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case of 1+(27), Ar is necessarily the T=2 member and
the remaining members are above A1.

We can easily see that the X meson (r)srrr) is not
0 (1) as in the vector-pseudoscalar system. It will not
be interpreted as a UI'8 resonance.

Another Ex+ resonance which is not 6rmly estab-
lished was reported to be around 1270 MeV. ' If 7=-,',
it will constitute 2+(gs) together with f' and As. The
Gell-Mann —Okubo mass formula holds almost exactly
for them. If T= ', , it m-ay be a member of 1+(27).

Finally, some evidence has been reported for the

3'For not Grmly established resonances which were recently
observed, see Proceedings of the 1964 International Conference on
High-Energy Physics at Dubna, USSR, 1964 (to be published).

isoscalar mp resonance around 975 MeV." From the
Dalitz plot of the decay products, the spin-parity seems
to be 1+ or 2 . This is the lowest UI's resonance that
has ever been observed. It is quite welcome for the
present level schemes. Indeed, a low-lying 1+(1) has
been predicted in both of the models. It is one of the
most striking characteristics of the present work.
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A simple estimate of the high-energy limit of the pion-nucleon total cross section is given in terms of the
mass and the width of the 33 resonance and the S-wave pion-nucleon scattering lengths. The underlying
assumptions are that the forward elastic (charge-nonexchange) scattering amplitude satis6es the usual
(once-subtracted) dispersion relation, and that the scattering becomes dominantly absorptive in the high-
energy region. This estimate gives 23 mb as the limit of the total cross section, which is in close agreement
with what one obtains from a simple extrapolation of the available high-energy cross sections. The present
analysis strongly suggests that a simple correlation exists between a pronounced low-energy resonance and
the high-energy limit of the scattering amplitude.

' 'N dispersion theory, the high-energy behavior of the
~- scattering amplitude is uniquely correlated to the
low-energy behavior. Therefore, a detailed knowledge
of low-energy scattering should yield some information
about high-energy scattering as a consequence of the
underlying analyticity assumption. If there is a pro-
nounced low-energy resonance, it is possible that this
resonance plays a dominant role in the discussion of
high-energy scattering. An explicit assumption of such
a correlation is made in the Regge-pole theory of
strongly interacting particles. '

The purpose of this note is to show that one can
actually obtain an estimate of the high-energy limit
of the pion-nucleon total cross section in terms of the
mass and the width of the 33 resonance and also the
S-wave scattering lengths. The basic assumptions to be
made are that the forward (charge-nonexchange) pion-
nucleon scattering amplitude satisfies the usual disper-

*Work supported by the National Science Foundation and the
U. S. Air Force.

'According to G. F. Chew and V. L. Teplitz, Phys. Rev. 136,
B1154 (1964), one expects in the Regge-pole theory a reasonable
value of the high-energy limit of the pion-pion total cross section
from a knowledge of the low-energy pion-pion resonances.

sion relation and that this amplitude rapidly approaches
a pure imaginary limit in the high-energy region. The
latter of these may be regarded as the assumption
that pion-nucleon scattering becomes dominantly ab-
sorptive in the high-energy limit. This estimate is then
substantiated by a careful numerical analysis. This
analysis also enables one to compute the high-energy
limit of the total cross section if the high-energy phase
of the scattering amplitude is given. This computed
limit becomes 23 mb if one assumes the high-energy
phase predicted by a reasonable optical potential modeP
of high-energy scattering.

Major conclusions are summarized at the end of this
note, together with important remarks, the last of which
concerns the question whether the same analysis can
be applied to pion-pion scattering.

Let T(ce) be the forward (charge-nonexchange) pion-
nucleon scattering amplitude as a function of the labora-
tory pion energy &o. We normalize T(to) as ImT(co)
= qo (to), where q is the laboratory pion momentum and

'Y. Nambu and M. Sugawara, Phys. Rev. Letters 10, 304
(1963), and Phys. Rev. 132, 2724 (1963).The high-energy phase
is derived in the second of these references.
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where ops ——p2/2M and g2/42r is the pion-nucleon coupling
constant. According to Hamilton and Woolcock, '

g2/42r =0.081+0.002,

s (a,+2as) = (—0.0017&0.004)P, '. (3)

We, therefore, assume T(p) =0 in the following analysis.
The corrections due to the uncertainties in (3) are dis-
cussed in (c) of the concluding remarks. In the case of
T(I2) =0, the phase representation4 of T(co) becomes

(~2 p2) (~2+g2)

T(~)=c
~((2 ~ 2)

2(d 6 GO ZGOexp-
el

( )
(4)

Q7 GO M

where a and c are real constants and the phase 8(oi) of
T(or) along the cut, oe )oi) p, satisfies 5(p) =0,
2r)5(o&))0 fOr oo)o&) p, and 5(oi) apprOaCheS 5(~)
=2r/2 as oi —& ~ according to the second of the afore-
mentioned assumptions.

The high-energy limit of a (&o) can be obtained from
the high-energy limit of T(co) given by (4). The latter
can be found most easily by separating p(oi') into p(co)
and &(ce') —5(~ ), thus splitting the integral in the expo-
nent into two parts. The first of these can be evaluated
exactly and the limit of the second as ~ ~ ~ can easily
be inferred. ' One thus derives our basic equation,

0 (~)=c exp —(2/2r) Lb(oi) —5(~)]doi/M . (5)

We show in the following that c in (5) can be estimated
if one knows the mass and the width of the 33 resonance.
We then argue that the exponential factor in (5) is

roughly unity.
The phase representation (4) must exhibit the correct

' J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. BS, 737
(1963).

4 M. Sugawara and A. Tubis, Phys. Rev. Letters 9, 355 (1962);
and Phys. Rev. 130, 2127 (1963).As is shown in these references,
no more assumptions are implied in the phase representation (4)
than those in the usual dispersion relation (2).' It is assumed here that the phase approaches its limit suf5-
ciently rapidly as u ~ ~ so as to guarantee a finite limit for this
second integral.

o(ie) is the average of the two total cross sections,
0, „(oi). In this normalization, T(p) is given by

T(p) =42rL1+ (p/M)]st(at+ 2as),

where p, and 3f are the pion and nucleon masses, re-
spectively, and u& and a3 are the 5-wave scattering
lengths in the channels with total isospin —,

' and —,',
respectively. The usual dispersion relation for T(&v)

reads

( 2Msg it oi

&(~)= &(~)+ I

residue at co=coo, which yields

(o~s2 —p2) (o 22+ as)—
g =c

2gcoo

Xexp
2Ms 5(M )JM

(6)
co —o

Combining (7) with (6) without the exponential factor,
one obtains

c= (2p/2r) 0 (os)dg/(o)2+as).

The 33 resonance appears at co=or» ——2.40 p,. Accord-
ing to (8), c is determined primarily by the 33 reso-
nance provided a' is small compared with co33'. One can
determine a and also c if one estimates the integral in

(8) without a2. Since the 33 resonance surely dominates
in this integral, one assumes a simple resonance formula,
0. (oi) = (2/3) 022 (cu) =42r'1'228(E —3522)/pss', expressed in
terms of the mass M» and the full width F33 of the
33 resonance, the c.m. momentum pss at the 33 reso-
nance, and the total c.m. energy E= $2&oM+3P+ +2]'~2.

This estimate yields 147 p,
' for the integral in (8)

without u', using M» ——1237 MeV and F33——90 MeV.
The right-hand side of (7) assumes this number (1.47

p ') at a2= 0 and increases monotonically as a2 increases.
On the other hand, the left-hand side of (7) is nearly
27 p,

' at a'= 0 and decreases very rapidly as a' increases.
In fact, the left-hand side of (7) becomes only 1.58 p '
at u'= 0.1 p,', still decreasing fast as u' further increases.
Therefore, one Ands a'=0.1 p,'. This figure of a' is
actually small compared with co»'. This also permits one
to estimate the integral in (8) by multiplying the same
integral without a2 by oi222/(oi222+us). One thus finally
estimates c as 1.44 p '.

In order to see how accurate the above estimate of
c is, we have carried out a careful numerical determina-
tion of a and c, using the table of the pion-nucleon total
cross sections compiled by Hohler et al. 'Ke found that

c'=0.103 p', c=1.40 p, '=27.9 mb.

The close agreement of these figures with the above
estimates is somewhat accidental. However, it certainly
justifies the statement that one can estimate c in (5)
by knowing the mass and the width of the 33 resonance.

The upper limit of the exponent can be obtained by
replacing 8(os') by 2r and dropping ~22 in the denomina-
tor. This upper limit, though obviously overestimated,
amounts only to oiss/ps=0. 0056. Therefore, one may
ignore this exponential factor in (6). Since T(oi) has
a zero at co=ia, it follows from the dispersion relation
(2) with T(12) =0, that

( 2oisg2 ) a2+p2) 2(u2+p2) "0 (cv)dq

Ms] r2+Ms/ 2r s %+8
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plotted in Fig. 1, together with the cross sections used,
up to 2 BeV. The difference between the two cases in
(10) is very small almost up to 5 BeV (certainly not
visible in Fig. 1), as is exemplified by
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8(5 BeV) ——,'s.=0.204 and 0.199,
5(10 BeV) —-', s =0.167 and 0.154,

corresponding to the cases (A) and (B) of (10), respec-
tively. The phase integral in (5) was carried out numeri-
ca,lly up to 5 BeV, yielding

Fio. 1. Pion-nucleon total cross section o (~), taken from Ref.
6, and the computed phase b(u) using the dispersion relation (2),
plotted against laboratory pion kinetic energy, ca-p, . Both a(co)
and S(&o) exhibit very small humps (invisible in this plot) outside
this figure and then decrease slowly as co increases.

—(2/vr)

5 BeV

9(~)—~( )j~~/~

=0.0654 and 0.0675, (12)

We add that the unknown cross sections above 20 BeV
hardly affect the figures in (9).

The exponential factor in (5) is much harder to esti-
mate. However, one can argue very plausibly that this
factor is likely to be roughly unity if there is a pro-
nounced low-energy resonance. The argument is as
follows: The phase 8(co), starting from zero at co=a,
rises very steeply towards the low-energy resonance,
passes -', s- which is equal to 8(~) near the resonance,
and is expected to begin to decrease slowly towards
2x beyond the resonance, but to stay around —,'m. all
the way to in6nite energy because of strong absorption.
Therefore, a strong cancellation is expected to occur
in the phase integral in (5) between the energy regions
below and above the resonance. The very-high-energy
contribution to the phase integral in (5) is also expected
to be rather small because the high-energy phase is
likely to approa, ch the limit 8(~) quite rapidly. It is,
therefore, quite plausible that the exponential factor in
(5) is roughly unity.

In order to verify the above argument and also to
estimate the phase integral in (5) precisely, we have
carried out a numerical determination of the pha. se
B(co) in terms of the dispersion relation (2). We have
used the total cross sections compiled by HOhler et al. '
up to 5 BeV and the following two extrapolations~ above
5 BeV,

(A) o (to) = 20.94+16.51/q"
(B) o(co) = 23.63+24.24/q, (10)

expressed in terms of mb and BeV units. These are the
empirical formulas which fit equally well all the ob-
served cross sections for 20 BeV&or &4.5 BeV. We have
used these two extrapolations to estimate the effect of
the unknown total cross sections above 20 BeV in the
determination of the phase. ' The computed phases a,re

' G. Hohler, G. Ebel, and J. Giesecke, Z. Physik 180, 430 (1964).
7 G. von Dardel, D. Dekkers, R. Mermod, M. Vivargent, G.

Weber, and K. Winter, Phys. Rev. Letters 8, 173 (1962).
The extrapolation (A) of (10) is used also by Hohler et al. in

completing the table of Ref. 6. We have reproduced in this case
all the figures in this table, excepting those referring to the
lowest energy point. However, the discrepancy is rather small
and certainly cannot aA'ect the irgures in (12).

corresponding to the cases (A) and (B) of (10), respec-
tively. These small figures in (12) actually demonstrate
that nearly complete cancellation takes place between
the energy regions below and above the 33 resonance.
The high-energy contribution of this phase integral can
be estimated if one assumes

b(io) —8(~)= [8(5 BeV) —b(~)](5 BeV/co)",
for &o&5 BeV, (13)

with the computed values in (11) for 5(5 BeV). Since
the high-energy phase is associated with the high-energy
cross section at least in the asymptotic region, ' we have
chosen tx=0.5 and 1.0, respectively, in the cases of (A)
and (B) of (10). Our final estimates of the exponential
factor in (5) and the computed limits o(~) are as
follows:

exp —(2/s. ) P (to) —8 (oo )jdoi/to =0.823 and

0.943, o (~)=23.0 mb and 26.3 mb, (14)

corresponding to the cases (A) and (B) of (10), respec-
tively. The figures in (14) demonstrate that the expo-
nential factor in (5) is actually close to unity. It is also
clear that this exponential factor is essentially a high-
energy quantity in the sense that the small deviation
of this factor from unity in (14) is mainly due to the
high-energy phase which is close to -,'z, yet decreasing
only slowly towards —,'m even in the very-high-energy
region.

The major conclusions and important rema, rks of this
note are summarized below:

(a) Our crude estimate of o.(~ ), based upon the mass
and the width of the 33 resonance is 28 mb in (9). The
correction to this estimate depends primarily on the
high-energy phase. A reasonable optical potential
modeP of high-energy scattering predicts the high-
energy phase (13) with o.=0.5, and also the high-energy

' The second paper cited in Ref. 2 actually demonstrates this
association in the case of o.=0.5. One can show similarly that an
analogous association exists also in the case of +=1.
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cross section which is essentially the case (A) of (10).
Assuming this behavior, our final estimate of o (~) be-
comes 23 mb of (14).This is slightly different from that
(21 mb) implied in (10) for the case (A). However, the
figures in (10) were obtainecP by fitting o. +~(&o) indi-
vidually in terms of the same energy dependence, thus
imposing an extra condition on o. -„(ro)—o +„(co). If
only o.,-~(o&)+o. +„(co) is fitted in terms of the same
energy dependence, one finds o.(oo) 23 mb. s This is
in close agreement with our final estimates. In this
respect, the optical potential model of the type of Ref.
2 is actually consistent with pion-nucleon scattering
above 5 BeV.

(b) The S-wave scattering lengths do not show up
explicitly in the preceding analysis since they cancel
almost completely in T(Is) as is seen in (3). However,
suppose tha, t these scattering lengths had the same sign.
This would make T(li) as large as 1.68 p '. This figure
is even larger than 1.40 ls

' for the integral in (8) which
domina, tes the preceding analysis. Therefore, one must
not overlook the importance of the S-wave scattering
lengths in the analysis of this type. "The importance
of the S-wave scattering lengths is evident in the case
of pion-pion scattering a,s is discussed in (e) below.

(c) The corrections due to the uncertainties in (3)
were also estimated. The largest correction comes from
the uncertainty in T(ls), which amounts to modifying
the figure of c in (9) by roughly 4%.

(d) It is important to observe that the computed
phases are very nearly independent of the unknown
total cross sections above 20 BeV. One may say that
the phase is almost completely determined up to, say,
5 BeV and fairly well determined even at 10 BeV, as is
seen in (11).It is interesting to compare these computed
values with the direct experimental value. The experi-
mental determination of the phase consists of measuring
the forward differential cross section and the total cross
section at the same energy. To our knowledge, one of
the most accurate measurements of this type in the
high-energy region is the one due to Cocconi et al."at
10 BeV. Their data give the experimental phase, b(10
BeV) —ss.=+(0.135~0.135), which should be com-
ps, red with the computed values in (11).One thus sees
that the dispersion method of determining the phase is

'0 This point was Grst brought to our attention by G. F. Chew.
» S. Brandt, V. T. Cocconi, D. R. O. Morrison, A. Wroblewski,

P. Fleury, G. Kayas, F. Muller, and C. Pelletier, Phys. Rev.
Letters 10, 413 (1963). A possibility of a larger real part of the
scattering amplitude implied in this letter should now be dis-
carded because there is no longer such an evidence.

far more accurate than the direct experimental method. .
It is also pointed out that the dispersion method con-
sists of using a large number of total cross sections and,
therefore, should yield a reliable phase unless all the
cross sections used are systematically deviated.

(e) The preceding analysis should be applicable with-
out essential change to pion-pion scattering, even
though almost nothing is known in this case except that
a pronounced. I' wave -resonance's occurs at M, =760
MeV with the full width F,=120 MeV. However, one
should observe that this p resonance may not dominate
an analysis of this type. The importance of the p reso-
nance depends on the magnitude of the contribution of
this resonance to the integral in (8) without u'. If one
assumes a simple resonance formula of the type used
in the previous analysis for the p resonance, one esti-
mates this contribution as 0.145 p, , which is only one-
tenth of the corresponding figure in the case of the 33
resonance. This difference is due to a large difference in
the laboratory pion energies at these resonances:
co,=13.7 p and ~3g=2.40 p, . In other words, the p reso-
nance is not a low-energy resonance from the point of
view of this analysis. On the other hand, an S-wave
pion-pion scattering length as small as 0.1 p gives rise
to T(p) =2.5 p,

' according to (1) in which li =M in this
case. This figure is much larger than the figure 1.40 p '
in (9) which dominates the preceding analysis. There-
fore, it is evident that the S-wave scattering lengths

play dominant roles in the corresponding analysis of
pion-pion scattering. It is possible that a strong correla-
tion exists between the high-energy limit of the pion-
pion total cross section and the pion-pion S-wave scat-
tering lenths.

Part of this work was completed while one of the
authors (M. S.) was visiting the Lawrence Radiation
Laboratory, Berkeley, during the summer of 1964. The
hospitality extended to him during this period is greatly
appreciated. He wishes to thank, in particular, Professor
G. F. Chew and Professor F. E. Low for valuable com-
ments on this work. The present authors also wish to
thank G. D. Doolen and Mrs. S. F.Tuan for performing
most of the numerical work described in this note.

Note added ie proof Further .analysis of pion-pion
scattering Lsee (e) of the concluding remar'lsd indicates
that one can actually estimate the high-energy limit of
the pion-pion total section in terms of the p resonance,
assuming suKciently weak S-wave interactions.

"We disregard here the possibility that there is also an S-wave
resonance, because the latest experimental evidence is rather
against such a possibility.


