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A formalism for treating the many-body problem of composite particles is presented for the case of com-
posite particles consisting of two fermions. Commutation relations for composite-particle operators are de-
rived, as well as a sum rule satisfied by the composite-particle Green’s function. In an approximation that
shuts off the interactions between composite particles in a consistent manner, the dynamical equation for
the one-composite-particle Green’s function is solved and the distribution function for the composite particles
obtained. Possible applications to real systems are discussed.

I. INTRODUCTION

HE many-body problem for a system of composite
particles is one that has received attention from
time to time in recent years. Most of the efforts that
have been made to treat this problem attempt to formu-
late the problem in such a way that the deviation of the
composite particle from true boson or fermion behavior
can be handled in a perturbation-theoretic manner.
There have also been some efforts, notably those of
Dyson! and Girardeau,? to handle these deviations from
simple statistics by the imposition of constraints on
the system.

It is the purpose of this paper to describe yet another
approach to the problem which is, in principle, exact. It
will be shown that composite particles can exhibit Bose-
like or Fermi-like behavior under certain circumstances
and that physical significance can be attached to the
deviations from pure Bose or Fermi character of the
composite particles. These deviations from simple sta-
tistical behavior will be shown to occur in the commuta-
tion relations, the sum rule satisfied by the spectral
weight function of the one-composite-particle Green’s
function, as well as the mass operator describing the
interaction of the composite particle with the medium.

A dynamical equation for the one-composite-particle
Green’s function is derived and solved in what we call
the noninteracting limit. The corrections to the Bose or
Fermi distribution functions due to the composite
nature of the particles are derived. These corrections
are seen to vanish in the limit of low-density systems
where there is little overlap of the wave functions of the
elementary fermions composing the composite particle.

The main value of the present approach, we feel, lies
in the utilization of the Green’s function formalism in a
space spanned by the eigenfunctions of the isolated
composite particle. In this formalism the discussion of
the “bound” states of a quasiparticle is straightforward.
It is thus a particularly suitable method for the descrip-
tion of plasmas, where the bare composite particle
(hydrogen atom, say) becomes, upon being introduced

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

1F. J. Dyson, Phys. Rev. 102, 1217 (1956).

2 M. Girardeau, J. Math. Phys. 4, 1096 (1963).

into the plasma, a dressed particle which will in general
have a finite lifetime as well as shifted levels.

In addition, it will be seen that the present formalism
effects in some measure a separation of dynamical effects
from statistical effects. It is, therefore, anticipated that
it will be a useful approach to adopt in treating those
systems whose behavior is determined largely by sta-
tistics rather than dynamics, e.g., the two isotopes of
helium in the liquid state.

II. COMPOSITE-PARTICLE OPERATORS

To describe the present method it will be necessary
to define composite-particle creation and annihilation
operators. For the sake of simplicity we shall restrict the
present discussion to the problem of a composite particle
consisting of two equal-mass fermions. It will be clear
that the method may be generalized in a straightforward,
albeit tedious, manner.

Let a,'(k) create a fermion with momentum k. The
letter s is taken as an index (two-valued for simplicity)
whose value identifies the species of fermion under con-
sideration. We then define the following operator:

W,S/T(K,a,t)
=/dk do(k)atGK—K, HaTGK+k, ). (I1.1)

This operator® is seen to create a pair of fermions (one
s particle and one s’ particle); the pair having center-of-
mass momentum K and an internal state, either bound
or scattering, identified by the quantum numbers a. The
function ¢.(k) is the properly antisymmeterized, if
necessary, wave function in momentum space of the
internal state of the pair of particles.

The commutation relations satisfied by the elementary
creation and annihilation operators are

Las'(k),as " (k') J+="[a:(k),as (k') 1+ =0,
[dsT(k) s’ (k,) :}+ = 05Ok’ »

(11.2)

3Tt will be observed that the composite-particle creation
operator so defined differs somewhat from those defined by Dyson
and Blatt [in his book, for example, John M. Blatt, T/eory of
Superconductivity (Academic Press Inc., New York, 1964) Jin that
the center-of-mass momentum is not integrated over. Thus, the
pair that is created is characterized by the six numbers, P, «.
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If one introduces the Fourier transforms of the ele-
mentary creation and destruction operators, it is not
difficult to show that an operator analogous to 7'(K,a,z)

exists. In fact,*

H(K,a,f) / R KRy H(R,a,f)
Tss ,a,t) = A ) ,0t)
(2m)?

(I1.3)

where

Tss'T(R,Ol,t>

=/dr SV (R+2r, )V (R—3r, 1) (I1.4)
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and
») /dpw)—' (IL5)
«(r)= | ——da(p)e-irr. .
] (2n)0 p

The pair creation operators satisfy the relationship
Moo (—) Pomryr T=0, (I1.6)

where P, is the parity of the state a. Thus, for s=s" we
see that the #' operator vanishes identically for sym-
metric states as is to be expected when the elementary
particles are fermions.

In order to gain some insight into the nature of the
composite particle created by the 7, we construct with
some algebraic labor the commutation relations for
these operators. They are given by

[77—38'(K7a)l) et (K7a7t)]—= [WSS’T(Kya;t) ,WTT'T(K,O{J)]_z 0 )

[WS'S(K’a:t))WTT’T(K,7a,,t)]—-

= 6KK’6aa’[681'63’1"—(_)Pa(ss'r’as’r:"}"/dk¢aT(k)[¢a’("‘%K—I’"%K,_k)af’f(K,_‘%K—k)as(%K_k)as"r

+ po (AR — 2K —K)a, (K — 3K+ K) a0 (3KA+K) 8,7 — oo (— LKA K+ K) 0, (K — 1K+ k) 2y GK-+K)3,

—¢o GK—3K'+k)a,'(K'—3K—k)a,(3K—k)5, . ].

Thus, it is seen that the composite particle consisting
of two fermions is neither a boson nor a fermion. The
deviations from pure Bose behavior appear in the form
of integrals on the right-hand side of Eq. (IL.7). These
terms are due to the internal structure of the composite
particle. It is clear that the size of the corrections to the
delta-function term depends on the degree of overlap
of fermion wave functions and the restrictions that arise
from the Pauli principle. Indeed, it is not difficult to
show that if the internal wave function of the composite
particle in configuration space is a delta function, then

Wss:T(R,a,t)
and
7r8’8(R,7a,’t)

do in fact commute for R=R’. This means simply that
the composite particle is contained entirely within a
sphere of vanishingly small radius and there is, there-
fore, no opportunity for the fermion wave functions
from one composite particle to overlap with those from
another composite particle. It might therefore be con-
sidered plausible that tightly-bound composite particles
will behave like bosons if it is unlikely for the centers of
mass of two such particles to coincide. It is the case that
the expectation value of the additional terms in the com-
mutation relation rigorously vanish in the limit of low
density for translationally invariant systems. We have

4 We shall denote a function and its Fourier transform by the
same symbol, distinguishing between them by the argument which
will be stated explicitly.

(IL.7)

thus recovered in a straightforward fashion an early
result due to Ehrenfest and Oppenheimer.5

III. COMPOSITE-PARTICLE GREEN’S FUNCTIONS

In order to describe the behavior of physical systems
at finite temperature we shall be interested in the ex-
pectation value of operators computed with the aid of
the grand canonical ensemble. Thus, for example, for
an operator .S we have

(S)=Tr[{exp[—B(H—X; p:N:)1}ST/
Trlexp[—B(H—2:w:No)]], (IIL1)

where the sum in the exponential is over all the species
in the system, and 3=1/KT. The one composite particle
Green’s function is defined by
988’(R7a)t; Rlaalytl)

= (1/i)2<T(WS’s(R;“;t)ﬂ'n’T(R,;O‘,;t,))) , (1I1.2)
where T" stands for the Wick time-ordering operation.

It will also be convenient to introduce two auxiliary
functions defined by

933’>(Rzaat; R,7a,’t,)

=(1/))mo(Ra)mss (R 1)), (ML.3a)
g83'<(R70‘7t; R’sa/J’)
=(1/9) %' (R, ) e s(Ryeyt) ). (II1.3b)

(1; 3P1) Ehrenfest and J. R. Oppenheimer, Phys. Rev. 37, 333
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It will be noted that for {>#, G=G> while for (<?,
G=g<. It is clear that more complicated Green’s func-
tions may be defined in analogy with the formalism that
deals with many-body systems of particles with no
internal structure. We shall have no occasion, how-
ever, in the present paper to make use of such
functions.
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IV. THE BOUNDARY CONDITION AND THE SUM RULE

It is well known that the Green’s functions for un-
structured particles satisfy a quasiperiodic boundary
condition in the imaginary time interval 0>¢> —:8. It
will now be shown that a similar condition applies to
the composite-particle Green’s functions. From Eq.
(I11.3b), we have

Tr[(1/4)*{exp[ —B(H — i uilVs) Jmse (R0 )mmoro(Ry,0) ]

(388’<(R)a70; R,)a/;tl) =

(Iv.1)

Trlexp[—B(H—2 i u:N:) 1]

and by using the cyclic invariance of the trace and judiciously inserting a factor of unity, we obtain

988'<(Rra70; R',a',t’)

= Tr[(1/4)*{exp[—B(H—3_: uiV )] [exp(B(H — 2 iV 4)) Jmers(R,0,0) [exp(—B(H — 20: uilV ) I (R0 ,1) } ]

Tr{exp[ —B(H—2:p:V:) 1}

Further, it is not difficult to show by operating on an
eigenstate of the number operators that

Lexp(—B 2 wilVi) Irss(R,a,0) exp(8 X2 uilV2)
:exp(ﬂ Z #i)ﬂ-S’S(R:a7O) )
which, in conjunction with the prescription for convert-

ing Schrodinger operators into Heisenberg operators,
yields the result

(IV.3)

g88<(R)a70; Rlaa/:t,)
=[exp(8 X #:)1Gs” (R, @, —1; R’ )t).

The plus or minus sign that generally appears in this
relationship is absent here because we have used the
ordinary Wick time-ordering operator rather than the
one which introduces sign changes according to the
number of fermion permutations. Because we shall be
dealing largely with systems possessing both spatial and
temporal translational invariance, the Green’s functions
introduced above depend on R and R’ only through the
combination r=R—R’ and upon ¢/ and ¢’ only through
the combination r=¢—¢. We shall be able to make use
of the Fourier transform of the Green’s function
defined by

(Iv4)

9SS'>'<(wa1a2a,)
=/dl‘/dr g iPrrtioro > <(r 7 aa’). (IV.5)

Taking the Fourier transform of the boundary condi-
tion, we obtain

g88’<(P:waa>a/)
= eXP[_B(w‘Z Mi)]gss’>(P,w,Ul,Ci/) . (IV6)

(IV.2)

If we define a spectral weight function 4 (Pw,a,a’) by
Ay (Pow,0,0))= Go™(Prw,a,’) — Gos<(Pyw,a,a’) , (IV.T)

then the boundary condition may be written as

G (Pywya,a’) =1+ f(w) J4ss(Pw,aa),  (IV.8a)

G <(Pw,00,0)) = f(w) A s (Proya,a’) (IV.8b)
where

J(w)=[exp(Blo—2 u))—117". (Iv.9)

The spectral-weight function 4(P,w,e,e’) is found to
satisfy a sum rule which casts additional light on the
deviations from pure Bose statistics on the part of the
composite particles. From Eq. (IV.7) with the aid of
Eq. (IV.5), we have

Ao (Pyw,aa”)

= /dr e G, (P,r,0,0") — Goo<(P,7,a,0’)} . (IV.10)

If we integrate this expression over all w and interchange
orders of integration on the right-hand side, we obtain

dw
/ Z_A ss’(P)w:aaa’)

y(s
= —(mo (P, o, ' =0)1y (P, @, 1=0))
4 (reo(P, @, 1= 0w '(P, o, '=0)). (IV.11)

Making use of the commutation relations [Eq. (I1.2)]
and the definition of the elementary single-particle
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Green’s functions, we obtain finally
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Ges” (P, 7=0, 0, &/)— Gss<(P, 7=0, a, &) = 6aa:+i/dk 0¥ (K)pa (K)[Gs<(3P—k, t=0)4G,<(3P+k, t=0)]

=0qar— / dk ¢o*(K)por (K)[1:GP—K)+no (3P+k)].

We have here made use of the definition of the Green’s
functions of the elementary particles

Gs(p,) = (1/9){T(as(p,1)a."(p,0)))

and the relationship between the single-fermion density
and the zero-time-difference one-particle Green’s func-
tion for that species of particle.® If we set a=a’ and
interpret the composite-particle Green’s functions for
zero-time difference in the same manner that the zero-
time-difference elementary-particle Green’s functions
are interpreted, then the physical content of Eq. (IV.12)
is that the composite particles are bosons subject to
certain restrictions. The substance of the restrictions is
that, for a given center-of-mass momentum P and
internal state @, one must take into account the frac-
tional occupation by the separate fermion species of the
momentum states used in the construction of the
internal state a.

V. COMPOSITE-PARTICLE DYNAMICS

In order to extract the information contained in the
Green’s functions, we require a procedure for their
determination and toward this end we shall develop
dynamical equations from whose solution the one-com-
posite-particle Green’s function may be obtained.

The mixed (in the sense of particle species) two-
particle two-time Green’s function can be expressed in
terms of the one-composite-particle Green’s function as
follows:

Go®' (118,115 11 15't)
= (1/0)X T (W o (1) ¥ (12) U1 (11 ) ¥ (11'1)))
= Z ¢ *(1)pa(r) 1/ T (e o(Rya,t)mss ' (R, ,1)))

= Z, ¢'°"*(r/)¢a(r)¢ss'(R;a;t; Rlialit/) ) (VI)

(Iv.12)

where
r=ri—ry; r=r’—r)’
and

R=%(rl+r2); R/=%‘(r1/+rgl) .

This relationship may be inverted using the ortho-
normality of the ¢’s to yield

9“’(Rya:t; Rl:a,7tl)
= / drdr' ¢ o (v)po* (1) Got® (x1t 10t 18 1) . (V.2)

Thus, the one-composite-particle Green’s function is
determined once the ordinary two-particle, two-species
Green’s function is obtained. We shall now proceed to
derive the equation of motion for the desired function,
and exhibit some of the formal properties possessed by
it.” The Hamiltonian for a system consisting of two
species of equal-mass interacting fermions is given by

v2
H—usNs—pgNy=2_ /\I/’T<x)<_-2-+”r>\1lf(x)dx
T, m

+ ¥

77’

W, (x) U () (a,2 ) ¥ (2) V() dacd’

T, 7'=s,5", s#s, (V.3)
where we have assumed for simplicity the species inde-
pendence of the interaction potential. The time rate of

change of the Green’s function
Gg‘“,(rlf,l’glf; rl’t’,rg’t’)

we are interested in is given by

4G /dt= (/i) T QU (ert) ¥ (1o W V)0 e V) (1)K T (it (o) R e ) A (10)

+(1/2)28(t—t")[(Wor (1:10) W, (x20) U F (1)U (118 ) — (T (0 ) W T (1 ) W (118) Vs (r2) ) ] . (V.4)
To evaluate this quantity we require expressions for
(id/dt)V,(x)=[V,,H], o=s,s . (V.5)

6 We have throughout this paper, when dealing with the Green’s functions of unstructured particles, made use of the definitions and
notations employed by L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (W. A. Benjamin and Company, Inc., New York, 1962).

7 The dynamical equation satisfied by the two-species, two-particle Green’s function derived here appears in a recent article
by L. E. Pargamanik and G. M. Pyatigorskii, Zh. Eksperim. i Teor. Fiz. 44, 2029 (1963) [English transl.: Soviet Phys.—JETP
17, 1365 (1963)] as well as in an elegant unpublished work of J. C. Garrison and J. Wong, in a Bethe-Salpeter type approximation.
These authors assume the existence of a density-independent part of the vertex operator. The present derivation is given in order to
illustrate how this occurs in a straightforward fashion. In fact, it can be shown that this is a general feature of the Green’s function
formalism valid for even more complex composite particles than those considered here.
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A straightforward calculation of [W,,H ] yields

FOR COMPOSITE PARTICLES
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[v,(x),H]= (-—EV—;-I-;L.,)\I/S(x)—I- /dz 2(,8) { W,T(2) Wy (2) Wo () + Vo T (2) Wy (2) W)+ Vo T (2) Vo (2) W () } . (V.6)

If one takes into account the fact that the expectation values of the form

(T(\Ils’T\I,s"I,s"I,s’\I’s'T‘I,ST)> <T(‘I,3‘I,3T\P3\PB\I'8’T\I”J)>

vanish when evaluated in eigenstates of particle number, one obtains the following dynamical equation

for Go*%'(rityrat; vt ro't):
[ia Vi24-Vy?

— —,,Ls-—us,]Gg‘s'(rlt,rgt; rl't’,rg’t')
ot 2m

= —10(t— 1" ) [( Yo (r ) Wo(rat) Ot (12t ) o T (x1/) ) — (Wt (ot ) Wt (218 ) Uy (118) W (1t)) ]

+fdr3 'D(rl'—1'3){(T(\I’,'T(rgj)\l/s'(rst)\I’,'(rlt)\Ifs(rzt)‘I’J(l‘z’t’)‘l’y%f{t’)))

+ <T(\P8T (1'31) \I’s (l’at) ‘I/s’ (1‘1’) \I’s (r2t) ‘I,sT (rZ’t,) ‘I’s’T(rllt,))>}

+/dr3 'v(rz—rg,){(T(\I/s/(rlt)\lfs‘“(rst)\I/s(rat)\I/,(rgt)\I'J(rz’t’)‘I’sﬂ"(rl’t')))

FAT (Vo (2 1t) W (r5t) Wor (130) o () U, (121 ) U, 1 (112)))}

(V.7

A judicious application of fermion anticommutation relations allows one to express the first term on the right-hand

side of Eq. (V.7) as

— 6(5—' t')[u?(rl— 1'1,) 5(1'2— rzl) — Gs<(rll,r1’t)6(r2—— 1'2/) - Gsr<(r2t,l'2/t) 6(1’1 - 1'1/)_—_‘ .

Finally, the last term on the right-hand side

/dl‘g 1)(1'2—ra)<T(‘I’sl(rlt)\l’g/*(rst)\I’a'(rat)\I’s(rﬂ)‘ysf(”/t’)\I,s’f(rllt,))>

can, by the use of the equal-time commutation relations, be expressed as

+v(r2—rl)Gz"'(r;t,rzt,rl’t’,rz’t’)+/drg v(ta—13){T (Vs (x3t) Ty (130) Vs (2:1) W (x2) T, (x5t )V T (2) 1))

The resulting equation of motion for Go** (r1t,rat; 1t ,ro/t’) is given by

ot 2m

10 —V2—V,?
— [—~———~+v(r1—— r2)] — s — M ] G2 (et rat; 11t 1'1)

=—30(t—1')8(r1—r1")8(ra—1' )+ 6(t— ') [G:<(r:t,111) 6 (t2— 15 )+ Gor<(rat,1,/t) 8(xr;—11') ]

+/dr3{ <T(\I’3'T(r3l)\1’s'(rgt)\I’sl(rlt)‘I’s(Igt)‘I’sf(rzlt,)‘l’s'f(rllt/))>

F(T(X T (13t) W o (13t) Vo (11) o (028) W, (021 ) U T (01 1)) {0 (11—13) F0(r2—13) } .

There are several prominent features of this equation
which we shall now discuss. To begin with, we observe
that if all but the delta-function term on the right-hand
side is ignored, we have a description of a system of
noninteracting pairs of particles. We shall demonstrate
that this is the low-density limit of a system of com-
pound particles. The last two terms under the integral
signs are proportional to three-particle Green’s functions

(V.8)

and describe the interactions between the composite
particles and the medium. We have already seen how
these interaction terms yield the potential term that
now appears on the left-hand side of Eq. (V.8) and
describes the direct interaction between the two parti-
cles. It might be pointed out that in a similar calculation
done for 3-body objects, the three pair potentials that
describe the direct, medium-independent interaction of
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the composite particle (which may be in a 3-body
scattering state) also separate out exactly as in the
present case.

This interpretation of the separation of the inter-
actions is strengthened by the following observation.
The equation of motion is the expectation value in a
grand canonical ensemble of an operator equation. The
expectation value could just as well have been taken in
the vacuum in which case the resulting equation of
motion is simply the Schrodinger equation for the two-
fermion system.
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Moreover, we observe that there are two terms on the
right-hand side of Eq. (V.8) that persist even when
interactions with the medium may be neglected. These
terms are due to the Pauli principle and have a particu-
larly appealing interpretation which will become evident
in the next section.

VI. NONINTERACTING COMPOSITE PARTICLES

We shall first solve Eq. (V.8) neglecting the interaction
terms on the right-hand side of the equation.
From Eq. (V.2) we have

GZSSI(r1t7r2t; l‘llt’,l‘glt,) = Z ¢‘a(r)¢ﬁ*(r/) 983' (R,O{,t; R’)B;[/>
af

dPdw
=% f ¢ BR—i6 () (1) $g* (') Guwr (P 8,00)

(2m)*

(VI.1)

A Fourier decomposition of the first three terms on the right-hand side of Eq. (V.8) leads to
10(t—1)8(r1—11")8(ra—1a") — Gs<(r1f,t12)8(t— ') 8(ra—1o") — G <(rat,xs't) 6(t— ') 6(xt;—11")

dw dpidp:
=7 — ~iw(t—t’)/ eiPr (—r)tip (=) [ — G < (pit= 1) — iGo<(pat=1') ]

2 (2m)8

dw dPdp
=i | —gie (t—t’)/ P ®R)Hip =11 — g3, (1 P4-p) — 1, (2 P—p) ].
27 (2m)®

(V1.2)

We insert Egs. (VI.1) and (VIL.2) into Eq. (V.8) and neglect the interaction term on the right-hand side. Equating

the coefficients of ¢ ® R)—iw (=) one obtains

P2
Z I:w_——_ € Ms —#s’]d)a(r)d’ﬁ*(rl) gss'(P;a;B7w)
2M

af

dp
—+ ste-r)- | I i-p]]. (19
m

(2

Multiplying by ¢« *(r)¢s(r") and integrating over all r and r’, one obtains finally

d
i[aaﬂ— / _I'—¢a<p>¢ﬁ*<p>[m<%l>+p>+ns'@P—wJ]

(2m)?

iAas(P)

988'<P>a7:3:w) = }

w—(P?/2M)— ea

As in the case of Green’s functions for unstructured
particles, we have

Ass'(P,w)ayﬁ)
=i[ (P, wtie, a, B)— G(P, w—1ie, @, 8)], (VLS5)

which yields in the present approximation

Ao (Pyw,a,8) =214 5(P)d(w— P2/2M —¢,). (VL6)
We have therefore from Eq. (IV.8b)
21 A ap(P)d(w— (P2/2M) — e,
9331<(P,w,a,,3)= i B( ¢ ( / ) ‘ ) . (VI7)

eBle—2pi) 1

= . (VI.4)
w—(P2/2M)— e,

Finally, we obtain the density of composite particles
with center-of-mass momentum P and internal state a:
988'<(P7 TZO) «a, C()

dw

=lim | —e®7G,e<(Pw,a,a)
70+ 2

B Aua(P)
 exp[B(PY2M +ea— ) ]—1

Thus, we obtain the result that the composite particle
consisting of two unlike fermions has a Bose-like dis-

(V1.8)
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tribution function with an altered occupation number
in the numerator. It will be observed in fact that the
quantity A.s(P) is essentially the expectation value of
the right-hand side of the commutation relations [Eq.
(IL.7)] for s=7, s'=17', s#%s’. The physical significance
of the diagonal element of A,g(P) is that the occupation
of the state @ must be decreased by the extent to which
the separate species in their one-particle behavior
occupy the state. It is not difficult to see that in the
limit of low density

Aaﬂ(P) - aaﬂ ’

and one has a description of the propagation of inde-
pendent noninteracting composite particles.

VII. SELF-ENERGIES AND INTERACTIONS
WITH THE MEDIUM

We have constructed a theory that describes in a low-
density noninteracting limit a collection of independent
composite particles. On purely physical grounds we
known this to be a reasonable description of certain
types of systems. The question that we must now
address ourselves to is how to modify this theory for
densities that are not small and in the case where inter-
actions between composite particles may not be ignored.

In the approximation in which the interactions that
involve the medium may be ignored Eq. (VI.4) may be
used to define a self-energy whose origin lies primarily
with the Pauli principle and is present even when the
interactions with the medium are small. We require that

iAas(P)
Gew (PiaBi0) = —————
w—(P2/2M)—¢€q

1

Ew—(PVZM)—e,,—ZO(P,a,B) )

(VIL.1)

In this form we find the Pauli principle giving rise to a
density- and temperature-dependent level shift but no
width because of the reality of Z,. It should also be ob-
served that the “statistical” self-energy o couples the
internal states of the composite particle even in the
absence of interactions with the medium.

When it becomes necessary to consider interactions
with the medium the last term in the equation of motion
[Eq. (V.8)] may be used to define a self-energy due to
interactions with the medium and all of the procedures
used to handle the analogous problem with unstructured
particles may be brought to bear. We shall defer a more
detailed discussion of this matter to future papers where
the present formalism will be applied to particular
problems since the nature of the appproximations to be
used in treating the dynamical self-energy will depend
on the system under consideration.
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VIII. CONCLUSION

One may legitimately ask what advantage is offered
by the present formalism in contrast to other ways of
looking at the many-body problem for composite parti-
cles. In this concluding section we shall attempt to
answer this question.

To begin with we feel that a certain insight is afforded
by the method into the physics of the composite particle
in the medium. It can be shown that the appearance of
the Schrodinger operator for the composite particle in
vacuum on the left-hand side of the equation of motion
[Eq. (V.8)] is a general feature of the formulation and
occurs even when one considers composite particles
consisting of more than two particles. This means that
we have succeeded in relating an N-body problem in a
medium to the corresponding N-body problem in
vacuum. As a consequence of this fact, one has managed
to separate the interactions in the system into two
classes: those that occur directly between the particles
in the composite particles, and those that are mediated by
the surrounding matter. It is now possible, therefore, to
consider in a consistent fashion the treatment of some
interactions as small while others are not. Moreover, it
seems to us that certain questions of interest are more
easily formulated and answered by the method described
here. For example, in the case of a hydrogen plasma, one
might be interested in the degree of ionization of a gas
at a given temperature and density. Since a solution to
the problem in the present formalism yields a density of
composite particles as a function of center-of-mass
momentum and internal quantum numbers, one simply
sums these densities over all states of negative internal
energy and divides by a suitable normalization.

In addition, the separation of dynamical and statisti-
cal effects that occurs in the present procedure allows
one to consider the possible application of these methods
to problems in which statistics may be playing a greater
role than the interactions between composite particles.
Thus, a generalized form of this present method is now
being used to investigate those differences in the thermo-
dynamic behavior of the two isotopes of helium at low
temperatures that might arise by virtue of the different
statistics. '

In a totally different application, the reader will
recognize that what is presented here can be construed
as a formalism for describing the propagation of a
deuteron in infinite nuclear matter. The self-energy
operators now take on the significance of optical po-
tentials. In this context the statistical self-energy is
particularly interesting and calculations are under way
to calculate its effect on the scattering of low-energy
deuterons from heavy nuclei.
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