshan. '

In the semiclassical description of optical coherence,
on the other hand, one describes the statistical state
of the radiation field by an ensemble probability
distribution and the X=e+m order coherence functons
may be defined as'

(n, m) (I', , ;, ...;„, , ... „x,x, x„,y,y .

where ( ), denotes the statistical ensemble average. It
is convenient to introduce the linear functional

in terms of which the coherence functions may be
defined as

(n, m) (
31,$2, '''&; kl, k2" k«(X1&X2y Xrl j ylty2 ym)

~ 'k m ~ ~ ~ ~ ~ ~

8u, , (x)) bm;„(x„) )I)gk, *(y&)

probability distribution p(s) and the quantum density
operator p such that

tr{pG(a,aI)}= p(s)G(s, s')d's

for suitable operators G. However, since the operators
a and at do not commute, the association of G(a,at)
with G(s,s*) is not unique, and will depend on the rule
of association between operators and functions. It is
advantageous to choose the set of operators IG(a,d+) such
that it consists of all bounded operators including the
identity operator. Since the expectation-value mapping
is a linear functional it is suf6cient to consider the set of
unitary operators

G(a, a)) =exp(nat n*a—). (1.18)

Using the commutation relations between a and at we

may rewrite the right-hand side in the two alternative
forms

exp(naI —n'"a) = exp( —-', nn") exp(nat) exp (—n*a) (1.19)
= exp(+-,'nn') exp( —n"''a)

)& exp(na)) . (1.19')

The statistical state is specified by the linear functional

F[n]= (exp (nat —n*a) ), (1.20)

where bFfu)/f')n(x) denotes the variational derivative
of the linear functional F[N) with respect to u(x). ' We
may think of F[lj as the characteristic functional and
the I'" ) as the (polynomial) moments.

It is of interest to associate the quantum density
operator p and the (semiclassical) ensemble probability
distribution p({s})in such a way that the coherence
functions defined in the two schemes are identical.
We may, instead, require that the characteristic func-
tionals in the semiclassical and quantum descriptions
be the same.

For convenience of discussion we shall restrict our
treatment here to a system having a single degree of
freedom (one mode); the essential part of the dis-
cussion can, however, be extended to systems having
a finite number of modes. When the number of modes
become infinite, new mathematical problems arise in
connection with the quantum-mechanical specification
of the state of the system. ' But we shall not enter into
these questions here.

We seek, then, a relation between the ensemble

' E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963); also
in Proceedings of the Symposium oe Optical 3fasers (Polytechnic
Press, Brooklyn, New York, and John Wiley 8z Sons, Inc. , New
York, 1963), p. 45.' E. Wolf, in ProceeChngs of the Symposium on Optical Afirsers
(Polytechnic Press, Brooklyn, New York, and John Wiley 8;
Sons, Inc.„New York, 1963), p. 29.' Compare E. Hopf, J. Rational Mech. and Anal. 1, 87 (1952);
I. E. Segal, Canad. J. Math. 13, 1 (1961);R. M. Lewis and.R. H.
Kraichnan, Commun. Pure and Appl. Math. 15, 397 (1962).

6 I. E. Segal, Illinois J. Math. 6, 500 (1962); see also E. C. G.
Sudarshan, J. Math. Phys. 4, 1029 (1963).

or equivalently, by the linear functionals

F&[nj= (exp(nat) exp( —n*a)) = exp(-,'nn*)F[n), (1.21)

F~[nj=(exp( —n*a) exp(na)))
= exp( ——,,'nn*)F[nj. (1.22)

If we consider the functional FN[nf to be the charac-
teristic functional, we get a distribution p)))(s) which
satisfies the relation

p)) (s) exp(nz* —n"z)d'z

=tr{p exp(nat) exp( —n*a)}, (1.23)

so that it is identical to the distribution P(s) discussed

by Sudarshan' (see also Mehta, Ref. 7). In this paper
we shall be mainly interested in the correspondence
based on antinormal ordering and in considering
F~[nj to be the characteristic functional. Thus we seek
a distribution pz(s) satisfying the relation

pg(z) exp(nz' —n'z)d'z

= tr{p exp( —n~a) exp(naI) }. (1.24)

In the following section we derive an explicit form
for p~ (s) and in Sec. III we discuss some of the proper-
ties and show that it is in fact a continuous function.
Section IV includes a discussion about the nature of
pk) (s) and also the relation between the function p~(s)
;knd the distribution pk)(z). It is shown that pk (s) can

7 C. L. Mehta, J. Math. Phys. 5, 677 (1964).
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se uence o istri-se uence of tempered dis ri-
readily follows that tb tions. It then rea

t eseh semiclassica
btain a ngorouui

bl'hd }1f a theorem esta is elation o a
earlier paper. '

DISTRIBUTION FOR ANTIN

a distribution p~(z)We are
'

W e interested
'
in obtaining a i z

eneratingsuch t ah t the quantum g t
satisfies the relation

2.1)Fg[n7—= trfp exp —n

'
tegrable and also squaren articular', p~ in egrHence, in

/)'", o

function o w

with se-
en

'

constrain ssatisfies certain
r ro erties.

e seen if

eproducing p p
a is satis e,That property a

resses p in the form

3.5)

one expresses p

)(4.1,

thef and A.„areei enstates o p
weh i 0&X„

where
corresponding eigenva . s s
have

ARSHANMEHrA ~NN O V. . C. G. S~ ~

P& (z) exp (uz* n*z)(P—z, (2.2)
pA z

7r n
(3.())

also
1

&- 2 I(zI+-) I'=-.
7r n

we note thatthe assertion (b) wTo prove e
A

I z)(zl d"=1, (2.3)

andand the integration
'

n extends
th ol tio1 1 Uover the whole comp ex z

of the identity (3.7)

, 2.1) in the formwe may rewrite

z*—n'z) tr(P
I z)(z I }d'z.Fg[n]=— exp nz —n z

o
'

2 and (2.4) we see thatComparing (2.2) an . at

P~(z)= —(zIPIz)

(2.4)

(2.5)

x nz* n*z—)d'z= (exp( na—) e pex na~))pg(:) exp(nz* —n*z z= — e

=exp( ——', In
' exp u

ar we obtainndt —n*a) is unitary,But since exp(n —n
"

t n"Yi))
I

—=
I
tr fP exp na —nI(exp(nat —n a — " na n

Hence,

n'z)d—'z ~&exp( ——, u~',pg(z) exp(nz —n'z ——
u~

".at
'

1 ~ zIPIz) can be
'bd d as a probabi}ity distri

b
1

of association e ors
is that based on antinorma

pg (z)d'z = 1. (3.10)

ar w =0 we obtain thear when n= wed. In particular w = weas require .
~ ~

norma iza i1' t'on condition

e
' t nsform of P~(x,y:e Fourier transF&(s,t) denotes the
' t ns

p~(x, y) exp z sxP&, [z (sx+ ty)]dxdy, (3.11F,i(s, t) =

(3.1)

3.9) ith n —,z(s+ )(3.2) then using . w' zt w

z is boun e az is d d nd integra e,
'

rable. In fact

(p& (x,y) ) 'dxdy

IF~(s,t) I'dsdt

'(s'+ tz) tdsd-t=-..13-—.' s
' =- —. 3.13)exp[ g s ~ ~ .13

F (~)
If

III. P. PROPERTIES 0
is

'
o erator, which is necessarily

the Pock representation satis y

p, ;&~0,
k.for all j and

I P(', ( I ~~Pi,jP(,(,

ator impliesor
' '

f the density operato
'

pNorma}ization of t e en ato p

Z, P;,,=1,
in 3.1), the inequalitywhich gives, on using

(3.4)&p, , ~&1, for all j.
ro ertiesof p toderive t e oWe shall use these properties o p o

o erties of p~ z .

(b) For all n, IF~[nj = p~ * nz—
2

4 4 ~ 0

being considered by V. ais unction wa, s eindistribution un
'

ein
published) .
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' ouri
' '

of 3.11) givesI' rier inversion o.

P~ s ex t dsdt. (3.14)P&(s,t) expI —i(sx+ty)] st ~(x,y) =

r s lvcsHcncc ln tcgl ation ovc g

p& (x,y)dx

, OIIF RFNCES[ gA OP'I I &AM f c L A S

o

N GAUM

d by thc followl

UAN

bc exprcssc

F~(0,t) exp( ity—)dt

OQ

IFg(0, t) Idt~&— exp (—-', t2) dt

= (2/ )'" (3 13)

, ~. S' ilarly for all x,ertion c . imiwhich proves assert

0 & pz (x,y)dy & (2/2r)"'. (3.16)

t0,n)= — '
tt,~ =-8-'I I~) exp(2 Ill'+-2ln (3.17)

d, we end fine a functionTo show t eth last property ( ),
p(f q) as

(3.20)A(s)-s —A (x,y) (

alld g) ls a so a
o anal tic function o wl of an entire n

l lfor their rea
is

' '
n and P and tha, tis analytic in n an a

& b2 (3.21. )ol 8& ~~x~~cz and 6&z yzA(x,y)=0, for a1 x a2

f complex

shows that

which holds only if
' A=O.

(3.22)

in to a well-knowwn theorem o
and hence

Hence; ord g
l th yA( p-=

e and p real, i.e. , A x,ycertainly for n an
an o a step urfurther and say t a

=n —ip anof f d„heded as a function o
for all p and 2t. isp= n i 'denticaBy zero orq=n+2P 1s also 1 e11 1

so that

1=-2 Zt-, „
5$ tS 07r m n

—lgl't~(s)=t (s',s)s ~'~

(3.18)

(3.19)

1f-Reproducing Property

"over-complet "representation s"over-comp ete re
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(3.23)

s* d'sp(f', s) exp( —
I
sI2+2ts* d s. (3.24)

K(2t,s)pg, s)d's,

usin (3.2) and (3.4) that the
318) i bol le ri ht-hand side of . ].

1 2 1 2)d2s

1 tic function o e x
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yaoaen
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(3.m)(lt ) exp( —I.-I "+&")fi(n, )

w thatcan also & owIn a stric tl similar manner, one

d. - &»eintegral q

&(.y) exliIi(si:+ y d:g6p

*Is*&(s'lpl~& exp(-. l~l +-' I')».(i.,~) =—

E(i,s)p(s, rt)d's (3.27)

pg (s,y) expLt ($$+ ty) j

Xexp — - dxdy,)& exp — - (4.1)

in the previous section,
)(+ I

"I + ),pp(x, y)= (1 m x

F~)n]=F,v (s,t)—

p(x, y) exp Li(sx+ty)]dxdy

=exp ~ (s'+t') jF~(s, t) = e~ ~'F~Ln];

n= ', i(s+it) -. (4.2)

(3.25) and (3.27) are not so thatIt may be note a
lex conjugates ore in fact comp exindependent a,n ar

d
'

f the self-h
ro erty of the type given a, oproduci g proper

it satis es e
'
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'

&&exp( —
I

i)—sl')d'i)

1 (A+8 0—
5)zp~l

2
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the density operator in t e

—s"
I

'-)d'&, (3.28b)&& exp( —i) —s
&(s) I

s&(s
I

«'-', (4.3)
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(4 6)F12[0]=1.
The positivity condition is more involved, and may be
written in the form

functional associated with a function g(z)=ptt(z). If
FN(s, t) does not increase faster than a polynomial in
s, t, we may identify p with a tempered distribution.
But in general neither of these conditions can be
guaranteed. It is easy to construct examples in which
Fzt(s, t) increases like an exponential or even like the
exponential of a quadratic form

l compare the Appendix
8, Ref. (13)j. In fa,ct, the only requirements on the
distribution P are normalization and a positivity
condition. The normalization condition can be written
simply as

butions are to be understood in terms of the linear
functions (4.10), (4.11) defined over the matrix ele-
ments. Since every bounded operator can be expressed
as a linear combination of the unitary operators given
by (1.18), it follows that the correspondence (4.5)
defines the density matrix integral (4.9).

To demonstrate this assertion we note first of «H that
since

4vztt= (u+v) (u+v)I —(zt —v) (u —v) I

+z(u —iv) (u —zv) I—z(u+iv) (u+ iv) I,

it is sufficient to show that the sequence of matrix
elements

y(„1(z)(z
l

ww"
l
z)d'z,

n 2

Q a. z —F(s,t)—
Bs Bt s=t=o

(4.7)
converges for every vector x, to

p(1= 4(1(z) lz)&zld'z, (4.8)

for all sets of numbers a„and for all tV.

While it is not possible to construct g as a, tempered
distribution in all cases, it is possible to exhibit a
sequence of tempered distributions it &„& such that the
sequence of operators

y(z)(zlww' iz)d'z.

For this purpose consider the operators p and fT=mu~
in terms of their Fock representation matrix elements

p„,„and |T„,respectively. Without any loss of gener-
ality we may choose m also to be normalized so that
tr(wwt) =wtw=1. If

converges to the operator p, „=o, n, ~')3f,
then it is easy to show that F&Ln], (n=zi(s+it))

p = y(z)lz)(zl d'z. (49) increases only as a polynomial of degree not greater
than 2M. Consequently, pt2. (z) will be a tempered
distribution. It is thus sufhcient to show that we could

Weak convergence implies that for any two fixed construct a sequence of density matrices ",„wi
vectors u and v, the sequence of matrix elements

p(v) n, n' e, e'&v, (4.12)

yi„i(z)(zl vu"
l
z)d'z, (4.10) such that the sequence of numbers

converges to

tr(pvu") = «t(z)(zlvu"lz)d'z (4 11) converges to

(4.13)tr(p(via) P p(v)n , n '0 ri', i~ q. .

n, n =0

The operator integrals (4.8), (4.9) involving the distri- tr(P~)= 2 C-,-~-,-'
n, n'=O

(4.14)

"If we are only interested in weak-operator convergence, we
can follow J. R. Klauder, J. McKenna, and D. G. Currie (to be
published) and exhibit a series of density operators which con-
verge weakly, for which the associated distributions @(„& can be
identified with square integrable functions. The essential point
of the construction is to define the distributions @(,) by the
mapping

(v) p t
exp t 1(sx+ ty) ]—+

0, otherwise.

In this case we can associate with g(,) a function whose double
Fourier transform vanishes outside a rectangle and is bounded
inside it. Note added in proof. Dr. J. R. Klauder has informed us
that this sequence of density operators also converges in norm.
It is therefore possible to construct a sequence @(„)of distributions
which is not only tempered but also square integrable which con-
verges in norm with the distribution p associated with an arbitrary
density operator p.

Let us define p(„~„„as

p („)„„1=p„, 0 ~~ fl ~~ p, 0 ~&
e' ~~ py but not n =e' = v,

pp ~) 112ZP I

=0, otherwise. (4 15)

The operator p~„~ so defined is positive definite and has
unit trace. To prove the weak convergence we note
that since both p and 0- are Hermitian and since

tr (p2) ~&1, tr (o') = 1,



C. I. . MEHTA AND E. C. G. SUDAP SHAN

it follows from Schwarz' inequality that not only is
tr (Po) defined and less than unity, but the series

We conclude this section by pointing out some formal
relations. The integral equation (4.1) has the formal
solution

pn, nrgnI, n
n, ~'=O

is absolutely convergent. But this in turn implies that
the sequence of numbers

4'(&) —=p~(s) =exp( —-'V') p~(s),

and we can write formally

p= Is)(s I
exp( —,'-P)pg (s)«ss.

(4.17)

pn, n'&n', n
n, n'=0

converges to tr(pVr). On the other hand, the sequence
of numbers p„" „+,P„„converges to zero. Hence the
sequence (4.13) converges to (4.14) and our assertion
is proved.

It is to be noted that in view of the nature of the
operators p ~,), we have succeeded in exhibiting a,

sequence of density operators which have associated
tempered distributions g(„) and which weakly converges
to the density operator p. While the sequence chosen
here is in some ways the most immediate, it is by no
means unique. "

Actually the convergence of the operator sequence
is much stronger. We can, in fact, show that the operator
sequence converges in norm, i.e., the sequence of
numbers

p=
7r2

I~&&f I'l~&(~I«'~«'~

P(&" » expL —
s (I & I'+ I~ I') jl f &(~ Id'fd'n

I&)&~I exp(l*n —
z lf'I' —llnl')

We can also obtain an alternative expression for p

in terms of p~ in the following manner by using the
analytic properties of P(f,rt), which is defined by (3.17).
If we formally replace a and y in pz(x, y) exp(x'+y')
by sr (i +st) and 2r i(f—sl) respectively, we should

essentially obtain P(i,rt) In f. act"

P(|,~) =-p(l~)P. (l(r+~), l'(l- —~)). (4.»)
Hence

IIP P()ll'= 2 IP-, - —P()-,- I'
In, n =0

(4.16) fi "+s) f* sl—
Xpeal, i d't d'rt (4.20).

2
'

2

converges to zero. Now

n, n =0I I
n, , n =v

a,nd since the series

+( 2 P-, -)'&2(Z P-.-)',
n=v+I n=v

prt, ~
n=O

2 IP, ' P()-,"I'= & IP-,- I'—P. ,
'

Finally one may note that, if the given function

Pz(x,y) is not the boundary value of an entire analytic
function then (1/sr)(sl pls) obtained by using the ex-

pression (4.20) for P will not agree with the original

expression for P~(s). The reason for this is that, in

general, any arbitrary function cannot be identi6ed
with the matrix element of a bounded operator in the
over-complete

I s) states. In fact (1/sr)(s IP I
s) thus

obtained will only be a projection of P~(s) which can l)e

identified in this way.

is absolutely convergent, it, follows that the sequence

(4.16) also converges to zero. Since convergence in the
norm implies strong convergence, the sequence of
operators p(„) converges strongly.

We have thus been able to exhibit a sequeszce of deszsity

operators which converges in norns (arzd hence, strongly)

to any givendensity o.perator, for each menzber of which

the associated distributiosz p(„) is tempered. But in

general, the distribution associated with the limit is
not tempered.
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