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KVe derive a general ansatz for the imaginary part of a Regge trajectory, with only a right-hand cut, using
conformal mapping and threshold behavior. Next we use the dispersion relation and a three-parameter
approximation of this ansatz to obtain an analytical formula for the trajectory. If the Pomeranchuk tra-
jectory has no left-hand cut, then application of this formula shows that f' does not lie on this trajectory.
Further, we And n&(+ ~) & —1 and &0. Applying the formula to f' and p, we conclude that, if our approxi-
mation is good, then the Regge trajectories corresponding to these resonances must have left-hand cuts.

I. INTRODUCTION

"T has long been realized that if the concept of Regge
-- poles' ' is to be fruitful in our understanding of
particles and resonances and in describing high-energy
scattering, then calculation of Regge trajectories is of
great physical interest. A large number of theoretical
methods' ' had been outlined for calculating Regge
trajectories self-consistently. However, actual calcu-
lations of trajectories have so far produced not very
satisfactory results. " Phenomenological calculations
have also been done, " assuming certain forms for Imn.

In this paper, we derive an approximate analytical
formula for a Regge trajectory, with only a right-hand
cut, in terms of hypergeometric functions. Our first
step consists in using conformal mapping" and threshold
behavior to obtain a general ansatz for Imo, . Using a
three-parameter approximation of this ansatz in the
dispersion relation for 0., we derive the analytical
formula. Next we apply it to the Pomeranchuk, f' and

p trajectories and draw some conclusions on the basis
of numerical calculations.

II. DERIVATION OF REGGE TRAJECTORY
FORMULA

We shall only consider Regge trajectories having the
following properties' "
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Imn(v)&0 for oo) v)0,

(ii) Imcr(v) ~ v '+& for v-+ 0 and ere+-', )0
Lhere trs —=n (v =0)],

Q V =0!p

" Imcr(v')
tEV )

V V V

where v=square of c.m. momentum. Of these, the first
property has been proved for potential scattering only.
However, it is expected to hold in general corresponding
to the requirement that resonances decay rather than
grow in time. The second property has been proved by
Barut and Zwanziger. ' The third property follows from
the analyticity of cr(v) and from the assumption that it
is bounded everywhere and does not intersect with any
other trajectory.

The Regge trajectory cr(v) is regular in the v plane
with only a right-hand cut from v=0 to ~. Let us
consider the conformal transformation

|.= [1+s(v)~lsj/l 1 s(v)»s—g

which maps the whole v plane into the interior of the
unit circle (lt'l =1). It transforms the cut v=0 to ~
into the boundary of the unit circle, with the upper
branch of the cut going into the upper semicircle. If
we write

then $(t) is regular inside the unit circle in the i plane
and therefore, can be expanded in a uniformly con-
vergent series

(3)

In the Appendix, we shall show that the series (3)
can actually be continued to the limit lt"

l
~ 1 and

the series so obtained will be uniformly convergent and
will give the value of cr(v) on the cut. Our method of
proof is similar to that given by Atkinson, "with some
more details and with some extension of his results.
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From Eq. (1) we find for v) 0, i.e., for v on the cut,
f =e*' where

(4a)sin8= 2v'"/(1+ v),

cos8 = (1—v)/(1+ v) . (4b)

Ren(v) = up+~a cos8+as cos28+

Imn(v) =at sin8+as sin28+

(5)

We now try to 6nd out how the right-hand side in
Eq. (6) can reproduce the threshold behavior Imn(v)
~ v '+'" when v —+0. Equation (6) shows that Imn(v)
is a function of sin8 and cos8 alone. From Eq. (4) we
therefore deduce that Imn(v) should behave as sin8
X(sin'8) &' as v-+0 to reproduce the right threshold
behavior. Let us write

Imn(v) =P(sin8, cos8) sin8(sin'8)~o, (7)

where the function P(sin8, cos8) should behave as a
constant when 8~ 0.

We now want to see how the series (6) can be cast
into the form (7). For this purpose, we need the fol-
lowing trigonometric relations:

If is is a positive integer (is=1, 2, 3, . ), then

cos2N8 =P (cos'8),

sin2e8 = sin28P (cos'8),

sin(2N+ 1)8 = sin8P (cos'8),

(sa)

(Sb)

(8c)

Since the series (3) can be used to obtain the value of
n(v) on the cut, so putting l =e", we get

LPs(cos 8)+2 cos8P4(cos 8)]= h
4 (14b)

where h is a finite constant. Had we k.nown the asymp-
totic behavior of Imn, then this assumption would not
have been necessary. " Replacing 8 by 7r —8 in (14b),
we get, from (14a,) and. (14b)

limPs(cos'8) = (g+h)/2

and
limP4(cos'8) = (g—h)/4.
8-+0

Let us write

Pp(cos'8) =
C,

' l+lCil cos'-8+Ci&" cos'8+ . (15a)

P4(cos'8) =Cs&'&+Cs&'l cos'-8+Csl'& cos'8+ . (15b)

We first want to show tha, t the series (15a) and (15b)
are uniformly converging.

If we call P, (cos'8) = a and P4(cos'8) = fi when 8 —& 0,
then from (15a) and (15b) we have

&i =Ci"'+Ci"'+Ci"'+
&=Cs"l+Cs"'+Cs"'+

(16)

(17)

where I'3 and I'4 are two new power series. Equation
(13) is a general ansatz for Imn based on the following
properties of n: (i) analyticity, (ii) continuity, (iii)
limited total Quctuation, and (iv) threshold behavior.
Now the last property requires that, for 8 ~ 0,

LPs(coss8)+ 2 cos8P4(cos'8) g =g,

where g is a finite constant. AVe shall further assume
that, for O~m,

where P(cos'8) denotes a polynominal in cos'8. Using
Since both u and b are finite constants, therefore, thethe above relations, we find
two infinite series

at sin8+as sin38+as sin58+ =sin8P(cos'8), (9)

as sin28+a4 sin48+gp sln68+ . = sin28P(cos'8) . (10) C &44) and P Cs&"l
+=0

From (6&, (9&, and (10&, we have
occurring in (16) and (17) should converge. Writing

Imn(v) =sin8P't(cos'8)+2 cos8Ps(cos'8)$, (11) u = (cos'8)", we have, for the series (15a) and (15b)

where Pi(cos'8) and. Ps(cos 8) are two power series in
cos'0.

Now, from (7) we have

Imn(v)

sin8(sin'8) o

Also,

=F(sin8, cos8) = const as 8 ~ 0. (12)

(sin 8) '= (1—cos'8) '
= 1—np cos 8+Lnp(np 1)j/(2 &) cos 8—

is a power series in cos'8. Therefore, in order that (11)
satisfy (12), we must have

Imn(v) = sin8(sins8) PLPs(cos'8)

+2 cos8P4(cos'8) j, (13)

(i) P Cii "i and P Cs &"l convergent

Nn& In+i

u (1 independent of e.
"For example, let us suppose we know Imn~v & when v —+ ~.

Now, for v —+ ~, sin8~v '~ and (1+cos8)~v . Therefore, Imn
will behave as v &4 if LP4(cos'0)+2 cosaP4(cos'alp behaves as
(1+cosy) & 0+'1')+ift. I.et us write

PP4 (cos'a) +2 cosaP4 (cos'8) g
= )P4(cos'8)+2 acPos(c 4' )ojs(01+cop&t&) &~4+4&'&+&4

where P4(cos48) and Pp(cos'8) are two other power series in cos'g.
From the above equation, we find that LP4(cos'8)+2 cosg
XP4(cos'8)] can tend to infinity or zero when 8 —4 4r, depending
on whether (n0+-,')—p is positive or negative. However, the thresh-
old behavior and the asymptotic behavior of Imn, in this case,
will require that fP4(cos'8)+2 cosaP4(cos'a) g behaves as a finite
constant when 8 —+ 0 as well as when 8 —+ 7I-.
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By Abel's test for convergence'~ the above conditions
show that both

P Ci'"&(cos'8)& and P Cs&"&(cos'8)" converge.

Physically these results imply that we can keep a few
terms in (15a) and (15b) and obtain from Eq. (13) an
expression for Imo. in terms of a limited number of
parameters. Now, in Eq. (15a) we notice that the term
[Ci&'& cos'8+Ci's& cos'8+ ] is most important rela-
tive to the constant term C~ "~ when 8 is near zero or m.

However, in Eq. (13) both terms are multiplied by
sin8(sin'8) '. Therefore, for 8 near zero or vr, the con-
tribution of the term [Ci "& cos'8+Ci&'& cos'8+
relative to C~&'& is suppressed in the expression for Imn.
On the other hand, sin8(sin'8) ' is large for 8 near ir/2,
where the term [C,&'& cos'8+Ci "& cos'8+ ] is small.
Thus, as a first approximation, we can consider Ps(cos'8)
as a constant ( Ci"&). Similarly, we can consider
Pi(cos'8) as a constant ( Cs&'&). We are, therefore, led
to the following three-parameter approximation of Imn ..

Imrr=sin8(sin'8) '[ci+2es cos8]. (19)

At this point, one may ask why application of Eq.
(19) will be of interest, when calculations have been
done by Ahmadzadeh and Sakma, r' and by Domokos '
using other forms for Imo. . %e feel there are two good
reasons:

(i) The other forms which have been used are com-
pletely phenomenological, while Eq. (19) has been
arrived at from theoretical considerations.

(ii) Form (19) gives an asymptotic behavior

Imn~ v ' ~~2 for

which is very different from the asymptotic behavior
assumed by the above authors. It will therefore be
interesting to see the change in the nature of a Regge
trajectory with the change in asymptotic behavior of
Imo. .

Expressing sine and coso as functions of v, we get
from (19)

Imrr(v) =[ci+2c,—4e»/(1+ v)]
&& [2v"'/(1+ v)]'"+' (2o)

Inserting this in the dispersion relation

dv
(v' —v) (1+v')' "'

=B(rro+s, &o+ss)F(1, pro+a; 2ao+2i 1+v) (22)

V
sxp+ g

Is(v) = dv
p (v' —v) (1+v')"'+s

=B(rro+ss, no+os)F(1, no+so ', 2no+3; 1+v). (23)

In (22) and (23) the B's are beta functions and the F's
are hypergeometric functions. In deriving (22) and
(23), we have to use

~
arg( —v)

~

(sr. Notice that, since
the hypergeornetric functions F's in (22) and (23) are
analytic functions of v with a right-hand cut from v =0
to ~, so the formula (21) explicitly shows the ana-
lyticity of n(v).

For v&0, we can separate the real and imaginary
parts of Ii(v) and Is(v), by using the following
rela, tions":

F (1, np+-,'; 2np+2; 1+v)

I'(2np+2) I'(np —i)
F(1~ &o+s i s &pi v)

I'(2np+1)I'(no+ pi)

I'(2np+2) I'(——np)
(e

—in v) ao-i/2 (1+v)
—sap—1 (24)

I'(~p+s)

F(1,no+s; 2rro+3; 1+v)

I'(2n +3)I'(u, +-', )
F(1,np+s; -,'—np, —v)

I'(2np+2) I'(no+-,s)

I (2&o+3)l (—&o—s)
(e iw v) as+1—/2

I (.+l)
X (1+v)-"~' (25)

In (24) and (25), we have used —v=e ' v corre-
sponding to the restriction that ~arg( —v)

~

(7r. Using
(24) and (25), we get

1
L i(v+)—Ii(v )]—=~ -"( +v) '" '

2$

we get

v "I n(m)d v'v
tx v =Qp

p v v —v

1
[I,(v~) I,(v )] irvao+i/2(1+v) —2ao—s (27)

2$

n(v) =iso+—(2) '+'[(ei+2cs)Ii(y) —4csIs(v)], (21)
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given by

[I'(as+2)1'
ReIi(v) =—

I'(2ap+1) (1+v)

1
XP 1p 2Qpj g Qpj

1y pi

V
np —1/2

—x tanxnp , ()0)
(I+p)2ap+I

(28)

(a) for cs positive, ci—2c2) 0

(b) for cs negative, ci—2Ic2I)0. (35)

Thus, in actual calculation, (35) can be used to find
acceptable solutions.

(da/~s) =o=I o
—a( )]( o+-')/L16(«+1)] (34)

Before ending this section, we would like to point out
that since Ima(v))0 for ~)v)0, then from (20) we
fllld

[r (a„+-',)]' 1
ReI2(v) =—

21'(2ap+1) (1+v)

)(P 1p 1 2Qp j 2 Qpj
1+vi

pcsp+1/2

—x tanmnp (v) 0) . (29)
(1+V)2IIO+2

For v large and negative, (22) and (23) are not con-
venient for numerical calculations. For this case, we
can use the following equations:

[I(.+!)]' 1 1
Ii(p) = F 1Iap+2I2 «I

I'(2ao+1) (—p) —v

1I —2ap—1

I
1+-

I

cosirap (—v) ~ t i vi

( &—1) (3o)

[I ( o+-,')]' 1 t' 1
I2(p) = FI 1, ao+2; 2

—ao;
2r(2ap+1) (—v) I —p

1 1)
—2lxp —2

1+-
I

COS2rao (—v) ~'" vi

(v& —1) (31)

Equations (30) and (31) are derived from (22) and
(23) by using the analytic continuation of hyper-
geometric functions. "

We are now in a position to derive the asymptotic
value of a(v). From Eq. (21) and Eqs. (28)—(31), we
get

[I'(as+2)]'
( )= o

—(2)"~' Cy

I'(2ao+ 1)

=a(—oo). (32)

[I'(a,+-,')] —
1-(-1)=-.—(2) -"—' ' ' .,+.,

pr 2I' (2ap+ 1) ap+ 1
(33)

Two quantities of physical interest are a(v) at v= —1
and (da/ds) at s=0, where s=4v+4. They are respec-
tively given by

1)ai (—~))—1. (36)
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III. APPLICATION TO P, fPI AND 9 TRAJECTORIES

If the Pomeranchuk trajectory a&(p) has no left-hand
cut, then formula (21) can be applied to make pre-
dictions about this trajectory. The first problem we
have investigated about ap(p) is whether f' lies on it.
Chew and Frautschi' pointed out, on the basis of linear
Regge trajectories with slope (50@2) ', that there may
occur a spin-2 particle of mass 7p on the Pomeranchuk
(or vacuum) trajectory. The subsequent discovery of
the rr-ir, I=O resonance" f' of mass 1250 MeV and
spin &2 led to the conjecture that this may be the
predicted particle on the Pomeranchuk trajectory.
Ahmadzadeh and Sakmar, " using a phenomenological
Regge trajectory formula, pointed out that fo does not
lie on n&, if one at the same tinle uses the analysis of
the experimental results of Diddens et al." and Baker
et a/. 23 But they concluded that the new experimental
results on p—p scattering of Foley et a/. 24 were not in
convict with f lying on ap. Pignotti" has also investi-
gated this problem using dispersion relation and in-
equality arguments. On the basis of then available
experimental results, he concluded that f' does not lie
on o.~. However, his arguments became inconclusive
when analysis4" of the new experimental results of
Foley et a/. indicated that there are other Regge poles
which give important contributions.

One way of investigating the above problenl using
our formula (21) will be to fix the three parameters ap,
ci cs by three conditions and then see whether Reap(v„)
can take the value 2 at the f' mass (here v„ is the value
of v corresponding to f'). However, we have only one
condition, ' ap( 1)= 1.—Though we do not have any
more conditions, we knowpr ap( —oc)) —1 and also,
since ap(p) is monotonic for v&0, ap( —oe) &1. Thus
ap( —~) lies in the range
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RqO(
ll

L
-100

I

-50 '100
.J
'50

Again, if f' lies on the Pomeranchuk trajectory, then

FrG. 1. Possible Pomeranchuk trajectories with only right-hand
cuts. Solid line corresponds to a~(—~)=0 and a0 ——1.85; dashed
line corresponds to nv (—w) =0.5 and op = 1.35.

we hand acceptable trajectories. This indicates that
trp( —po) & —1 and &0. Two of the possible trajectories
are shown in Fig. 1. The solid line corresponds to a
trajectory with nr (—~)=0 and np

——1.85; the dashed
line corresponds to ctr (—op) =0.5 and np=1.35. The
corresponding trajectories in the complex / plane are
given in Fig. 2. In Fig. 3, we have plotted Imn for
these trajectories against s(s=4v+4). If the phase
shift due to a Regge pole is taken approximately as
5~=arctan)Imn/(/ —Reo.)j, then Fig. 2 indicates cer-
tain interesting features. For example, for the solid-line
trajectory, the s-wave phase shift starts at ~ at thresh-
old, falls through vr/2 at s=11.5 lr', and goes to zero
at inhnite energy. It will be interesting to see whether
the falling through s/2 of the s-wave phase shift
simulates a resonance of energy 3.6 p, =476 MeV, and
in particular, the a. meson. '8

Let us now apply our formula (21) to the fP trajectory
assuming, for the moment that this trajectory has only

2&np& 1. (37)

What we can now do is to fix nz( —~) at any point
in the range (36) a,nd calculate Rear (v„) for values of
(xp varying in the range (37). Then we can repeat with
other values of nv( —~). We have carried out this
calculation program on the computer and have found
no Renr (v,) equal to 2 or near it. In fact, all the values
obtained were less than 1. This shows that. f' does not
lie on nr (v).

Next we have attempted to draw some possible
Pomeranchujr trajectories with nz( —~) and np lying
in the ranges (36) and (37). We have found that for

g0

5 in

100 1'30

nr (—~)=—1, —0.5, —0.25

np= 1.85, 1.60, 1.35, 1.10

no cr and cs were obtained so that Imct~(v)&0 for all
values of v&0. On the other hand, for the above values
of np and for

ap( —~)= —0.1, 0, 0.25, 0.5

FxG. 3. Ime(v) versus s for the calculated Pomeranchuk. tra-
jectories; solid line for nv( —ap) =0, op=1.85. dashed line for
nv( —Op) =0.5, ao= 1.35.

a right-hand cut. In this case, the spin (=2) and the
width of f' ( 150 MeV) together with its experimental
mass furnish two conditions. Though we do not have
the one more condition needed to specify the parameters
completely, still we know the range of variation of np.

2)np) —0.5.

r
/

I
I \I

l

/
r I

Re &p

FIG. 2. Calculated Pomeranchuk trajectories in the complex l
plane. Solid line corresponds to 0.~(—~)=0, e0=1.85; dashed
line corresponds to ~I (—~) =0.5, ap = 1.35.

So what we can do is to take various values of np in
the above range and for each value applying the two
known conditions, calculate the parameters c~, c2. After
that, we can examine whether any acceptable trajectory
is obtained. We have carried out this calculation pro-
gram and have found no trajectory for which Imn&0,
for all positive values of v. Ke have also obtained for
all these trajectories (do./ds), —p(0. These results indi-
cate that for fP trajectory, a formula with only a right-
hand cut is not possibly adequate and we should have
a left-hand cut.

28 L. Brown and P. Singer, Phys. Rev. 133, 8812 (1964).
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The above calculation program was also applied to
the p, where again, the spin (=1), width (=100 MeV),
mass (=750 MeV) and the range of variation of
ap(1)np) —0.5) are known. Numerical results similar
to those for f' were obtained. We found no trajectory
that guaranteed Imn(v)&0 for v)0. Thus, for the p
trajectory, also, we should have a left-hand cut.

IV. CONCLUSION

Our important conclusion is that for relativistic
Regge trajectories, such as those of fP and p, we should
have left-hand cuts in addition to the right-hand cuts.
This means that these trajectories intersect with other
trajectories" for v(0. For the Pomeranchuk trajectory,
if there is no left-hand cut, then fP does not lie on this
trajectory. Further, we find ni (—~))—1 and &0.
If nv( —po) is positive or zero, then nv(v) never crosses
the l= 0 line and the problem of ghost states4 disappears.
Our calculated Pomeranchuk trajectories can give large
m-z s-wave phase shift and it will be worth investigating
whether this is connected with the ABC enhancement. "

ACKNOWLEDGMENTS

call this limit y(e"); that is,

(A3)

where

cp+ P (c cosnt+d sintit),
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so that f(t+27r)= f(t), (i) if the integral J' f(t)dt
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APPENDIX

The function ((f')=n(v) is regular inside the unit
circle in the f plane and can, therefore, be expanded in
a uniformly convergent series

f(I)dh,

f(t) coseidt,

f(i) sinetdt.

(AS)

= Q a„p"e'"' (putting t =pe", p(1). (A1)
n=o

The problem we want to solve is whether the series
(A1) can be continued to the limit p ~ 1 and whether
the series so obtained is uniformly convergent and can
give the value of the function tr(v) on its cut.

First notice that if p is on the cut,"then the function
n(v) on the cut is defined by the following limiting
process:

n(v) =n(z) as s ~ v. (A2)

Since the limit of n(z) when s approaches a point on the
cut exists, the limit of P(pe") when p~ 1 exists. Let us

"In nonrelativistic scattering by a superposition of Yukuwa
potentials, it is known that crossing of trajectories happens for an
in6nite number of Regge trajectories; see H. Cheng, Phys. Rev.
130, 1283 (1963). It is worth mentioning that from the
Mandelstam representation one would expect not only a right-
hand cut, but also a left-hand cut for a Regge trajectory; see
Ref. 14.

'0A. Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev.
Letters 5, 258 {1960);N. E. Booth and A. Abashian, Phys. Rev.
132, 2314 (1963).' By this we mean v= v~ic and oo & ~&0.

From physical considerations, n(v) is a continuous
function of v for all values of v on the cut. Therefore,
x(e") is a continuous function of 8 for all values of 8,
i.e., —ir&8&ir. This in turn means that J y(e")d8
exists. Thus the function y(e") satisfies conditions (i)
and (iii). Since for n(v) we do not expect an infinite
number of maxima and minima to occur, then y(e'P)
can be considered to obey condition (ii) as well. Thus,
the Fourier series for x(e") converges uniformly to the
function itself for all values of 8(—ir&8(ir).

Let us now find the Fourier coefficients of x(e'P):

x(e") costt8d8

Rex(e") cose8d8 (A6.1)

x(e") sints8d8

Imp(e") sine8d8

(n=1, 2, 3, ). (A6.2)

3'E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis (Cambridge University Press, New York, 1962},Chap.
IX.



B 232 M. M. ISLAM

Relations (A6.1) and (A6.2) follow from the fact that it 8(e), then

Again,

x(e ")=Rex(e")—i Imx(e")

x (ei8)ein8d8 — x (ei8)ei(n—1)ed(ei8)

(A7)

lx(e") —$(pe") l
(e for 1—p(8(e) (A10)

for any 8. Thus (A9.1) and (A10) lead us to the con-
clusion that $(pe") tends to x(e") uniformly for p —+ 1.
Notice that we have arrived at this result from con-
tinuity alone and did not have to postulate it, as has
been done by Atkinson. "

Subtracting (A1) from (AS), we have

(A11)X(e")—k(pe") = P (c.—a„p")e'"'.
nMwhere the integration is taken on the inner boundary

of the circle. Since the integrand is an analytic function
regular inside the circle, then the right-hand side in The series (A11) is uniformly convergent for 0&1—p,

(A7) is zero. This gives so that we can integrate it term by term and obtain

1
Rex(e") cosn8d8 I—m—x(e") sinii8d8=0, Cn —+nP"=—

27r
$x (e") $(pe—' )je '"'d8 (A12.)

that is, d„=ic„.Thus, from (A4), we get, From (A12), we get, for 0&1—p

X(ei8) P c cine
n=o

(AS) l x(e")—0(pe") l
d8.

2'

where the series is uniformly converging. If we can now
show that the c 's are the same as the u„'s occurring in

(A1), then our problem is solved.
For this purpose, we take v on the cut. Now, the

continuity of the function n(s) means that, given any
positive number e, however small, we can find another
positive number y(e, i) such that

l~(~) —~(s) I
««r l~—sl &~(e,~) (A9 1)

Therefore, using (A10),

lc —a p" l(e for 0&1—p&5. (A13)

((peie) —g a pnein8
n=o

Hence
c„=a„p" as p ~ 1; i.e., c„=a„. (A14)

Thus, the series

Correspondingly, in the p plane we have can be continued to the limit p~ 1 and the series so
obtained is

jx(e'~) —$(pe')
l
&e for 1—p(8(c,8). (A9.2)

Statement (A9.2) implies that, for a given e, with each
value of 8, a positive number 5(e,8) is associated, such
that the inequality in (A9.2) is satis6ed. If we now take
the smallest of these positive numbers 5(e,8) and call

](eig) —P a ein8

n=o

which is uniformly convergent and which gives the
value of n(v) on the cut.


