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The method of Sachs is used to obtain explicit expressions for the P- and D-state components of the
ground-state wave functions of H3 and He?, under the assumption that they have 7’=% and JP=4%*. The
effect of a reasonable admixture of these components on the electric charge form factors of the two nuclei is
calculated, and it is found that the striking difference between the observed charge form factors cannot be
accounted for in this way. It seems most likely that a combination of S’-state and 7'=$-state admixture
might provide an explanation of this effect without leading to disagreement with other experimental

observations,

I. INTRODUCTION

NFORMATION obtained from experiments in which
high-energy electrons are scattered elastically from
H?3 and He® may be expressed in terms of electric charge
and magnetic moment form factors for the two nuclei,
by making use of the Rosenbluth equation for spin-
systems. The basic formulas, which take account of the
charge, mass, and anomalous magnetic moments of
these nuclei,! have been used to calculate Fon(H?),
Fo.(He?), Fra(H?), and Fr,(He?) as functions of ¢2,
the square of the four-momentum transfer.? Since radia-
tive (soft-photon) corrections are included in this cal-
culation, an ambiguity could arise only from processes
in which two or more photons are exchanged between
electron and nucleus. While a careful estimate of these
contributions has not been made in the case of three-
body nuclei, it seems likely from other work? that they
are not more than a few percent, and hence less than the
present experimental uncertainties.

Several attempts have been made to understand these
four experimental form factors on the basis of various
assumptions concerning the three-nucleon system. In all
of these, nonrelativistic nuclear wave functions are used
to calculate the expectation value of an appropriate non-
relativistic charge-current operator, and nucleon recoil
is neglected. The error thus incurred is probably of order
¢*/M?, where M is the nucleon mass,* and hence is only
of minor importance for ¢><5 F~2. The dominant com-
ponent of the ground-state nuclear wave function is the
fully space-symmetric 25,2 state with T=% (denoted
here by 5).5¢ A detailed treatment of the effect of a
small admixture of the mixed-symmetry 25y, state with
T=1 (denoted by S’) has been given.® The only other
admixed states that have been considered at all care-
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P~ AND D-STATE

In the present paper a start is made on the extension
of the detailed nonrelativistic analysis of Ref. 5, which
was limited to the S and S’ states, so as to include the
P and D states with 7’=1%. Only the charge form factors
are considered here, and effects of exchange currents are
ignored. It is expected that the analysis will later be
extended to a similar calculation of Fi(H?) and
Frn.g(He?). There are ten even parity states with
T=J=%.2 Of the eight not already considered (i.e.,
other than .S and §’), three will be neglected for the
following reasons. Doublet spin states can interfere
with the dominant S state in the charge form factors,
but two of them are expected to have such small
amplitude as to be unimportant; these are the fully
space-antisymmetric 25, and 2P, states, which are
not included in Sachs’ classification.?* The remaining
two 2Py, states are considered in the present paper so
far as SP interference is concerned, but are assumed to
have such small probabilities that P? effects may be
ignored. Quartet spin states cannot interfere with the
dominant S state in the charge form factors, and one of
them is expected to have such small probability as to be
unimportant; this is the 4Pys state.

The remaining states all appear in Sachs’ classifica-
tion, and we have found it more convenient to work with
this formulation of the states than with that of Derrick
and Blatt.?? There are then two 2P;;, states (Sachs’
numbers 3 and 4) and three *D;» states (Sachs’ numbers
6, 7, and 8).24 For the convenience of the reader, Sachs’
formalism is rederived in the next three sections in a form
that corresponds more closely to the notation of Ref. 5.
Expressions for the charge form factors are obtained in
the following three sections, and Sec. VIII presents some
numerical results.

II. SYMMETRY PROPERTIES

Since we must deal repeatedly with quantities that
have mixed symmetry with respect to interchanges of
the three nucleons, we start with the permutation table
given in Egs. (3) of Ref. 5. Any of the quantities intro-
duced below that carries subscripts 1 and 2 (¢,x,1,R,2,
S,m,D,u) transforms in the following way under inter-
change of nucleons:

Popi=¢1, P1op1=3(3"2ps—¢1),
Prgr=—53Y2pot+¢1), (1)
Pospo=—2, Proaa=3(d2+3"%p1),

Prspo=5(p2—3%1) .

It can then be shown that the following combinations of
any quantities that transform in accordance with Eqs.
(1) also transform in accordance with Eqs. (1):

P2=Xon+X172. (2)

2 G. Derrick and J. M. Blatt, Nucl. Phys. 8, 310 (1958).
#R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing
Company, Inc., Cambridge, Massachusetts, 1953), pp. 180-187.

¢1=Xena—Xyny,
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I'urthermore, the combination
(3)

is fully antisymmetric (i.e., changes sign when operated
on by any of the three permutations), and the

combination
s =Xana+X1m 4)

is fully symmetric (i.e., remains unchanged when oper-
ated on by any of the three permutations). We shall
consistently use the subscripts ¢ and s to denote anti-
symmetric and symmetric quantities.

The internal space coordinates of the three-nucleon
system are chosen as in Appendix A of Ref. 5: r is the
vector from nucleon 2 to nucleon 3, and g is the vector
from the midpoint of nucleons 2 and 3 to nucleon 1.
Then the vectors

Ri=(3)""e, (5)

satisfy the permutation table (1). Where the vector
character of the coordinates does not enter, space func-
tions may be defined as in Egs. (4) of Ref. 5. Let g(12,3)
be a scalar function of the internal space coordinates
that is symmetric under interchange of nucleons 1 and 2,
but neither symmetric nor antisymmetric under inter-
change of 1 and 3 or 2 and 3; then

n=6"1"[g(12,3)+¢(13,2)—2¢(23,1) ],
0 =27""2[g(12,3)—¢(13,2) ]

transform in accordance with Egs. (1). However, for
simplicity in constructing the P- and D-state functions,
we shall not exploit the full arbitrariness of the func-
tion g(12,3), but rather choose the form that results
from combination of Egs. (5) according to Egs. (2),
where multiplication is interpreted as the scalar product:

SlzR22—R12’ Sz=2R1'R2, (7)

Tt is easily seen that Egs. (7) are the same as Eqgs. (6)
if we choose g(12,3)=—(8/3)"2r15?, where 715 is the
distance between nucleons 1 and 2. Equations (3) and
(4) in combination with (S) show that S, is identically
zero, and that

Ss=R2+ Ro?=2(r1>+ 7152+ r232) . 8)

It should be noted that in spite of the above restriction
on the choice of g(12,3), there remains a great deal of
freedom in choosing a fully symmetric multiplying func-
tion of the space coordinates, f(S;), for each wave
function.

Doublet spin functions are chosen as in Egs. (1) of
Ref. 5:

Xy = 6L (o =) (=) = 2= -],
Xo= 2V (4 =)= (=) ;

again, they satisfy the permutation table (1). A4 (or —)
in, say, the second position of a parenthesis means that

ba=Xon—X 72

R2= —r

(6)

)
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nucleon 2 has spin up (or down). The x’s of Eqgs. (9)
have total spin component 4% in the “up” direction;
interchange of 4 and — in their arguments changes
this spin component to —3. The doublet isospin func-
tions 5; and 7, also have the form of Egs. (9), where now
a + (or —) means that the nucleon is a proton (or
neutron). These 7’s describe He?; interchange of + and
— in their arguments gives functions describing H3.
While we shall not be interested in quartet isospin
functions in this paper, we shall require quartet spin
functions. However, rather than write them down ex-
plicitly, it is more convenient to generate them by
operating on the x’s with ey, o3, and ¢3, where the com-
ponents of ¢; are the three Pauli spin matrices (with
unit elements) that act on the ith nucleon. Further-
more, it is not necessary to use both of the X’s, since X;
can be generated from X,: X;=(12)"1/2(¢1+ 023)Xs, where
093= 02— 03. If X, is used to start with, only two of the
three ¢’s, ; and 023, need be used since (as+03)X3=0.

III. P-STATE WAVE FUNCTIONS

A wave function with J=% and total angular-
momentum component -3 in the “up” direction can be
obtained by operating on X, with a spherically sym-
metric operator. For a P-wave function this operator
must contain a space vector, which must have even
parity since all constituents of the ground state have
even parity. The only such vector is R; x Ry, which is
fully antisymmetric. The required spherically symmetric
operator is then constructed by taking the scalar pro-
duct of this vector with a spin vector. There are only
three spin vectors: o1, 23, and o7 X o23; higher powers
can be reduced to these or to constants. After they oper-
ate on X,, it is convenient to group them into two linear
combinations

m=(12)" o2s+i(01 X 023) Xz, ma=0:1X2 (10)
which satisfy Egs. (1), and a third combination
ms= [ 02— Fi(01 X 023) Xs (11)

which is fully symmetric.

Any symmetric spin function of three nucleons, such
as Eq. (11), must represent a quartet state. Then
=5 (R; X Ry) is antisymmetric, and must be multiplied
by a space-isospin function that is a scalar with respect
to space rotations, and is also symmetric with respect to
permutations of the nucleons in order to satisfy the
Pauli principle. From Egs. (4) and (6), such a function
is vama+v1m1. As remarked in Sec. II, we replace Egs.
(6) by Egs. (7) in the interests of simplicity, and obtain

g[/(,: (Sz‘)']z‘}‘Sﬂ]])[Ws . (R1 X Rz)]f(.(ss) . (12)

Equation (12) describes the P, s state, and is equivalent
to Sachs’ number 5. As stated in Sec. I, we shall neglect
this state.

The spin functions =; and =2 of Egs. (10) have the
permutation symmetry of doublet states. The symmetric
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combination (4) of these =’s and the »’s, multiplied by
R, x R,, satisfies the Pauli principle, and gives a 2Py,
state that is equivalent to Sachs’ number 3:

Y3=(manatmin1) - (Ry % Ro) f3(S5) .

Another symmetric combination may be formed if the
v’s are used along with the 7’s, and the =’s of Egs. (10).
This may be done by combining any two of the three
pairs into a pair of mixed symmetry in accordance with
Egs. (2), and then combining these with the third pair
in accordance with Eq. (4). The result is independent of
which two pairs are used to start with, and yields a 2Py s
state that is equivalent to Sachs’ number 4:

¢4= [(ﬂasl‘l“ 1'!152)772
+ (m2Se—mS)n1 ] (R1 x Ro) f4(S,) .

Again, the ’s have been replaced by S’s for simplicity.

Finally, as pointed out by Derrick and Blatt,? a
third 2P, state can be formed by multiplying the anti-
symmetric combination of =’s and #’s given by Eq. (3),
mon1— ®1m2, by a fully antisymmetric S state, the exis-
tence of which was not appreciated by Sachs. As re-
marked in Sec. I, we shall neglect this state.

(13)

(14)

IV. D-STATE WAVE FUNCTIONS

As with the P states, both of the space vectors Ry and
R, must be used to construct D states. If A and B are
any two of the three spin vectors ey, 023, and o X @23,
then the space-spin functions (A-R;)(B-R;)X,, where ¢
and 7 may equal 1 or 2, are combinations of S, P, and D
states that have even parity, J=4%, and total angular
momentum component 4% in the “up” direction. For a
particular choice of A and B, the four space-spin func-
tions may be grouped into two combinations

¢1=[(A-Ry)(B-R2)—(A-Ry)(B-Ry) JxX;,
¢2=[(A-Ry)(B-Ry)+(A-Rp)(B-Ry) X,

that transform in accordance with Egs. (1) under per-
mutations of only the space coordinates of the nucleons,
and two combinations

¢a=[(A-R)(B-Ry)—(A-Ry)(B-Ro) Xz,
¢o=[(A-R2)(B-R2)+(A-Ry)(B-Ry) X,

that are, respectively, antisymmetric and symmetric
with respect to permutations of the nucleon space co-
ordinates. It is easily seen that ¢,= (A xB) (R; x Ry)Xo,
and hence yields the P-state functions of Sec. IIT when
A and B are suitably chosen.

B The remaining three ¢’s are combinations of D and .S
states. Since higher powers of the ¢’s introduce nothing
new, it is sufficient to choose A=eo;, B=023. We then
convert ¢y, ¢z, and ¢, given by Egs. (15) and (16) into
pure D states by subtracting their S parts, which are
the averages over orientations of the space triangle

(15)

(16)
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defined by R; and R,. The results are

D= [(01‘ Rz) (023 . R2) - (0'1‘ Rl) (023' Rn)
—3(010093) (Ro?— Ry?) [Xs,

D,= [(01 ¢ R2) (0'23‘ R1)+ (01' R1) (0'23' R2)
—3%(01+023) (Ri-Ro) IX5,

D,= [(0'1' R2) (0‘23 . R2)+ (01' Rl) (0'23' R1)
—3 (01 093) (Ri24 Ro%) X,

Since Eqgs. (17) are D states with J=3%, they must be
4Dy)s states. The quartet character of their spin de-
pendence means that they are fully symmetric with re-
spect to permutations of the nucleon spins. Thus the
D’s have the symmetries indicated by their subscripts
with respect to permutations of all (space and spin)
coordinates of the three nucleons.

The D’s must now be multiplied by or combined with
isospin functions, and perhaps also spherically sym-
metric space functions, so as to form fully antisymmetric
wave functions that obey the Pauli principle. D; can
only be multiplied by vem;—wvins, which is antisym-
metric. Again replacing the v’s by .S’s, we obtain

Vo= D(Sam—S1m2) f6(Ss)

which is equivalent to Sachs’ number 6. D; and D, may
be combined with the 7’s in accordance with Eq. (3)
to give

(17

(18)

Y7=(Dem— Dins) f(Ss) , (19)

which is equivalent to Sachs’ number 7. Finally, mixed-
symmetry combinations of the #’s and #’s, or for sim-
plicity the .S’s and #’s, may be combined with the D’s
in accordance with Eq. (3) to yield a wave function that

2F 5, (He?) = / / exp(iq-1)Y*pc(r,r:)yd3rd?r;

3
= %(Fchp+Fchn> Z

i=1

+exp(iq-ro) [ Zus*us— 372 (us*ur+us*us) |+ exp(iq-rs)[ Zus*us+ 3712 (us* s+ ur *u2) 1} d?r;.
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is equivalent to Sachs’ number 8; as in the construction
of Eq. (14), the three pairs may be combined in any
order, and the result is

Ys=[(DsS14D1S2)m— (D2Se—D1S1)n2]fs(Ss) . (20)

V. GENERAL STRUCTURE OF THE CHARGE
FORM FACTORS

The P- and D-state wave functions obtained in the
last two sections must be supplemented by the dominant
S-state function (Sachs’ number 1):

Y1=Xani—Xan2) f1(Ss) . (21)

Our wave function is then the sum of Egs. (13), (14),
(18), (19), (20), and (21), which we write in the form

V=2 Yi=tam1— 172, (22)

where the summation extends over i=1, 3, 4, 6, 7, 8.
The #’s in Eq. (22) are space-spin functions that
satisfy Eqgs. (1). As shown by Sachs,?! time-reversal in-
variance requires that the functions f;(S;) be real.

We assume that the electric charge density operator
is that given in Eq. (7) of Ref. 5:

po(r,rs)= z::l ((+72) fan?(r—1;)
+3(1—7:) fn™(r—13) ].

Here the 7’s are Pauli isospin matrices (with unit
elements), and the f’s are nucleon spatial charge densi-
ties. The charge form factor of He?® is then given by Eq.
(9) of Ref. 5. With the help of Egs. (22) and (23), and
the properties of the 7’s and #’s, this may be written

(23)

exp(iq-1;) (us™*sho+14:*01) A3 i+ 3 (Fon? — Fon™) / {exp(iq-11)(— Fu*ustu:*uy)

(24)

Fa? and Fou" are the charge form factors of the proton and the neutron.
From Eq. (4), #e*us~4u1*u, is symmetric with respect to permutations of the nucleons, so that the three terms in
the summation are equal. Also, Egs. (1) show, on permutation of the nucleon indices, that the three terms in the

last integral are equal. Thus Eq. (24) may be rewritten

2Fn(He?) =1 (Fon?+Fon™) / exp(iq- 1) (Bu*us+3u*u,)d3r;

+3(Fan—Fon™) / exp(iq-11)(—us*us+3u*u)dr;.  (25)

Equation (25) and its counterpart for H? are conveniently written in the form of the first and third of Egs. (17) of

Ref. 5:

2F o (He?) = 2F PF ,+Fo"Fo,

(26)

Fon(H?) =2F ,"F 1, +Fa?Fo.
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The body form factors for the like pair of nucleons (#1) and for the odd nucleon (I7o) may then be expressed in

terms of /7, and F, as follows?®:

1"[4 = %(3[}a'{‘" 1"1)) )

I,= /exp(iq-rl)ul*uld%,

Since r; is the vector from the center of mass of the
nucleus to nucleon 1, it may be written

r,=23p=31"R,. (28)
VI. P-STATE CONTRIBUTION TO THE CHARGE
FORM FACTORS

As discussed toward the end of Sec. I, the expected
probabilities of the 2P, states ¢3 and ¢4 are so small
that they can only be significant through interference
with ¢;. From Egs. (22) and (27), the contribution to
the factor #,*u; in the integrand of F, is then

—X*my+ (Ry % Ro) f1f5—Xu* (maS1+m0S)
“(Ry%xRy) fifstcc., (29)

where substitutions have been made from Egs. (13),
(14), and (21). Similarly, the SP interference contribu-
tion to the factor #y*u, in the integrand of Fy is

Xo*m1+ (Ry % Ry) f1 f5+Xo* (252 —m151)
¢ (Rl X R2)f1f4+C.C. (30)

The following quantities, which are required for the
evaluation of Egs. (29) and (30), are easily calculated
from Egs. (9) and (10):

Xl*‘."C2= Xz*ﬂl = 0 )
X1*7!1= Xz*ﬂ2= (0,0,1) .

The last expression denotes a vector whose component
in the “up” or z direction is unity, and whose other two
rectangular components are zero. Substitution into
Eqgs. (29) and (30) shows that the first of these is equal
to —(R; xR;).Ssf1fs, and the second is the same with
opposite sign. In view of Eq. (28), it follows that in-
tegration over the direction of R, in Egs. (27) causes F,
and F to vanish. Thus there is no P-state interference
contribution to the charge form factors. It is apparent
that this result would be unchanged if the more general
v’s were used in place of S’s in Eq. (14).

VII. D-STATE CONTRIBUTION TO THE CHARGE
FORM FACTORS

It is apparent from Egs. (26) and (27) that there is no
SD interference contribution to the charge form fac-
tors, since doublet and quartet spin states are orthogonal
to each other. It is possible that the D-state probability
is large enough to make a significant contribution, so we

25 The analysis of this paragraph is equivalent to but somewhat
simpler than that in the corresponding part of Sec. II of Ref. 5.

1"()‘; 2[;‘(, ,

Fy= / exp(ig-ry)ug*usd?r;. 27)

now calculate the D? parts of #,*u; and us*u, for sub-
stitution into Egs. (27).

We first require the following spin products of the
D’s defined in Egs. (17), which may be obtained in a
straightforward manner:

D*D,=S2+352— S22,
Dy*Dy=S,—5:*+3S5?,
D*Dy=3S+5124+S2%,
Dl*D2+D2*D1= (8/3)5152 5
D*D+D,*D;=(8/3)S,S1,
D2*D3+D3*D2= (8/3)5332 .
The S’s are defined in Egs. (7) and (8).

Next we consider the orthonormality properties of

¥s, Y7, and 5 given by Egs. (18), (19), and (20). The

normalization integral for the D part of  given by Eq.
(22) is

1)

/(1//6+¢7+ll/8)*(¢e+¢7+1//8)d37’i
=/(%1D*M1D+M20*M2D)d37’i, (32)

where #;p and #sp are the D parts of #; and . in (22).
The volume element of integration may be written,
with the help of Egs. (5),

d¥ri=d*rd’p=(})*/*d*R1d°R,
= (33/Z/S)RlzdR1d91R22dR2d92 y

where we have dropped the integration over the nuclear
center of mass. The angle integrations over d©; and dQ,
are easily performed by first fixing R; and integrating
over the directions of Ry, and then integrating over the
directions of R;. The first angle integration, either in
the normalization integral (32), or in the form factor
integrals (27), multiplies everything that does not in-
volve Sy by 4, causes odd powers of .S; to vanish, and
replaces So? by (47/3)4R2R,2 and Setby (47/5)16R 4R,
The second angle integration simply multiplies the
normalization integral by 4w, and replaces exp(iq-r;)
in the form factors integrals by [see Eq. (28)]

T/gry) Sgry=(4nw/3" 1) SIN(O7 /= 1) - A
dr/qr) singr = (4m/3-12gR,) sin(32¢R,) . (33)

The remaining integrations over the magnitudes of R,
and R, may be evaluated by using the Irving trans-
formation,?® according to which they are regarded as

26 J. Irving, Phil. Mag. 42, 338 (1951).
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the rectangular components of a single new two-
dimensional vector, and the integration is performed in
polar coordinates. Thus we put R;=R cosf, Ry= R sinf,
and replace the integral

00 %) © 1/2w
/ / dRdR, by / / RdRdo;
0 0 0 0

note that from Eq. (8), S,=R>.

A straightforward application of the procedure out-
lined in the preceding paragraph to the normalization
integral (32) shows that 5 is orthogonal to ¥ and ¥,

B 31

but that ¥ and 7 are not orthogonal to each other. We
therefore redefine ys as a linear combination of Eqs. (18)
and (19). It is also convenient to redefine y; by multi-
plying Eq. (19) by S, in order to make it homogeneous
with the other two. From this point on we retain the
definition (20) of ¥s, but replace Egs. (18) and (19) by

\p(i: [:(SDSSQ— 20253)7)1
— (SD,;Sl— 2[)153)712]f6(53) ’
l//7= (Dzssm—])lss‘rlz)ﬁ(ss) .

The expressions for the D parts of u,*%; and us*u, are
then

(34)

MlD*Mlp = (4534-*— 25514—— 17SS2S12— 4552522+ 25512522)fb2+Ss2(Ss2+%Slg— 522)f72
LSS0 522) +3(Sat+551) — (14/3)S12802] 2+ 45 2 — S,2+4-35 24522 fufr

tap*ttap= (45425524 — 45,2512 — 17.5,2522425.51252?) f62+5:2(Ss2— 5124 £592) [

+485:51(8*—3S 24592 fo fs+25:51[ — S:2— 551+ (7/3)S2? 1 f fs,  (33)
LSS S — (Syi+-Su0)+(10/3)S 3821 fi2+H4S 2 — S 25,2435 fo
+48:S1(—S2+S2+552) fo fs+ 25S1LS 2 —S124-(5/3) S22 f1 s - (36)

Each of the six terms in the sum of Egs. (35) and (36) should be fully symmetric with respect to nucleon permuta-
tions; it is easily verified by application of Egs. (2) and (4) to Sy and S that this is the case.

The normalization integrals for the new ¢’s are the integrals of the sums of the first terms, second terms, and
third terms of (35) and (36). The results of these integrations are

/¢6*¢6d3ri=/[8534——21532(512—!-522)—!-25(512—!—522)2]]’5%3”: (3‘/2357r3/16)f fe?R1¥R,
0

/%7*¢7d3r¢=/[2534—(2/3)532(3124—ng)]f72d3n= (3”257r3/8)/ f2RY¥dR,
0

(37

/llls*lllsdsri:/[2532(512+522)—(2/3)(512+522)2]f32d3n= (31/2771-3/24)/ fs?R'3dR.

Finally we calculate the D? parts of the form factors F, and F; defined in Eqs. (27). In accordance with (33),

these are given by

I"apz/(31/2/qR]) sin(3~Y2gRy)u1p*uspdr;,

and a similar expression for Fyp with u;p replaced by #.p. Evaluation of the integral over § makes use of the formula

/ sin(z cosf) cosnfdf=Lw(—1)¥=DJ,(3),
0

and combinations of the Bessel functions may be reduced by using

]n_1(2>+Jn+1(Z) = (Zﬂ/Z)Jn(Z) .

The results for the form factors are

0

Fw=@mﬁﬂ®/

(R13/22)[3f62(70T2+937 ¢+ 1257 10)+12 f2(5T 2437 6)

+4f52(7T2+6T 6+ 11T 10)+576 fo f1J 6— 96 fo fs(J s45T5) — 16 f2 fs(7T 45T 5) JdR ,

Fw=6mﬁﬂ@/

0

38)

(R13/22)[15f62(14fg— 9]6" 5J10)+60f72(]2—]6)

4 f2(T T 675—13710)+96 fo fs(Ja— Js)+ 1121 fo( T s— J5) JdR.
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The argument of each of the Bessel functions is
z=371/%R.

The form factors (38) may be expanded in powers of
g by making use of the power series for the Bessel func-
tions. Since there is a common factor 1/z2 in the inte-
grand, the terms with J, give the values of the F’s at
¢=0, the terms with J, and J, give the coefficients of
¢* in the series expansions of the F’s, etc. It is easily
seen in this way that F,p(0) and F;p(0) are equal, that
their sum is in agreement with the normalization in-
tegrals (37), and that the three y’s are orthogonal.

VIII. NUMERICAL RESULTS

The simplest way of relating Eqs. (38) to the experi-
mental observations is to ignore possible S’-state con-
tributions and attempt to fit the charge form factors
with Egs. (26), assuming that F,? and Fg,” are known.?’
The proton charge form factor is indeed known quite
well,28 and it is reasonable to assume that the neutron
charge form factor lies somewhere between zero and
0.02¢%, the latter being the extrapolation of the Foldy
expression.?® It then follows that the coefficient of ¢2 in
the difference between Fj and Fo, and hence in the
difference between F, and F5, is significantly different
from zero. It is apparent from Eqgs. (38) that a difference
term proportional to ¢% can arise only from the fqfs and
f1fs parts of the F’s. Thus ¢ must contain yg, and also
at least one of the other two functions.?0:31

The procedure outlined in the last paragraph leads
to the experimental result

Fo—F1,— (0.0540.01)¢2,

as ¢¢—0. (39)

The upper limit corresponds to Fu"=0 and the lower
limit to F,»=0.02¢%. We shall assume in the remainder
of this paper that the three f’s have the same form, and
differ only in their numerical coefficients:

fo=af, fi=Bf, fs=Ff.
It then follows that the total D-state probability is

Pp=(3'23/48) (10502 3082+ 14) / f2R¥R,
(]

27 Computer time was supported by National Science Founda-
tion Grant No. NSF-GP9%48.

28 The experiments are summarized in four papers presented at
the 1963 International Conference on Nucleon Structure. See
Nucleon Structure (Stanford University Press, Stanford, California,
1964) : K. Berkelman, p. 45; K. W. Chen, A. Cone, J. Dunning,
N. F. Ramsey, J. K. Walker, and R. Wilson, p. 55; T. A. Griffy,
R. Hofstadter, E. B. Hughes, T. Janssens, and M. R. Yearian,
p. 61; B. Dudelzak, B. Grossetéte, and P. Lehmann, p. 76.

¥ L. L. Foldy, Revs. Mod. Phys. 30, 471 (1958).

3 This possibility was first discussed by N. T. Meister, T. K.
Radha, and L. I. Schiff, Phys. Rev. Letters 12, 509 (1964). How-
ever, it was incorrectly stated there that only interference between
¥z and ¥ would give rise to this g% behavior.

3 The only previous paper in which any of the D states is
considered at all carefully is that of Krueger and Goldberg (Ref.
7). Since they limited themselves to consideration of y; alone,
the effect described here does not appear in their work.
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and that the mean-square distance of a nucleon from
the center of mass of the nucleus, computed for the
D-state wave functions by themselves, is

oe [ priar /(6 2R13dR).
o= e (of s

Then in the limit of small ¢%:

Fo—F1— ¢**Pp(6a+78)/(210a2+6052+28) .  (40)
The coefficient of ¢%0*Pp on the right side of Eq. (40)
has a rather flat maximum at about 0.09 as « and 3 are
varied. At this maximum point, comparison of Egs.
(39) and (40) shows that p=3.64 F when Pp=0.04;
this appears to be a lower limit for the D state proba-
bility.?! The value for p thus obtained is about twice
that which corresponds to the main S-state part of the
three-nucleon wave function and is perhaps not un-
reasonable for the D-state part.

The numerical result obtained in the last paragraph
is independent of the form of the radial function f(R).
Only the first two terms in power-series expansions of
the integrands of Eqgs. (38) were required. Further terms
in these series are easily calculated, but unfortunately
show that convergence is very slow unless ¢ is less
than about 0.2. Thus the integrals in (38) must be
evaluated numerically. The results are not sensitive to
the values chosen for a and 3 so long as they are posi-
tive and not too small. They were assumed to cor-
respond to equal probabilities for the three D states:
a=-+(2/15)'2, B=+4-(7/15)*/2. A number of numerical
calculations were then performed for various choices of
f(R) of the Irving-Gunn form e~+E/R». No fit to the
experimental results for Fo—F over the range of ¢
from O to 8 could be obtained. The theoretical computa-
tions lead in each case to values that are too small and
that (unlike the experiments) change sign for ¢*> much
less than 8.

IX. CONCLUSIONS

We conclude that reasonable P- and D-state ad-
mixtures in the wave functions of H? and He?® cannot
account for the striking difference between the charge
form factors of these two nuclei. As pointed out earlier,?
an S’-state admixture of about 49, can account for this
difference. However, it seems likely that not more than
about 29, S’-state admixture is compatible with in-
elastic electron scattering from these nuclei,'® with the
rate of slow neutron capture in deuterium,!” or with the
nuclear binding energy.?! The remaining discrepancy
might be accounted for by insufficient accuracy of the
assumptions that underlie the use of Eq. (23), by an ex-
change charge density,'® or by admixtures of still other
states. The last possibility seems to us most likely to be
correct, and the T'=% state® appears to be the most
promising candidate.



