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A definition of energy is proposed for systems invariant under rotations about, and translations along, a
symmetry axis. This energy (which is called “cylindrical energy” or “C energy’’) takes the form of a co-
variant vector P?, which obeys the conservation law P?; ;=0. C energy is localizable and locally measurable:
The component of P¢ along the world line of an observer is the C-energy density he measures. Near the sym-
metry axis of a static system, where strong gravitational fields are absent, C-energy density reduces to proper
mass density 7°. C energy is propagated by Einstein-Rosen gravitational waves and by cylindrical electro-
magnetic waves. Iz vacuo and in the presence of electromagnetic fields the C energy on a space-like hyper-
surface is minimized when the system is static; and the difference between the “potential’” part and the
“kinetic”’ part is a Lagrangian for the Einstein-Maxwell field equations. C energy can be a powerful tool in
the analysis of finite as well as infinite cylindrically symmetric systems. Here it is used to elucidate the nature
of Einstein-Rosen gravitational radiation, and to suggest and support the conjecture of flux resistance to
gravitational collapse: In any configuration of electromagnetic fields collapsing toward a singularity, each
electric and magnetic-field line is either entirely ejected from the collapsing region or entirely swallowed by it
as collapse proceeds ; there can be no flux threading a collapsed region.

I. INTRODUCTION

EARLY fifty years ago Einstein formulated his

general theory of relativity. Since that time one
of the greatest unsolved puzzles of the theory has been
the nature of energy within the framework of rela-
tivity. As early as 1918, Einstein' gave a successful
definition of the total energy of a body residing in an
asymptotically flat space-time. Since then, there has
been a great proliferation of alternative definitions,?
most of which yield the same result as Einstein’s, pro-
vided space-time becomes asymptotically flat suffi-
ciently rapidly at large distances. However, during these
first fifty years of relativity theory, nobody has suc-
cessfully defined the total energy of a closed universe or
of any other system around which space-time is #ot
asymptotically flat; nor has anybody formulated an
adequate definition of localized energy density within
the framework of general relativity. Tentative defini-
tions of these concepts have been given by Bergmann,
Mgller, and Komar,> but these have all been found
wanting in some respect. It is often suggested (but
nobody has demonstrated) that these concepts should
not be well defined in relativity theory.

The purpose of this paper is to propose and justify a
definition of localized energy density and total energy
for a particular class of systems around which space-
time is not asymptotically flat. These are systems with
“whole-cylinder symmetry,” i.e., systems invariant
under rotation about and translation along a symmetry
axis and under reflection in any plane containing the
symmetry axis or perpendicular to it. We shall call our
energy-like quantity ‘“‘cylindrical energy,” or C energy,

* This work was supported in part by the U. S. Air Force Office
of Scientific Research and by the National Science Foundation.

t Danforth Foundation Fellow 1963-64, National Science
Foundation Predoctoral Fellow 1964-65.

1 A. Einstein, Berlin Ber. 448 (1918).

2 For a concise review and bibliography see C. W. Misner, Phys.
Rev. 130, 1590 (1963).

to distinguish it from the multitude of energy-like
quantities which have been discussed in the past.

C energy is defined in terms of a contravariant C-energy
Slux vector P?, which satisfies the conservation law
Pi;;=0. The projection of P* on the world line of a
given observer is the C-energy density which he would
measure in a local Lorentz reference frame. Conse-
quently, we interpret the projection of P¢ on the normal
to a space-like hypersurface as the C-energy density in
that hypersurface; and we interpret its projection on the
normal to a time-like hypersurface as the C-energy flux
(C energy flowing per second, per square centimeter)
across that hypersurface.

It may be surprising that the C-energy flux tensor Pé
is of first rank rather than of second rank and sym-
metric, like 7', the material stress-energy tensor. This
is the price one must pay to have C energy simul-
taneously (1) localizable (defined in terms of a unique
tensor), and (2) obey an integral conservation law,?

/ PidS;=0.
(closed surface)

In the case of asymptotically flat space-time, Einstein!
gave up localizability of energy in order to express it in
terms of a symmetric entity of second rank (a “pseudo-
tensor”) which obeys an integral conservation law.
The justification for nominating C energy to the
office of “the energy of whole-cylinder-symmetric sys-
tems” is that in almost every way thus far tested,
C energy conforms to our prior experience of how energy
should behave: It is covariant; it obeys an integral
conservation law; it is localizable and locally measur-
able; near the symmetry axis of a static system, where
strong gravitational fields are absent, it reduces to

8 For a discussion of integral conservation laws, see, e.g., J. L.
Synge, Relativity: The General Theory (North- Holland’ Pubhshmg
Company, Amsterdam, 1960), Chap. VI.
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proper mass; it is propagated by Einstein-Rosen gravi-
tional waves and by cylindrical electromagnetic waves;
in vacuo and in the presence of electromagnetic fields
the C energy on a space-like hypersurface is absolutely
minimized when the system is static, and the difference
between the “potential” and the “kinetic” parts of the
C energy is a Lagrangian for the combined Einstein-
Maxwell field equations. However, there remains at
least one more very important test which C energy must
pass in order to earn the title of energy: Consider a
toroidal body with major radius much larger than
minor radius (thin ring). Near the ring space-time has
whole-cylinder symmetry, and C energy is well defined.
For C energy to deserve the title “energy” the total
C energy of such a torus should be equal to or simply
related to its Schwarzschild mass (the mass measured
by examining the Keplerian motion of particles in orbits
about the torus sufficiently distant that the field has
spherical symmetry). The relationship between C energy
and Schwarzschild mass is presently being investigated;
but the analysis is difficult to carry out and is not yet
complete, except in the Newtonian approximation. In
that case, the integrated C energy and the Schwarz-
schild mass are equal, as is shown in Sec. ITI-C of this
paper.

Regardless of whether or not C energy deserves the
name “energy,” its conservation law and absolute mini-
mum properties make it a very useful tool in analyzing
the dynamics of whole-cylinder-symmetric systems. For
instance, in Sec. IV-C we use it to give a clear, simple
description of the nature of Einstein-Rosen gravitational
waves; in Sec. VI-B we use it to demonstrate the resist-
ance of magnetic-field lines to cylindrical gravitational
collapse; and in a separate paper? it is used to discuss
the dynamics of Melvin’s magnetic universe® when
arbitrarily large radial perturbations are introduced.

In the remainder of this paper a detailed account of
the definition and properties of C energy is presented.

In Sec. IT we introduce a special set of coordinates
which exploits the whole-cylinder symmetry of the
system. We use the field equations in this coordinate
system to motivate the selection of a certain scalar
field, E, as a potential function for the C-energy flux
vector. We then give an invariant geometric interpreta-
tion to £ and express it in terms of the Killing vectors
for whole-cylinder symmetry. From the scalar field £
and the Killing vectors we construct the C-energy flux
vector P?; and in terms of P? we give expressions for
the local C-energy density and C-energy flux which
would be measured by a given observer. Finally, we
describe experiments which an observer could perform
to measure the C-energy density in his neighborhood.
B, In Sec. III it is shown that the total C energy per unit
length inside a solid cylinder of small mass is the same

4 K. S. Thorne, Phys. Rev. (to be published).
5 M. A. Melvin, Phys. Letters 8, 65 (1964).
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as its proper mass® per unit length. The mass of such a
cylinder is also calculated according to Levi-Civita’s
prescription and found not always to agree with its
proper mass. A particular physically acceptable cylinder
is displayed, for which (C energy) = (proper mass)=— (%)
X (Levi-Civita’s mass). Section III concludes with a
proof of the equality of the C energy and the Schwarz-
schild mass of a static torus with small mass per unit
length.

In Sec. IV the C-energy properties of a pure gravita-
tional field are discussed. We show that the gravita-
tional field around a cylinder contains—out to infinite
distance—an infinite C energy per unit length, and that
the gravitational C energy contained in any shell out-
side the cylinder is an absolute minimum (subject to the
constraint of partially fixed metric on the boundaries)
if and only if the metric in that shell is static. Then we
show that C energy is propagated by Einstein-Rosen
gravitational waves and that a gravitational wave pulse
emitted by a cylinder of small mass per unit length
carries a quantity of C energy equal to the decrease in
the proper mass of the cylinder when the pulse is
emitted. Finally, we generalize C energy to the case of
cylindrical gravitational waves with 2 polarization
states and show that they, too, carry a positive C energy.

Section V contains a discussion of the C energy of
cylindrical electromagnetic universes. Here we divide
the C energy into a potential part plus a kinetic part and
show that their difference provides a variational basis
for deriving the combined Einstein-Maxwell field equa-
tions, and that the unique static universe found by
Melvin® gives an absolute minimum of the C energy
contained inside any cylinder (subject to the con-
straints of fixed total magnetic flux inside the cylinder
and partially fixed metric on its surface).

Section VI contains a discussion of the usefulness of
C energy in the analysis of the dynamics of both locally
and globally whole-cylinder-symmetric systems. In par-
ticular, C energy is used to suggest and support the
conjecture of flux resistance to gravitational collapse.

II. DEFINITION OF C ENERGY

A. Coordinate Systems which Exploit
Whole-Cylinder Symmetry

1. The Standard Coordinate System

Throughout this paper we consider only gravitating
systems which exhibit what Melvin? calls “whole-
cylinder symmetry”: systems invariant under rotation
about and translation along a symmetry axis, and under
reflection in any plane containing the symmetry axis or
perpendicular to it. If ¢ is an azimuthal angle (of
period 27) about this axis, and z is a coordinate measured
along it, then the general line element exhibiting whole-

¢ By proper mass we mean [7'¢°(®g)V2d3x.
7M. A. Melvin, Phys. Rev. (to be published).
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cylinder symmetry takes the form
ds?= good P>+ 2g01dld7+gud?P*~+ gaadz*+gaad?, (1)

where the metric coefficients depend only on Zar}d 7. By
an appropriate coordinate transformation on # and 7,
this metric can always be transformed to

ds?= (=¥ (df*2— dr*?) — eV dzt— e 2V d 2. (2)

We shall call this the standard coordinate system or line
element. It is defined up to transformations of the form

g o £/ Sta (%) o (G7); e et o,
Y* > P*4Ing; v*— ¥ —§ In[£(07/9r%)?
F(07/9*)*H1ng; a— (e, (3)

where £, # are any two functions of #*, 7* satisfying
a7/ at* ot/ ar*
(o) =agar)
a7/ ar* ot/ ar*
and ¢{, ¢,, 2, are arbitrary constants. The Einstein field
equations for the standard line element are’

a—a’ = SWG(zo*O*’I'IT*T*) ’

PE (/o) * > — (o fa)p*
= (4rG/a) (T + T "+ T 20— T.9),
V¥ = (&2—2)" Y87 G(a/ T + 6T oe™)
+ad (YY) = 200 ¥ oo —ad'}, (4)
y*= (/2 — ) Y8rG(—aT " — o' T ™)
— (g R Y el )
VE—* = 2=y *) + (87G/)Tp* .

Here U=9U/dt* and U'=90U/dr*; Ti=~/(—g)T;
T is the stress-energy tensor; and we set c=1.

If there is any coordinate system in which the metric
of a whole-cylinder-symmetric system is static and in-
variant under time reversal, then there is a standard
line element (2) which is static.?

2. The Hyperbolic Canonical Coordinate System

Suppose that, in addition to having whole-cylinder
symmetry, the stress-energy tensor satisfies the condi-
tion of “pressure-energy equality’®

Tg*o*—l— TT*"* =0 (5)

8 This is seen as follows: Let ¢ be a time coordinate with respect
to which the system is static. We can always use 2z and ¢ as two
of our space coordinates and thereby obtain the line element
ds?=goodB+gud -+ geedz?+gaad o2, where i depend on 7 only.
Replacing 7 and 7 by ¢* and 7* where 1*={, A/goodr*=1/(—g11)d#,
transforms this into the static standard form (2). If T¢** +T " =0,
the field equations (4) then give a=br*-c. The transformation
r=a=br*+c, t=>bt*, y =v*—Inb then puts the static line element

in the hyperbolic canonical form (6). )
9 This condition is invariant under the transformations (3)
among the standard coordinate systems.
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in some standard coordinate system (a condition satis-
fied by the vacuum and by the electromagnetic systems
of Sec. V). Then the field equation (4a) permits a trans-
formation of the form (3) to a new standard coordinate
system in which « is the radial variable.!® The resultant
metric is

ds?=e2 0V (dP—dr?) — e*¥dz?—r2e~2d o, (6)

This will be called the kyperbolic canonical line element !t
Tt is uniquely defined up to the change of scale

t— £fitby, 32— £3/¢+20,
90_):t§9+§007 ¢H¢+In§‘7 Y.

In the hyperbolic canonical coordinate system the field
equations (4) reduce to

r—{r,

)

I=1/N) ) =47G(To—T ) /7, (8a)
V' =r{*+¢?)+87GL,°, (8b)
v=2r}y/+8rGT,, (8¢c)

Y= =2 =) +8rGT o/r.  (8d)

If there are any coordinates in which the metric of a
whole-cylinder-symmetric system satisfying condition
(5) is static and invariant under time-reversal, then the
canonical line element (6) is itself static.8

B. The Definition of C Energy
1. Potential Function for the C-Energy Flux Vector

We are now ready to define the C energy of systems
with whole-cylinder symmetry. As an immediate
motivation for the definition (the ultimate motivation
consists of the useful energy-like properties demon-
strated in later sections) consider the Einstein field
equations (8) for the canonical coordinate system.
Melvin®7 has emphasized that y here plays a role
analogous to that of the Newtonian gravitational po-

0 In the original coordinate system it is possible to have
o/?=4? along a null surface of the form 7*4-¢*=constant. The
Jacobian, a2—é?, of the transformation between the old (r*,t*)
and the new (r,f) coordinate systems vanishes on such a surface;
so one of the coordinate systems must exhibit a coordinate singu-
larity there. If the singularity is in the new (hyperbolic canonical)
system, then 7 and ¢ may reverse their roles as space-like and time-
like coordinates as one crosses the singular surface [¢*=¥ may
change sign in Eq. (6)]. However, smoothness of the geometry
demands that at the axis of symmetry » be space-like and ¢
time-like. Throughout this paper we shall use hyperbolic canonical
coordinates only when no coordinate singularities of this form
arise. We shall reserve for later communications the discussion of
Einstein-Rosen waves and electromagnetic systems for which the
line element (6) has singular null surfaces. [See, e.g., K. S. Thorne,
Ph.D. thesis, Princeton University, 1965 (unpublished); also, the
discussion of Bertotti’s magnetic universe and of thin-ring toruses
constructed from it, in the chapter by K. S. Thorne, in the Pro-
ceedings of the Second Texas Symposium on Relativistic Astrophysics
(The University of Chicago Press, Chicago, 1965)].

1 Under the transformation ¢ — 4z and z — 4, the hyperbolic
canonical line element becomes Weyl’s canonical line element,
which is used extensively in studying static axially-symmetric
systems with 7',"4-T,?=0. [H. Weyl, Ann. Physik 54, 117 (1918);
H. Weyl and R. Bach, Math. Z. 13, 134 (1922); T. Levi-Civita,
Rend. Acc. Lincei 28, 3 and 101 (1919).]
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tential; it satisfies the inhomogeneous wave equation
(8a) with a sum of components of the material stress-
energy tensor as source. Once ¢ is calculated, the solu-
tion for v is reduced to quadrature [Egs. (8b), (8¢c)].
Note that 9’ is positive definite and is the sum of two
terms: one—(Y2+y/?)—is, aside from the factor 7, the
energy density usually associated with a scalar field;
the other—8rGT 0= 8rGre?(v—¥) . T*—is, aside from a
multiplicative function of the metric, the material
energy density in the canonical coordinate system.
Similarly, v is the sum of a term resembling the energy
flux usually associated with a scalar field, and a term
proportional to the energy flux 7.° of the material
medium. This suggests that in the canonical coordinate
system we take P9~+' for the energy density (time
component of C-energy flux vector) and P ~+ for the
energy flux (radial component of C-energy flux vector).

It might be objected that according to Newtonian
gravitational theory, energy density for a whole-cylinder-
symmetric system should look like 7\°— (¥'2+4?2), not
like '~ T+ (¢'2+y?). However, the former choice of
sign would lead to a negative C energy for Einstein-
Rosen gravitational radiation (7¢°=0), and it would
destroy many of the useful, energy-like properties which
C-energy possesses when the positive sign is chosen.

If y(r,) is the key to C energy in the canonical co-
ordinate system, what is the key in the more general
standard coordinates? It should be a function of (r*,t*)
which (1) is constructed from the metric, (2) reduces to
« for the special case of canonical coordinates, and (3)
is invariant under the transformation (3) from one
standard coordinate system to another. These three
conditions uniquely determine the analog of v for the
standard coordinate system. It is

AGE(r* t*)=[v*—1In(a'2—a?)/?]. 9)

The quantity E(r*,*) acts as a potential function
from which to calculate the C-energy flux vector. For
this reason, it is desirable to display the geometrical
significance of £.

Let £¢y* and £(,? be the Killing vectors associated
with the invariant translations and rotations of our
whole-cylinder-symmetric system. Normalize &) by
requiring

¢ =[Ew @il ?=1 (10)

on the symmetry axis, at a moment of time when there
is no gravitational radiation there.’* Normalize £(,)*
by requiring

[ £y | =[£ ) (s)i]'/?= (proper circumference
about axis of symmetry).

(11)

Now, consider all invariant motions of the system of the

12 We normalize £,)° on the axis of symmetry rather than at
infinity because, for whole-cylinder-symmetric systems, space-
time is not asymptotically flat at infinity, and #)*£(: will fre-
quently be infinite there.
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Under this family of motions a particular point P in
space-time sweeps out a cylindrical surface of length
Z=N|&w| and of area A=Z|%y)|. The invariant
cylinders swept out by different points in space-time
will have different areas. Denote the magnitude of the
space-time gradient of the area by |4 ;| =(g%4 A4 ;)2
Then, in terms of the geometrically defined quantities
|4.:] and Z, the potential function for C energy is

E=—(1/4G) In(| 4 :|/2xZ).

0SASN,, 0<n<L. (12)

(13)

Expressed directly in terms of the Killing vectors, E is
a scalar field given by

=——1~1n g Eolléw ).l EallEw ).
dm?| £y |2

8G
To verify that (14) does, indeed, reduce to (9) in a
standard coordinate system, note that

(14)

Z

£ =h.0", £(p'=2m" in standard coordinates, (15)

where /%, is the z-coordinate interval associated with a
translation of unit proper length on the axis of sym-
metry when there is no gravitational radiation there.
Take expressions (15) and insert them into the ma-
chinery of Eq. (14) to obtain expression (9).

2. The C-Energy Flux Veclor

In terms of the geometrically defined scalar field E,
and the Killing vectors &), ¢, for whole-cylinder
symmetry, the C-energy flux vector Péis

Pi=+[¢in/(—g)V]E;
XC@#/ | £ M Eorm/ | £ | 2]

In standard coordinates this becomes

(16)

1 207" 9F
pPo¥¢—
h, 2ra

1 e (P*—v*) 9E
Pr* —_—
h. 27a

ar’

(an

, P=Pe=0.
arx

The C-energy flux vector satisfies the differential
conservation law

=1/ (=) [V (—g) P

for, in standard coordinates,

9 /+10E\ 0 /—10E
V(=9 PLm—( (g
Ot*\2wh, dr*/  3r*\2rmh, ot*

(18)

Consequently, the integral of P! over any closed
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3-surface vanishes.

/ PidS;=0.
(closed surface)

3. The C Energy Measured by Observers

What is the physical significance of the C-energy flux
vector P Let v¢ be the tangent vector to the world
line of an observer at some point «¢ of spacetime. Then
the C-energy density measured by the observer at x*
in a local Lorentz frame is

(20)

Similarly, if #? is a space-like vector orthogonal to %,
then the C-energy flux which the observer measures at
% in the direction #¢ is

F”=Pi%i.

éce’-:Pi’l),;.

(21)

More generally, consider a family of observers whose
world lines form a congruence of (locally parallel) curves
filling up a 4-dimensional region of space-time. Let .S be
a segment of a space-like hypersurface orthogonal to the
world lines, and let 7 be a segment of a time-like hyper-
surface parallel to the world lines near it. Then each
observer can measure (see Sec. IL.C) the C-energy
density on S and the flux across T in his own neighbor-
hood; and by combining their results the observers can
obtain the total C energy on S and the total C energy
transferred across T’

(C energy on S)

=/ e/ Pg dxldxzdx3=/ PidS;, (22)
s

N

(C energy transferred across T')
=/ Fo/®yg dy‘dy2dy3=/ PidS;. (23)
T T

In particular, E(r.*t*) [Eq. (9)] is the total
C energy contained inside the disk 7*<7,*, 0<z</, on
the “standard hypersurface” /*=1{,*. This quantity will
play a major role in subsequent sections of the paper.
We call %, [cf. Eq. (15)] the “standard (coordinate)
length unit,” and E(r*,t*) the “C energy per unit
standard length inside 7* at time ¢*.” By referring to
the field equations (4), we see that E(r*,:*)=E(r*) can
be written

r* 2
E(r)= f (grore) 120 / (8o de
0 0

hz
X/ (gzz)1/2dzece ) (24)
0

where €., the C-energy density on the hypersurface of
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constant #* is
o= (1/h.)(a"2—a2) Y e ¥ [ o/ Tps" +aTox""]

(19) + e =" /8xG o/ (P*2H-y*'2) =2 Xy ¥ ]} . (25)

Note that on the symmetry axis, when the gravitational
field is static there,

€ce™ TO*O* .

That is, under these conditions the C energy is due en-
tirely to the material stress-energy present; the gravita-
tional field makes no contribution.

When “pressure-energy equality” T+ T =
is satisfied, we can set a=r (hyperbolic canonical co-
ordinate system) and have

€ce=(1/h){e P T4V /8xG[Y2+¢'2]}. (26)

The physical interpretation of the integral conserva-
tion law (19) is now clear (see Fig. 1). It simply states
that the increase in C energy on a segment of a space-
like hypersurface as it moves in a time-like direction is
the integral of the C-energy flux entering across its
boundaries.

C. The Measurement of C Energy

The C-energy flux vector, P? is uniquely defined in
terms of the local geometry of space-time; and the unit
tangent v* to the world line of an observer is uniquely
defined. Consequently, their scalar product e..=P;
is an intrinsic, local property of space-time and can be
measured by the observer by means of local experi-
ments. Consider for instance, a system satisfying
“pressure-energy equality” Tp«®*+7,+"*=0, and an
observer whose world line is orthogonal to the canonical
hypersurfaces ¢=constant.’® (We use the canonical
coordinates of Sec. I1.A.2.)

Letsuch an observer, situated at »=r,, simultaneously
drop two pebbles whose initial proper separation k.,
is in the z direction. These pebbles fall along paths
(¢,2)=constant. Let a second observer situated a
proper radial distance d/ nearer the symmetry axis
measure the proper separation, k,—dk., of the pebbles
as they pass him. Let the experiment be repeated with
two pebbles whose initial separation %, is in the ¢

Fi1G. 1. Integral conserva-
tion law for C energy. The
boundary of a space-like
hypersurface .S sweeps out
T as the hypersurface
moves in time from S; to
Ss. The integral conserva-
tion law for C-energy states
that (total C energy on Sy)
— (total C energy on Si)
= (C energy which enters
S across 7); i.e.,

[ 5o PidSi— [, P'dS:
=—[r

SPACE P fsa

TIME

SPACE
PidS;.

13 Such an observer needs the support of a rocket engine to
prevent him from falling toward the symmetry axis.
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direction. Then, if @ is the proper circumference of a
circle about the axis of symmetry and passing through
the first observer’s location, the C energy per unit
standard length inside 7; on the canonical hypersurface
t=constant is

1 Cy/1dk, 1dk,
E(ry)= —(—) 1n[—<— —— )] . @n

4G 2r\k, dl k. dl
To measure the C-energy density in his local Lorentz
frame, our observer can measure the C-energy per unit
standard length at his position, £(r1), and at a distance
dl nearer the symmetry axis, E(r1)—dE; as well as
Az=h.e?=| (|, the proper distance corresponding to
unit standard length in his neighborhood, and @, the
proper circumference of a circle about the symmetry

axis, Then he can apply the formula

ece=(dE/dl)/(CAz).

The measurement of Az can be made with a special
longitudinal yardstick consisting of a frictionless wire
on which two beads slide freely, and which is always
kept oriented parallel to the axis of symmetry. The only
longitudinal forces which will act to change the proper
separation of the beads are gravitational forces due, for
instance, to passing Einstein-Rosen gravitational waves
or to a change in the location of the yardstick. Such
gravitational forces do not alter the coordinate separa-
tion of the beads. Hence, once their coordinate separa-
tion has been fixed at one “‘standard length’’ unit, it will
always remain so; and their proper separation will be
the Az which enters into Eq. (28) to give the local
C-energy density.

If space-time is flat (R%;=0) in a neighborhood of
r=r1, the C energy per unit standard length on a
canonical hypersurface (/= constant) has a very simple
significance: The hypersurface near r=r; is a segment of
a (3-dimensional) conical surface of half-angle arcsin
(e~*¢E@D), This was pointed out in 1957 by Fierz,
whose discussion of the geometry around an Einstein-
Rosen gravitational wave moving on a flat-space back-
ground foreshadowed our definition of C' energy.

(28)

D. Can C-Energy Density be Negative
or Infinite?

One would hope that at any point in space-time where
on physical singularities exist the C-energy density
measured by an arbitrary observer in his local Lorentz
frame would be non-negative and noninfinite. Un-
fortunately, this is not always the case. There exist
solutions to the field equations (4) which, in a standard
coordinate system (2), have nonsingular hypersurfaces
on which o/2—&?=0.1® At each point on these hyper-

14 M. Fierz, as quoted by J. Weber and J. A. Wheeler, Rev. Mod.
Phys. 29, 509 (1957).

15 Specific examples will be discussed in later communications
(see, e.g., K. S. Thorne, Ref. 10).
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surfaces every observer measures an infinite C-energy
density [cf. Eq. (25) and also Eq. (9)], but the geometry
of space-time is perfectly smooth. On one side of such
a hypersurface the C-energy density is positive, while
on the other side it is negative.

Between the symmetry axis («=0) and the first such
“critical” hypersurface one has o'> |&|, for the sym-
metry axis must sweep out a time-like path in the 7*—*
plane. In this “inner region” all observers measure a
nonnegative, noninfinite C-energy density; equivalently,
in this inner region the C-energy flux vector lies inside
the future light cone. To see this, insert E from Eq. (9)
into Eq. (17) and then use the field equations (4) to
obtain

1
Po¥=— {a/To*o*—f—dTo*T*
hy o/2—a?
32(‘/‘*—7*)
AL -2, (29
8rG
1
Pr*______ _ {O/TO*T*'—O'CT,-*T*
h, o'2—a?
2 ")
L= 2l] @0
8rG
Po¥p Pr*zi _ .
by o/2—a?

X O{I(To*o*:]: To*r*) -I-d(To*"‘*:F TT*T*)
e2(¥*—v*)

+—W(a':l:o'z) WY F¢*)2t .

T

1)

Now, for any physical source of stress-energy one has
T()*O*— I TT*T*| >0 and T — ITT*"*] —2 1 TO*T*I >0.
Consequently, in the inner region where o’>|¢|, ex-
pressions (29) and (31) are non-negative. This, along
with gosox= —g.++, guarantees that P? lies inside the
future light cone, so that in the inner region all ob-
servers measure a nonnegative, noninfinite C energy
density.

In particular, 4% vacuo and in electromagnetic sys-
tems, when the nonsingular hyperbolic canonical co-
ordinate system (6) can be introduced,' the C-energy
density as measured by an arbitrary observer is every-
where non-negative and noninfinite.

In systems where the C-energy density is not every-
where non-negative and noninfinite, one hesitates to
identify C energy with classical energy. However, in
such systems C energy remains a useful tool for the
analysis of dynamics.

Note added in proof. One can redefine C energy so as
to make the C-energy density measured by all observers
Jinite at every point in space-time. This is done by taking
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as the C-energy potential function (Sec. I1I-B)
E(new) — (1/8G) (1 _ -8GE')
= (1/86) (1~ [o*~?]e ")

instead of E. For a discussion of C energy from this
slightly altered point of view, see the author’s unpub-
lished Ph.D. thesis (Princeton University, 1965).

III. THE C ENERGY OF STATIC CYLINDERS
AND TORUSES

A. The C Energy of a Static Cylinder with
Small Mass per Unit Length

The best test of the energy properties of C energy,
which can be performed without considering toruses, is
to check whether C energy reduces to Newtonian energy,
or “proper mass,” in the case of a static cylinder with
small proper mass per unit proper length. We perform
this test entirely within the framework of Einstein’s
theory; but we keep in mind the approximate flatness of
space-time throughout the interior of the cylinder,
which results from its small mass per unit length, and
which permits the introduction of the concept of proper
mass.

Consider a particular static cylinder with small mass
per unit length. Throughout space-time introduce a
standard line element (2) with respect to which the
metric is static. Choose y*=¢*=a=0 and o’=1 on the
symmetry axis so that the metric is essentially flat
throughout the cylinder. Then, integration of the
Einstein field equations (4) yields, to first order in the
dimensionless quantity GX (mass per unit length),®

a:r*—‘lG/ (Mo*o*",-MT*"'*)dT* ,
0

r¥

Y¥*=—2G| (Mo +M "M o—M Hr*dr*, (32)
0

y¥=—4GM

where

r¥

Ti2mr*dr*. (33)

|
0

The C energy per unit standard length inside the
cylinder and on the standard hypersurface ¢*= constant
is then

E(r*)= (36 (v*—Ind) = / "’ To0*2mr*dr*), (34)

where #,* is the radial coordinate of the surface of the
cylinder. In this case (standard length)= (coordinate
length) = (proper length) inside the cylinder, so the

16 In conventional units this dimensionless quantity is (G/c?
X (mass per unit length).
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total C energy per unit standard length is identical to
the proper mass per unit proper length.

If we had used a different space-like hypersurface
passing through (#*=constant, r*=7,*) would we have
obtained the same result? Yes. The integral conserva-
tion law (19) guarantees that segments of two space-
like hypersurfaces with the same (2-dimensional)
boundary contain the same total C energy.

B. Comparison of C-Energy with Levi-Civita’s
Definition of Mass

The metric outside any static cylinder is the same as
the metric of a line mass, which was first derived by
Levi-Civita!:

d32=72°dt2—A2720("“1)(d772—|-d§2)—72(1‘°)d<p2. (35)

When transformed to hyperbolic canonical coordinates
[Eq. (6)] this line element becomes

ds?= 2V (di2—dr?) — e>¥dz?—r2e *d ¢?,

Y=«lnr+a, (36)
y=k%Inr+b,
where
k=—c/(1—c). (37)

Levi-Civital” and others'® have suggested that the
constant ¢/2G= —(x/2G)/(1—«) be called the mass per
unit length of the cylinder generating the gravitational
field, because for 0<¢<K1 several features!® of the line
element (35) resemble the Newtonian gravitational field
for a cylinder with this mass per unit length.

By extending the interior solution (32) for a small-
mass cylinder into the exterior region and then convert-
ing to hyperbolic canonical coordinates, we find that

(c/2G)~ —(k/2G)

= / (Tou0* 4 T+ T yo— T,2) (2mr*dr®) . (38)
0

As long as the internal pressures of the cylinder are
much smaller than its energy density, then, to first
order in the quantity GX(mass per unit length), one
has the equality (Levi-Civita’s mass)= (total C energy
inside cylinder)= (proper mass). But, regardless of how
small the mass per unit length of the cylinder is, if the
internal pressures are of the same order as the energy
density, (Levi-Civita’s mass)# (total C energy)= (proper
mass).

For example, consider a whole-cylinder-symmetric

17T, Levi-Civita, Rend. Acc. Lincei 28, 3 and 101 (1919).

18 T. Levi-Civita (Ref. 1) argued m/l=c¢/2 from the form of the
metric for small ¢. W. Wilson, Phil. Mag. 40, 710 (1920) made this
association by examining the equations of motion for free particles
when ¢<1. L. Marder, Proc. Roy. Soc. (London) 244, 524 (1958)
showed that for small ¢ the proper mass per unit proper length of
certain solid cylinders is ¢/2.
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bundle of magnetic field lines, all parallel to the sym-
metry axis. At a particular moment of (coordinate) time,
1*=0, let them be perfectly stationary (configuration of
time-symmetry) and so distributed that

B=1G,
:0’

0<r*<1lm
7*>1 m.

One can verify that Egs. (32) represent a solution to the
initial value equations for the hypersurface of time-
symmetry; and that for this solution Egs. (34) and (38)
are valid. At the moment of time-symmetry

TO*O*: - TT*T*z ]‘zz= - Tp‘p: B2/87T.
Consequently,

(C energy per unit length on hypersurface £*=0)

Im
= / (B2/87)(2rr*dr¥)=1.4X10"1g/cm,  (39)
0

(total C energy within torus)= (proper mass within torus) = (Schwarzschild mass of torus).

THORNE

but

(Levi-Civita’s mass per unit length)

— 2 / " (B /8m) i

=—2.8X10"18g/cm. (40)

This negative value for Levi-Civita’s mass may not be
as serious an indictment as it at first appears, since this
configuration of magnetic fields actually repels par-
ticles outside it rather than attracting them.

C. The C Energy of a Light Torus

Consider a static torus with major radius ® much
larger than minor radius 7,* (thin ring), and GX (mass
per unit length)<<1. In the region®® 0<7*<0.01® about
the guiding line of the torus, we can introduce standard
whole-cylinder-symmetric coordinates and calculate the
C energy. Using the analysis of Sec. III-A for a static
cylinder, we see that

(41)

(The second equality follows from Newtonian gravitational theory.)
If we include the C energy contained in the gravitational field outside the torus (7,*<7*<0.01®), will our re-

sult be altered? By extending the interior solution (36) for a static cylinder (or torus) into the exterior region, we
find the following: If a photon of frequency », is emitted radially by an atom sitting on the major circumference or
“guiding line” of the torus, and if it is measured to have frequency »,— Ay when passing 7*=0.01 ® (gravitational

red shift), then

(C energy in region 7,*<r*<0.01®)/(proper mass within torus)

Consequently, the C energy associated with the gravita-
tional field outside the torus can be of the same order as
the C energy or proper mass of the material stress-
energy inside the torus only when the torus is suffi-
ciently massive to cause a large gravitational red shift.
In such a case Newtonian gravitational theory breaks
down, and we must turn to the full Einstein theory in
order to test the relationship between C energy and
Schwarzschild mass. The full-Einstein-theory analysis
has not yet been completed. Pending the completion
of it, we know that the total C energy and the Schwarz-
schild mass of a light thin-ring torus are equal, but we
do not know whether they are equal for a torus suffi-
ciently massive that the Newtonian approximation
breaks down.

IV. C ENERGY OF A PURE GRAVITATIONAL FIELD

In this section we will consider the C-energy proper-
ties of the gravitational field surrounding a cylinder.
Unless specified otherwise, we do not require that the
cylinder be static or have small mass per unit length.

~ln[go*o*(0.0l(R)/go*g*(O)] = hl[Vo/(Vg‘—‘ AV)] . (4:2)

A. C Energy of a Static Gravitational Field

The hyperbolic canonical line element for the gravita-
tional field outside a static cylinder of arbitrary mass
takes the form (36).20 If 7, is the radial coordinate value
at the surface of the cylinder, the total gravitational
C energy per unit standard length on any hypersurface
between (r=r,, t=t,) and (r=R, {=1,) is

E(R)—E(rs)=(1/4G) [v(R)—~(r.)]
=x?In(R/r,)=(a positive definite quantity). (43)

[Cf. discussions following Egs. (23) and (34).] Hence,
so long as x>0, the total C energy per unit standard
length outside the cylinder, E(e)— E(r,), is infinite!
This result is not so surprising when one recalls that the
Newtonian gravitational potential of a cylinder also
diverges at infinity.

19 Throughout this section we use the standard coordinates of
Sec. III. A, centered on the major circumference or “guiding line”
of the torus. Since go*o*~g,**=~g,,~1, g,,~7" these coordinates
can be interpreted in the ordinary, everyday sense of Newtonian
gravitational theory.

% This line element also holds for static regions of space-time
outside a dynamical cylinder.
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One should remember that nothing in principle pre-
vents « from vanishing even when a gravitating source
is present. [Cf. Eq. (38) and discussion following it.]
If « vanishes, one has a situation like that discussed by
Fierz'* (see end of Sec. II-C): Space-time is locally
flat outside the cylinder, but globally outside the cylin-
der the canonical hypersurface, ¢=constant, is a seg-
ment of a 3-dimensional conical surface of half-angle
sin~*{exp[ —4GX (C energy per unit standard length
in source cylinder)]}. The local flatness of space-time
reflects the local absence of C energy, while the global
conical geometry outside the cylinder reflects the pres-
ence of C energy in the neighborhood of the symmetry
axis.

B. C-Energy Minimum Property of Static
Gravitational Fields

We shall now prove a very useful C-energy property
of pure gravitational fields, and in the next section we
shall use it to clarify the nature of Einstein-Rosen
gravitational radiation.

We have seen that the canonical line element (6)
can be expressed in terms of two functions y¥(7,f) and
v(r,t)=4GE(r,t). In the region outside any source
(T7=0), ¢ alone is needed to characterize the line
element. Once ¢ (the “gravitational potential function’)
is known, v (the “gravitational C-energy factor”) can
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be computed up to an additive constant from
v'/AG=E'=r({{*+¢'?) /4G,
/ )/ (44)

7/AG=E=nriy//2G.

[Cf. Egs. (8) and (9).] Now choose two radii r=r;,
r=ry; and specify ¥(r1), ¥(re). That (continuously
differentiable) potential function y(r) with these endpoints
which gives an absolute minimum of E(r,)— E(ry) is the
unique static solution of the field Eqs. (8), which satisfies
the specified boundary conditions (“‘C-energy minimum
principle”).

To see why, let x and a be constants so chosen that
x Inrid-a=y(r1) and « Inre+a=y(r2). Then the unique
static solution, with these boundary conditions, ¥ ,(r)
=k Inr+-a, clearly gives a stationary value of

E(ra)— B(r) = (1/4G) [ g ir (45)

for 8(E(r2)— E(r1))=0 yields as Euler-Lagrange equa-
tions

=0, (n)=0.
To verify that y,(r)=« Inr+a gives an absolute mini-
mum of (45), we set #=Inr. Then, for any choice of
Y(r,t) satisfying the boundary conditions,

AGTE(rs)—E(r)]> / C = / " () dydu= (uz—ul)ﬂ[ / 12du][ / (dzp/du)?du:l

71 u1

2

> (us— ul)—l[/uz 1 (d;b/du)du] =[Y(rs) —¥(r1) 12/In(re/r1) =«* In(re/71) = (the value of 4GAE for Y(r) =y.(r)).

%1

Another property of the C energy of a pure gravita-
tional field, which is closely related to the above mini-
mum property, is the following: T%e difference between
the “kinetic” and “potential” parts of the C energy gives a
variational principle for the dynamical field equation
obeyed by the potential function ¥; thus, the extremum
requirement

6/ 2/72 (1/4G)r(Y'2—y2)drdt=0
yields o
¥—@1/n) ()’ =0. (46)

In Sec. V we will generalize this property and
the C-energy minimum principle to electromagnetic
universes.

C. Einstein-Rosen Gravitational Waves

Einstein and Rosen?! were the first to notice that the
vacuum field equations for systems with whole-cylinder

2 A, Einstein and N. Rosen, J. Franklin Inst. 223, 43 (1937).

symmetry admit wave-like solutions. These solutions,
termed “Einstein-Rosen gravitational waves,” together
with wave-like solutions to the linearized Einstein
equations for asymptotically flat systems, provided the
basis for a long disagreement over whether gravitational
waves are ‘“‘real” and carry energy, or can be removed by
an appropriate choice of coordinates. That gravitational
waves are, indeed, real has recently been demonstrated??
by showing that the geometry of space-time is per-
manently affected by their passage; and that one can
(in principle) build machines to extract energy from
them.

By using the C-energy minimum principle of the last
section we can clarify the exact nature of Einstein-
Rosen waves and their energy properties. The wave

2 On Einstein-Rosen waves see, for instance, N. Rosen in Jubilee
czf Relativity Theory, edited by A. Mercier and M. Kervaire
Birkhaiiser Verlag, Basel, 1956); J. Weber and J. A. Wheeler,
Rev. Mod. Phys. 29, 509 (1957); and L. Marder (Ref. 18). On the
more general problem, see the lectures of R. Sachs and R. Penrose
in C. DeWitt and B. DeWitt, Relativity, Groups and Topology
(Gordon and Breach Science Publishers, New York, 1964), and
other papers cited there.
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:

SOURCE OF GRAVITATIONAL FIELD

F16. 2. The gravitational potential function y and the gravita-
tional C-energy factor v =4G E(r), which enter into the canonical

metric
ds®=e2r V) (d2—dr?) — e¥dz2— 12 2d o,

for a cylinder plus an Einstein-Rosen wave pulse. The disturbance
in the potential function, ¥, propagates linearly on the back of the
static potential function x,bfcf. Eq. (46)]; but according to the
C-energy minimum principle, the C-energy factor v is permanently
decreased by an additive constant 4G Ewave when the wave pulse
passes. Ewuve is the C energy per unit standard length carried by
the wave pulse.

equation (46) for the gravitational potential function
¥, being linear, permits the superposition of solutions.
Consequently, a wave pulse in ¢, traveling on top of a
static background potential =« Inr+a, will be totally
oblivious of the existence or form of the static back-
ground metric. When the wave pulse has passed, y(r)
will return to its original static value Y=« Inr+a (see
Fig. 2). However, the gravitational C-energy factor
v(r)=4GE(r) will be permanently affected by the
passage of the pulse: The static solution gives an ab-
solute minimum of the C-energy FE(r;)— E(r1), subject
to Y(rs), Y(r1) constant. Consequently, when the wave
pulse is inside 7, v(r)=4GE(r) will be greater by an
additive constant 4GEyayve, than when the wave pulse
is outside 7. Eaye is just the C-energy per unit standard
length carried by the wave pulse.

Marder!8 has calculated the change in proper mass per
unit proper length of a particular solid cylinder, when it
emits a gravitational wave pulse. By comparing /is
Egs. (21) and (31) one readily sees that the decrease in
proper mass per unit proper length of the cylinder is
precisely Eyave, the C energy per unit standard length
carried by the wave pulse which it emits!

D. Gravitational Waves with Two States
of Polarization

Einstein-Rosen gravitational waves have only one
polarization state, corresponding to the single “gravita-
tional potential function” ¢. By relaxing the demand
that space-time be invariant under reflections in planes
containing the symmetry axis or perpendicular to it,

THORNE

Jordan and Ehlers, and independently Kompaneets?®
have obtained cylindrical gravitational waves with fwo
polarization states. This relaxation of the symmetry
does ot destroy the Killing vector fields £(,)* and £(,)*
in terms of which C energy is defined, but it does de-
stroy their uniqueness. (If there is no reflection in-
variance, there is no way to select out preferred z and ¢
directions on the z-¢ surface.) Consequently, there are
nfinitely many inequivalent ways to define C energy for
2-component cylindrical gravitational waves.

Select a particular pair of Killing vectors £.)¢ and
£(»* and calculate the corresponding C-energy potential
E from Eq. (13). (In this calculation the area 4 of the
invariant surface will be

A=\ |2 £ 2= G Ewad)? T2,  (47)

rather than A=N\,|£,||%w)|, because &y and £,
will not necessarily be orthogonal.) Then use the appro-
priate generalization of Eq. (16),

EEikem
= )
(=)' £ |2 £ 2= [E@ ™ Ern

to calculate the C-energy flux vector. In the coordinate
system

ds?= >V (di2— dr?) — e?¥(dz+wd o) —r2e~2¥d ?

eijkm
i

(16")

(48)

one will find
E(rt)=(1/4G)y (49)

as in the whole-cylinder-symmetric case; and, as before,
E will be not only the C-energy potential function, but
also the C energy per unit standard length on the hyper-
surface ¢= constant.

The vacuum field equations corresponding to Eq.
(48) are

P—=/N() = (1/2r)e(* =), (50a)
G—r(w'/r) =4V — i), (50b)

Y =149+ 1/4r)e(@+e"),  (50c)

7 =2ra+(1/2r)e i’ . (50d)

The quantities ¥ and w are seen to be gravitational
potential functions corresponding to the two polariza-
tion states. They are governed by the two coupled,
nonlinear wave equations (50a) and (50b). Once these
wave equations have been solved for ¢ and w, the
C-energy factor vy can be obtained by quadrature from
Egs. (50c) and (50d).

As in the Einstein-Rosen case, the C energy per unit
standard length E(7,f) has a minimum property: Choose
a hypersurface ¢=constant and two radii r=7; and

2 P, Jordan, J. Ehlers, and W. Kundt, Akad. Wiss. Mainz,
Abh. Math.-Nat. Kl., Jahrg. 1960, Nr. 2; A. S. Kompaneets,
Zh. Eksperim. i Teor. Fiz. 34, 953 (1958) [English transl.: Soviet
Phys.—JETP 7, 659 (1958)]. The author thanks J. Stachel for

pointing out these references and for suggesting the generalization
of C energy to gravitational waves with two states of polarization.
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r=ry; and specify ¢(r1), w(r1), ¥(r2), w(rs). Those (con-
tinuously differentiable) potential functions ¢ and w
with these endpoints, which give an absolute minimum of
E(rao,t)— E(r1,t) correspond to the unique static solution
of the field equations (50), which salisfies the specified
boundary conditions?* C energy also provides a La-
grangian for the field equations, just as in the Einstein-
Rosen case: Decompose the C energy into a kinetic
part K (involving ¢2 and ?) plus a potential part P
(involving ¢'? and «'?), E=K+P. The difference be-
tween the kinetic and potential parts of the C energy acts
as a Lagrangian for the coupled wave equations (50a)
and (50b) which govern ¢ and w; thus, the extremum
requirement

2 pr2 | (1/‘,2_11/2) eW o2—w'?
of [t
/,1 WGl 8 4 8

yields as Euler-Lagrange equations Egs. (50a) and (50b).

These two theorems hold for each of the infinitely
many inequivalent definitions of C energy which are
possible when the assumption of reflection invariance of
space-time is dropped.

2rrdrdt=0, (51)

V. CYLINDRICAL ELECTROMAGNETIC UNIVERSES

We turn now to the application of C energy to
cylindrical electromagnetic universes.

A. Brief Description of Cylindrical
Electromagnetic Universes

A cylindrical electromagnetic universe (C.E.U.) is a
whole-cylinder-symmetric system, constructed entirely
from gravitational and electromagnetic fields. There
has been considerable discussion of such universes
recently, %5725 much of it stimulated by the question of
whether they exhibit gravitational collapse. No evi-
dence for the gravitational collapse of any cylindrical
electromagnetic universe has yet been found; C.E.U.s
seem to be extremely stable against perturbations. (See
Refs. 4 and 7, and Sec. VI-B of this paper.)

Our discussion of cylindrical electromagnetic uni-
verses will be entirely within the framework of the
hyperbolic canonical coordinate system

ds?= 2V (dP2—dr?)— e¥dz2—r2eMde?.  (6)

The most general C.E.U. has electric and magnetic
fields E and B which, on the canonical hypersurface
t=constant, lie in the z— ¢ cylindrical surface. (A non-
vanishing radial component leads to a singularity on the
symmetry axis.) Consequently, the gauge can be chosen
so that the only nonvanishing components of the elec-

% Proof: Make the change of variables y=2¢, ¥=4v, 4;=0.
Then the field Egs. (50) become identical to the Einstein-Maxwell
Eqs. (55) for a cylindrical electromagnetic universe with A,=0.
Consequently, the corresponding proof in the electromagnetic
case (see Appendix) goes through here.

256 M. Misra and L. Radhakrishna, Proc. Natl. Inst. Sci. India
28A, 632 (1962); B. K. Harrison, Phys. Rev. (to be published).
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tromagnetic vector potential function are As(r,f) and
As(r,t), and the only nonvanishing components of the
electromagnetic field tensor are®

fo2=—f20=A2/\/G, fre=—fa=A4/A/G
f03=“f3o=A3/\/G, f13=—‘f31=A3'/\/G-
The physical electric and magnetic fields, as measured

by an observer with world line orthogonal to the canoni-
cal hypersurfaces ¢=constant are

B=—[44¢?7/(r/G) Je+-[Ade7/7/G]e,,
E=—[As/7/Gle.—[Ase2¥7/(r/G) e, .

The total magnetic flux parallel to the symmetry axis
and inside 7 is

(52)

(53)

()= / / Blgmgon) dedr
o — 20 A4(0)— A\ I/G,

and the combined Einstein-Maxwell field equations
reduce to?’

I (/W) == (A48
+(e¥/r2)(A2— A5, (55a)

(54)

Ar—(1/1)(rA) =2 42—/ A7), (55b)
As—r(Ay /1) = =2 A s—¢'44), (85¢)
A2A3=A2,A 3/, (55d)

v =r(rHy?) Fre V(A2 457)
+(e¥/n)(A+452), (55€)
=2+ 2re 2V A A - 2(e2¥ /r) A A3, (55f)

plus other equations which can be derived from these.
The last two of these equations can be integrated to
obtain the C-energy factor v once the first four have
been solved for the gravitational and electromagnetic
potential functions ¢ and 4;.

The most general static solution to these field equa-
tions with 4,=0 describes the most general static mag-
netic C.E.U. It is

Y=In(1+8%2)+(1—¢) lnr+In),
4,=0,
Az=1/[AN1+p%29) ]+5,
v=2In(14+8%29)+(1—g)* Inr+Inn,
2 gbx 1

26 Note that 1/4/G=3.48X10% cm G=1.044X102" V.

27 These can be obtained from the Einstein field equations (8)
plus the Maxwell equation f#;;=0. They are also derived by
Misra and Rhadakrishna and by Harrison (Ref. 25).

(56)

E=0,
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where 8, ¢, \, 8,  are constants.2® This solution was first
given by Melvin,® but in a different coordinate system.
Elementary flatness of the metric at =0 requires ¢=0,
Inp=0. We can transform In\ to O without leaving the
canonical coordinate system by the transformation (7);
and 8, having no physical significance, may be set to
zero. Consequently, the general static magnetic solu-
tion regular at the origin is

y=In(1+p%2), v=2In(14p%?),

42=0, As=1/[B(1+p%?)],
B=(28/4/G)/(14B%?)%,, E=0,

ds?= (14842 (dP— dr— d?)— 1/ (14-B)Pd .

This cylindrical electromagnetic universe will be called
Melvin’s magnetic universe, after Melvin,® who first
discussed it. Melvin’s magnetic universe is not the only
physically acceptable, static magnetic solution of the
field equations (55). The general solution (56), although
irregular on the symmetry axis, is acceptable as the
exterior solution of a static, solid cylinder surrounded by
and containing a magnetic field. In fact, for =0, (55)
reduces to the vacuum gravitational field outside a
solid cylinder, which was discussed extensively in Secs.
IIT and IV.

In addition to static magnetic solutions to the field
equations (55), there are also static solutions formed by
combining longitudinal electric and magnetic fields in
any way such that (1) at every point the electromagnetic
energy density (E2+B?)/8r is the same as in Melvin’s
universe, and (2) the ratio of electric field strength to
magnetic field strength is the same everywhere. All
such static solutions have the same metric (gravita-
tional field).

(57)

B. The C Energy of Cylindrical Electromagnetic
Universes

1. Expressions for the C Energy

We turn now from our general description of cylindri-
cal electromagnetic universes to a discussion of their
C-energy properties. A C.E.U. has a C-energy density
on the canonical hypersurface, = constant, of

ece=(1/h:)[e¥=7(¢/*+4?)/87G+er¥(B*+-E?) /87 ]
= (87Gh.)"'[eV (" *+V?)
+e (A2 A2+ (1/r2) (452 A2)]. (58)
[Cf. Egs. (26) and (53).] In Melvin’s magnetic uni-
verse (the only static C.E.U. of this type) e, reduces to

the ordinary electromagnetic energy density on the
symmetry axis

eco(Melvin’s universe at 7=0)= (B2+E?) /8.

It is convenient to divide the C-energy density into a
kinetic part involving ¥? and 42 and a potential part
involving ¢'? and A4,'2; so that the kinetic C-energy K,

28 This general solution is derived in the same way as Melvin

(Ref. 5) derives the corresponding solution in the Weyl canonical
coordinates.

THORNE

and the potential C-energy P, per unit standard length
contained inside a radius 7 on the hypersurface ¢=con-
stant are

K(r)=(1/4G) / [rf2tre 2 A2+ (e2V/r) A2 ]dr
i (59)
P(r)=(1/4G) / [ry/2+re 20 Ay 2+ (e2¢/r) A5 dr .

The total C energy per unit standard length inside 7 is
E(r)=K(r)+P(r).

As in the vacuum case (cf. Sec. IV-B and IV-D), the
difference between potential and kinetic C-energies is
a Lagrangian for the coupled Einstein-Maxwell equa-
tions, which govern the dynamical interaction of the
potential functions ¢ and 4;:

5 / (P-K)di=0 (60)

has, as Euler-Lagrange equations, Egs. (55a), (55b), and
(55¢).

Note that Eq. (55d) is 7ot obtained from the varia-
tional principle (60); it must be imposed independ-
ently. Equation (55d) results from our demand that
space-time be invariant under reflection in planes
containing the symmetry axis or perpendicular to it
(Ras=8mGT93=0).If that demand is relaxed, e.g., by the
use of the line element (48) rather than (6), then six in-
dependent field equations analogous to (55a)—(55f) re-
sult. The first four of these new equations are coupled
nonlinear partial differential equations for the four
gravitational and electromagnetic potential functions
¥, w, Aa, As; the last two are expressions for y and '
As usual, E=+v/4G is the C energy per unit standard
length. In this case the difference between the kinetic
and potential C energies provides a Lagrangian for the
four coupled equations governing ¥, w, As, 43. If w is set
to zero in these four equations, Egs. (55a)-(55d) are
recovered. Hence, Eq. (55d) need not be imposed in-
dependently of the variational principle (60) if we wait
until after the variation is performed to set w=0 (i.e.,
to impose reflection symmetry).

2. C-Energy Minimum Properties of Cylindrical
Electromagnetic Universes

The C energy of a cylindrical electromagnetic universe
has an absolute minimum property similar to the
C-energy minimum principle of the vacuum case. Let
the gravitational potential function ¢ be specified at
some radius r=ry, and let the total longitudinal mag-
netic field inside r1, ®(r1) [Eq. (54)], be specified.
[Equivalently, since an additive constant in the elec-
tromagnetic potential 4; has no physical significance,
specify A43(0), As(ry), and ¢(r1).] Then, that C.E.U.
which gives an absolute minimum of both the potential
C energy and the total C energy per unit standard length
inside r1 on the canonical hypersurface t= constant, sub-



C ENERGY IN RELATIVITY THEORY

ject to these constraints, is Melvin’s magnelic universe.”
(Recall that Melvin’s magnetic universe is the only
static magnetic C.E.U.)

Similarly, consider a system composed of a solid
cylinder, together with whole-cylinder-symmetric elec-
tromagnetic fields. Specify the gravitational potential
function ¢ at two radii, r; and 7,, outside the cylinder,
and specify the total longitudinal magnetic flux,
&(ro) —P(r1), in the shell between 7; and 7,. Equiva-
lently, specify

Yr)=y(1),  Y(r)=¢(2),
A3(7’1) =A3(1) , A3(1’2) =A3(2) .

Those configurations of gravitational and electromagnetic
Sields which make the potential and total C energy per unit
standard length in the shell ri<r<rs of the hypersurface
t=constant an absolute minimum, subject to constraints
(61), are all identical in the region r1<r<rs. There they
coincide with that unique static system (56) which
satisfies the boundary conditions (61).3° Both of these
C-energy minimum properties are proved in the
Appendix.

(61)

VI. C ENERGY AS A TOOL FOR ANALYZING
DYNAMICS

A. Examples Considered Elsewhere

As a result of its conservations laws and minimum
properties, C energy can be a very powerful tool in the
analysis of the dynamics of whole-cylinder-symmetric
systems. For instance, in Sec. VI.C we used it to clarify
the nature of Einstein-Rosen gravitational radiation;
and in a separate communication* we use it to show
that Melvin’s magnetic universe (Sec. V) is stable
against arbitrarily large radial perturbations which are
confined to a finite region about the axis of symmetry.
More particularly, if the gravitational and electromag-
netic fields of Melvin’s magnetic universe are strongly
distorted inside a radius =R and then released, they
will oscillate turbulently, emitting gravitational and
electromagnetic waves, until all the C energy associated
with the perturbation has been radiated away toward
radial infinity. Then they will settle down into the con-
figuration of minimum C energy, Melvin’s unperturbed,
static universe.

B. Resistance of Magnetic Flux to
Gravitational Collapse

1. In Cylindrical Electromagnetic Universes

As a third example of the usefulness of the C-energy
concept, we shall prove the following theorem about the
dynamics of all cylindrical electromagnetic universes
with longitudinal magnetic field and azimuthal elec-

# Melvin’s magnetic universe involves three arbitrary constants
corresponding to the three constraints we impose. However, two
of these constants can be transformed away ; only one has physical
significance. Cf. the discussion preceding Eq. (57).

® The one-to-one correspondence between the 4-parameter class
of solutions (56) and the 4-parameter class of boundary conditions
(61) is proved in the appendix.
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tric field: Magnetic field lines can never become so con-
centrated near the symmetry axis of such ¢ C.E.U. that
they undergo gravitational collapse before a finite canonical
coordinate time has elapsed.®* The proof is quite simple.
The first step is to prove the lemma: as magnetic field
lines become compressed into a smaller and smaller region
about the axis of symmetry, the C energy in that region
gets larger and larger, tending finally toward infinity. In
particular, suppose that a total magnetic flux ®, is to
be lost in gravitational collapse. Consider the universe
at a canonical coordinate time when the flux ®, has been
squeezed into a region of proper radius s. The total
C energy inside this region is [cf. Eq. (59)]

E(rs)> (1/4G)/T' [ry/2+(e2¥/r)A5'¥]dr,

where 7, is the value of the radial coordinate correspond-
ing to proper radial distance s. Make the change of
variables dl= ¢ ¥dr, y=re¢~¥. Then

E(r)> (1/4G) / (/)L (—dy/dly--(dAs/ary]dl.

Let y,, be the maximum value taken on by v in the in-
terval 0</</;, and let it be taken on at /=1,,. Then

B2 (1460152 | / " (1—ayyary
+ /0 " (d4 3/dl)2dl}.

Applying Schwarz’s inequality we then find

E(rs)2 (1/4G){Un—ym I/ [lmym]
+[A43(r)— A43(0) 2/ [Leym]} -
The actual values of /,, I, and y,, will depend upon the

particular C.E.U. being considered. Whatever those
values may be, we have

(62)

3,2
1672 Llu[ 14 (G/4An2) @2 /1], ]2

E(rs)> (63)

as is seen by minimizing expression (62) with respect
to ¥ and then dropping the first term, and by using

As(rs)—A300)=—[(+/G)/27x]%,.

Now, the proper radius of the region containing the
C energy (63) is

T8 ls
s=/ e"_‘”dr=/ evdl>1,>1,.
0 0

3 Qur result is confined to C.E.U.’s for which the hyperbolic
canonical line element (6) is nonsingular throughout some initial
space-like hypersurface, except possibly at infinity. The case of a
C. E. U. whose initial space-like hypersurface cannot be covered
by hyperbolic canonical coordinates in a nonsingular manner will
be dealt with in a later communication. (Cf. footnote 10.)
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Consequently, when the magnetic field lines have been
squeezed so far that s<<1/G®,, the C energy associated
with them has risen to

E(r,) 2 (8my/G) 71| ®,| /55 (64)

and as the magnetic field is squeezed more and more
tightly beyond this point, its C energy rises toward
infinity.

Now consider a C.E.U. at some arbitrary moment of
coordinate time when the electromagnetic and gravita-
tional field are well behaved everywhere.’! At that mo-
ment, inside any finite radius about the symmetry axis
there is only a finite C energy per unit standard length.
Consequently, the infinite C energy needed to induce
the collapse of the magnetic field near the symmetry
axis must be supplied from radial infinity. But C energy
is locally measurable and is thus governed by the
fundamental principles of relativity: It cannot be propa-
gated with a speed exceeding that of light. In the canoni-
cal coordinate system, the coordinate speed of light is
dr/dt=1; consequently, the infinite C energy needed to
induce gravitational collapse can be supplied from radial
infinity only after the lapse of an infinite coordinate
time. Our theorem is proved.

2. In the Physical Universe

This theorem has implications for the behavior of
magnetic fields in the physical universe as well as in
cylindrical electromagnetic model universes. Consider
a locally whole-cylinder-symmetric bundle of mag-
netic field lines which may be part of some larger, non-
cylindrically-symmetric configuration of magnetic fields
and matter.?? No matter how tightly this bundle of
field lines is squeezed, it cannot be induced to undergo
cylindrical gravitational collapse. For collapse to occur,
an infinite C energy per unit length would have to be
supplied from outside the whole-cylinder-symmetric
region. It could be brought in only by very strong, im-
ploding cylindrical gravitational and electromagnetic
waves. But it would seem natural to rule out such in-
coming cylindrical radiation from a noncylindrical
region as physically unreasonable; and it is not even
clear that such strong incoming radiation is allowed in
principle.

We can extrapolate still further: We have seen that
the factor impeding collapse is the divergent increase in
the C energy as a fixed amount of flux is compressed
into a smaller and smaller region. If magnetic flux resists
compression when it is distributed whole-cylinder-
symmetrically, then it most probably does so regardless
of how it is distributed. Hence, the following conjecture
(principle of flux resistance to gravitational collapse):
In a configuration of electromagnetic fields gravitationally
collapsing to a singularity, the total electric and magnetic
flux across a 2-surface through the collapsing region must

3 We assume that in the whole-cylinder-symmetric region of the
initial hypersurface the hyperbolic canonical line element is non-
singular. (Cf. Refs. 10 and 31.)
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vanish as the singularity is reached—a nonzero flux will
stop the collapse.®® More precisely, let .S; be an arbitrary
space-like 2-surface passing through the singularity
(or through the point at which the singularity is evolv-
ing, just before it is reached); and let S, be that segment
of S; located in (or very near) the singularity. Then,
the principle of flux resistance to gravitational collapse
states

_ fudrii= f_ *fodrii=0. (65)

S Sz
[Here *fij=+/(—g)eif** is the dual of the electro-
magnetic field tensor f%.] An alternative statement of
the principle is: As collapse proceeds toward a singularity,
the electric and magnetic field lines separate into those
which are to be completely destroyed in the singularity
and those which are to be left complelely free. (See Fig. 3.)

Comments on the conjecture: (1) In particular, a
cloud of electromagnetic radiation can undergo collapse;
but the center of a dipole magnetic field cannot (there
would be field lines left protruding from the collapsed
region). Also, a toroidal bundle of magnetic field lines
can collapse to its center (major and minor radii going
to zero simultaneously), but it cannot collapse to its
guiding line (minor radius vanishing, major radius
finite).3* (2) This conjecture is meant to apply only when
electromagnetic fields alone are present; we exclude from
attention the case where particles or neutrinos or other
fields contribute to the stress-energy. (3) We suggest
that electric flux, as well as magnetic flux, resists col-
lapse because, in the absence of electric charge, the
electric and magnetic fields are dynamically equival-
ent?’; interchanging them in a solution to the Einstein-
Maxwell equations leads to another solution.

In addition to the C-energy analyses presented here,
and the proof* that Melvin’s magnetic universe can
never undergo collapse no matter how turbulently it is
perturbed, there is other support for the principle of
flux resistance to gravitational collapse: The Kruskal
extension?®® of the Schwarzschild solution is a prototype
for spherical gravitational collapse®”:3%; Fuller and
Wheeler?” have shown that the throat of the Einstein-

3 For a more detailed discussion of this conjecture, see the
chapter by K. S. Thorne, in the Proceedings of the Second Texas
Symposium on Relativistic Astrophysics (The University of Chicago
Press, Chicago, 1965).

# For independent evidence that a toroidal magnetic field may
not collapse to its guiding line, see the chapter by K. S. Thorne in
I. Robinson, A. Schild, and E. Schiicking, Quasistellar Sources and
Gravitational Collapse (The University of Chicago Press, Chicago,
1965) ; for arguments that collapse to the center skould occur for
sufficiently massive toruses, see the above, as well as J. A. Wheeler
in C. DeWitt and B. DeWitt, Relativity, Groups and Topology
(Gordon and Breach Science Publishers, New York, 1964).

3 Although the electric and magnetic fields are dynamically
equivalent according to classical theory, they differ when vacuum
polarization effects are taken into account. Vacuum polarization
becomes important when the fields reach the order of magnitude
E~B~Fois=mc/[e(h/mc)]=4.4X108 G=1.3X108 V/m. The
quite new considerations which enter in this region are not dealt
with here.

3 M. D. Kruskal, Phys. Rev. 119, 1743 (1960).

3 R. W. Fuller and J. A. Wheeler, Phys. Rev. 128, 919 (1962).
8 J. A. Wheeler, Ref. 26, Sec. 9.
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FORBIDDEN

Initial Configuration

Partially Collupséd Configuration Partially Collapsed Contiguration

EJNe

Completely Collapsed Configuration Completely Collapsed C

guration

F16. 3. The principle of flux resistance to gravitational collapse.
Two modes of collapse for a magnetic field configuration are shown,
one forbidden and the other allowed by the principle of flux re-
sistance to gravitational collapse. The solid lines represent mag-
netic field lines, and the shaded regions represent the regions of
space in which gravitational collapse toward a singularity is
occurring. The forbidden and allowed collapse modes differ in that
there is a magnetic flux threading the collapsed region in the
forbidden mode, but not in the allowed mode. In the allowed mode
gvery field line is either completely swallowed or left completely
ree.

Rosen bridge?®® of the Schwarzschild solution collapses,
as it is followed in time in the Kruskal extension. How-
ever, if the bridge is threaded by electric or magnetic
field lines, the flux acts as a cushion, causing the throat
to bounce rather than collapse to a singularity.®® Even
a very minute flux is capable of preventing collapse.

VII. CONCLUSIONS

In this paper we have introduced the concept of
C energy for systems with whole-cylinder symmetry,
we have discussed its many energy-like properties (for a
summary of them see Sec. I), and we have demonstrated
the usefulness of C energy in the analysis of the dy-
namics of whole-cylinder-symmetric systems. Three
major questions remain to be investigated: (1) What is
the relationship between the C energy of a massive,
thin-ring torus and its Schwarzschild mass? (2) What is
the relationship between C energy and other energy
concepts of general relativity, especially the localizable
energies of Bergmann, Komar, and Mgller?? (3) Can
energy-like concepts similar to C energy be formulated
for other nonasymptotically flat systems?

With regard to the last question: Our approach to the
problem of energy in the whole-cylinder-symmetric
case might prove fruitful in other cases. For a given
nonasymptotically flat situation, one might seek a
canonical coordinate system which most completely

¥ A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935).

49 7. C. Graves and D. R. Brill, Phys. Rev. 120, 1507 (1960);
G. Brigman (to be published).
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embodies the symmetries of the problem. In this canoni-
cal coordinate system the proper definition of an energy-
like quantity might be quite evident; and once formu-
lated there, it might be generalizable into a covariant
form.
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APPENDIX: PROOF OF C-ENERGY MINIMUM
PRINCIPLES FOR C.E.U.s

Our proof of the C-energy minimum principles for
cylindrical electromagnetic universes will be based on
the following Lemma:

Lemma: Let 11740, ra> 71, ¥(1), ¥(2), 45(1), 43(2), be
given numbers; and let C be the class of all continuous,
piecewise smooth, vector-valued functions (Y(r),As(r)) on
the interval (r1,rs), such that

Y(r) =y¢(i) }
As(rs)=A45(1)

i=1,2. (A1)

)

Then

P f "L () A4 (A2)

is made an absolute minimum over C by that unique solu-
tion to the Euler-Lagrange equations for 6P =0, which is
n C
Yo=1In(14p2%29)+4(1—gq) Inr-+In),
Azo=(1/8N[1/(14-p%29) ]+56.

This lemma follows directly from a very powerful
theorem on absolute minima in the calculus of varia-
tions, due to Graves.*! However, rather than relying on
the theorem of Graves, we shall here present a simple
proof due to Bargmann.*? Appreciation is expressed to
Professor Bargmann for permission to quote his proof
here.

Introduce the change of variables

(A3)

x=A3, y=re ¥, o=lnr.
Then P becomes
P=20y(2)—y¢(1)]—In(rs/r)+7,
2 [ (dx/do)?+(dy/do)?
J= / l: :Ida.
o ¥
The general solution (A3) to the Euler-Lagrange equa-

where

4 L. M. Graves, Ann. Math. 28, 153 (1926).
4 V. Bargmann (private communication).
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tions for 6P=56J=0 is then

x9=a tanh(bo+c)+ f; vo=a/cosh(bo-+c), (A3’)

or

xo=g=constant; yo=exp(ho+£k), (A3")

where a, b, ¢, f, or g, &, k are constants related to the
B, g, \, 6 of Eq. (A3). The solution (A3’) is a semicircle
in the x-y plane

yot+ (o= =0,
while the solution (A3”) is a line.

The one-to-one correspondence between boundary
conditions (A1) and solutions (A3) of the Euler-
Lagrange equations is seen as follows: Let the boundary
conditions (A1) be given, and set Z=x41y. If x1=1s,
then (A3”) is the form of the solution, and

g=x(1)
ho1+k=Iny(1)
hoot+k=1Iny(2)
If x(1)#x(2), we get from double application of (A4)
=(zM)[*=[Z2@) |3/ 2[x(1)—=x(2)].
Since y=r¢~¥>0, we have a>0. Consequently, by (A4)
a={y(1)*+[=(1)— fP}.

Having determined f and ¢ uniquely, we get 4 and ¢
from (A3'):

boi+c=tanh~{[x(1)— f1/a},
bos+c=tanh—{[x(2)— 1/} .

Let the constants in (A3’) or (A3") be so computed.
If the solution is of the form (A3’), we change it to the
form (A3”’) by the transformation

w=—(Z—f+a)/(Z— f-a)=utiv,

which gives

(A4)

(AS)

=0, vy=exp(—bo—c). (A3

This transformation leaves the form of J invariant:

e /’ ” [(du/ do)*+(dv/ d0)2:|d0’.

2

(A6)

Now, let (¥(7),43(r)) be an arbitrary function in the
class @ mentioned in the lemma. If (#(c),v(s)) is this
function transformed to the new variables, an applica-
tion of Schwarz’s inequality gives

=[G +HE ¥
Jy,As]= —|\— — a
v,45] o V2L \do do
72 1 7dv\? 1 921 /dv 2
[ )=l G
o V2\do (e2—o1)L/ 4 v \do

In(ve/v1
= n(ea/v )=b2(02—01)=JE¢07A3°]'

g2—01

THORNE

[The last equality follows from inserting (A3"’) into
(A6).] Since P and J differ by a constant depending
only on the endpoints of the integration, the above in-
equality is equivalent to

P[¢7A3]2P[¢07A30]; for all (x//,As)EG.
QED.

Now, consider an arbitrary cylindrical electromag-
netic universe which, at a particular moment of canoni-
cal coordinate time satisfies the boundary condi-
tions (Al).

Since the potential C energy per unit standard length
contained in the shell between 71 and 7, is just

P(ry)—P(r1) =P/4G—|— (1/4(;)/ reAydr

our lemma tells us that P(rs) — P(r) is made an absolute
minimum by cylindrical electromagnetic universes
which, in the shell 7;<7<r,, are identical to the static
magnetic C.E.U. (o, A20=0, A310). Since these C.E.U.’s
have K (r,)— K (r1) =0, they also give an absolute mini-
mum of the total C energy E(r2)— E(r1). This was one
of our C-energy minimum principles.
The above C-energy minimum principle is restricted
to the case 71>0. Suppose ;=0 and
43(0)=450), As(r)=45(2), ¥(r)=¥(2) (A7)
are specified. Let that C.E.U. which minimizes the po-
tential C energy inside =7, have the form

AZ(”) =07 A3(7) = mA“‘(’) ) 1[/(7’) = W(y) )

and let it give P(r2)=®[m]. Then for all >0, ("43,™)
also gives an absolute minimum of P(r;)— P(e) subject
to the end-point constraints (43(e) ¥(e)) = ("4 (€)™Y (e)),
(A3(re) p(r2))=("A3(rs),™Y(r2)). (Otherwise @[ m ] could
be made smaller by changing the configuration on
e<r<ry.) Consequently, ("A4;,™y) must have the form
(A3) on the entire interval (0,7s). Since g1 leads to a
divergent P(rs), (™43,™p) must have ¢=1; i.e., it must
correspond to that Melvin universe which fits the bound-
ary conditions on ¢ and 43.

Because the kinetic C energy of Melvin’s magnetic
universe is zero, it minimizes the total C energy per
unit standard length inside 7, as well as the potential
C energy.

These minimum C-energy properties of Melvin’s mag-
netic universe complete the set of C-energy minimum
principles for cylindrical electromagnetic universes.



