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Coherent-State Representations for the Photon Density Operator

KEviN E. CAHn. L*

Lyman Laboratory of Physics, Harvard Un& erszty, Cambridge, 3fassachusetts

(Received 18 August 1964; revised manuscript received 12 February 1965)

The "diagonal" P representation of the photon density operator in terms of the coherent states of the
radiation field is studied. It is shown that the class of weight functions P (a) required to represent all density
operators by means of the P representation is much larger than the class of all probability distributions and
that therefore the analogy linking the use of the P representation with certain classical stochastic techniques
is useful only for a limited class of density operators. The class of density operators for which the P repre-
sentation is appropriate is shown to be limited in the sense that there are density operators that require
+eight functions so singular as to lie outside the class of all tempered distributions. Conditions on the weight
function P(a) under which the expectation values of the normal ordered operators (at)" a assume a
particularly simple integral form are presented. It is shown that if P(n) is a tempered distribution, then
these expectation values are given by a simple limiting process. A limited correspondence with classical
optics is suggested by a formula for these expectation values. Conditions that a density operator must
satisfy if its weight function is to be non-negative are presented and are shown to exclude all pure states
except the coherent states themselves. The problem of representing an arbitrary operator in terms of the
coherent states is studied. New measures of the completeness of the coherent states are established.

I. INTRODUCTION

ECAUSE of the zero rest mass of the photon, the
wave properties of light are more obvious than its

corpuscular aspects and were, in fact, exhibited more
than a century earlier. The wave theory of Young and
Maxwell has provided a sound conceptual framework
for optics, within which all the classic experiments have
been successfully understood. Recently, however, the
introduction of the laser and of new techniques for
counting photons has vastly increased the variety and
precision of optical experiments. It has become impor-
tant in these new areas of optics to make use of the
greater insight and detail a6orded by the quantum
theory.

In this context, Glauber' ' has begun the develop-
ment of a fully quantum dynamical theory of the sta-
tistical properties of light beams. A fundamental method
in his formulation is the use of the "coherent" states as
a basis for describing the radiation field. These states
in) are eigenstates of the photon annihilation operator
a, i.e., we have a in) =n

I n), and their eigenvalues n cover
the entire complex plane. In the classical limit, In i))1,
these state vectors correspond to states in which the
field vectors have a precisely defined set of Fourier
coeKcients. The coherent states form a complete set, as
is evident from the fact that the unit operator may be
expressed as

1
1=— in)(ni d'n,

where d'n—=d(Ren)d(1m') is a real element of area.

l
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(1.2)

This representation has been studied by Glauber, who
has shown that when the function (ni p I P) possesses a
certain integral representation, the expression (1.2) may
be reduced to a simpler form which he called the P
representation. In this form, the density operator is
expressed as an integral over all outer products of
identical coherent states:

I ~)p(~)(~I d'~. (1.3)

For a wide variety of fields, the use of the I' repre-
sentation can simplify the computation of an important
class of expectation values. The expectation values of
the normally ordered products (at) "u of the funda-
mental field operators are diagonal sums of the form
TrLp(a~) "a ].When the p representation is used for p
and when the orders of summation and integration may
be interchanged, we obtain from Eq. (1.3) the trace
relations

Interest has been focused lately upon the manner in
which a density operator describing the statistical prop-
erties of an arbitrary optical system may be represented
in terms of the coherent states. It is always possible to
represent the density operator p as an integral over all

outer products of coherent states, since we may use
Eq. (1.1) to write

*National Science Foundation Predoctoral Fellow, 1963—65. Tri p(+t) n+m] — (&4)n+mP(&)d2&' R. J. Glauber, Phys. Rev. I.etters 10, 84 (1963).' R. J. Glauber, Phys. Rev. 130, 2529 (1963).' R. J. Glauber, Phys. Rev. 131, 2766 (1963).
J. Glauber, Quantum Flectronics, proceedings of the 7hird These relations exPress the q~a~™mechanical ex-

International Congress, Paris, 1963 (Columbia University Press, pectation values in a form resembling classical ensemble
New York, 1964), Vol. I, p. 111.' R. J. Glauber, Quantum Optics and electronics, Lecture Notes Les Pouches, France (Gordon and Breach Science Publishers, Inc. ,
of the 1964 Session of the Summer School for Theoretical Physics, New York, 1965).
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PHOTON DENSITY OPERATOR

averages and thereby provide an instructive and useful

analogy with classical optics. In this analogy, the weight
function P(n) (or P(InI) for a multimode system)
corresponds to a classical probability distribution for the
Fourier coefficient(s) of the classical fields. ' The weight
function P(n) is real and normalized to unity, as ca,n be
seen from Eqs. (1.3) and (1.4), by using the facfs that
p =p Rnd Ti(p) = 1. Tllc density opclRfols bcloIlgiIig fo
some physical states may be represented by using well-

behaved, positive-definite weight functions P(n), which

go smoothly over into the corresponding classical prob-
ability distributions as these states approach the
classical limit.

This correspondence is not of universal validity, how-

ever. The weight functions P(n) may be extremely
singular and may assume negative values; in some cases
they share none of the mathematical properties of prob-
ability distributions (except reality and normalization).
In Sec. VI, we shall present the very restrictive condi-
tions that a density operator must satisfy if its weight
function is to be non-negative. Ke shall show that these
conditions exclude all pure states, except the coherent
states themselves. The density operators that may be
represented by weight functions having only delta func-
tion singularities are also rather special, as will be proven
in Sec. IV.~

The class of density operators for which the I' repre-
sentation is appropriate has not yet been fully charac-
terized. We shall not attempt this characterization in the
present paper but shaH only remark that not aH density
operators canbe said to possess this representation in any
useful form. For there are density operators that require
weight functions so intractably singular as to lie outside
the class of all tempered distributions. ' ' In fact, as will

be shown ln Sec. IQ) a density operatol. Inust satisfy a
set of rather restrictive conditions if its weight function
is to be a tempered distribution. In a recent paper,
Sudarshan" has proposed an explicit construction for

any density operator of a weight functional that
formally satisfies Eqs. (1.3) and (1.4). This weight func-

tional, however, is in general so singular that it not only

fails to be a tempered distribution, it lies outside the

much wider class of all distributions, as we sha11
demonstrate in Sec. II.

The class of tempered distributions is the widest class
of functionals that share with probability distributions a
certain continuity property. As we shall show in Sec. II,
the expectation values (F ) of a sequence of functions
F„(n) calculated from a probability distribution fP(n)
according to the rule

(F.)= F.(n) a'(n) d'n

will converge to the limit (F} if the sequence of func-
tions F„(n) converges uniformly to the function F(n).
Thus the expectation value (F) may be said to be a
continuous functional of the function F(n). Expectation
values calculated from tempered distributions exhibit a
similar, though somewhat weaker, continuity. Members
of the wider class of all distributions, in general, possess
this continuity only when operating on a very special
class of functions F(n). The general weight functional
of Sudarshan, being in general neither a distribution nor
a tempered distribution, does not possess this continuity
property characteristic of probability distributions.

Tile iadicRl cxteilt fo.wlilch thc wcigllf fuIlcfioils P(n)
di8er mathematically from probability distributions is a
natural reAection of the fact that e is not a quantum-
mechanical observable, as is evident from the relation
[a,iif]=1. For this reason, one may only speak of the
probability W(A} for 6nding n within a range of values
A large compared to the uncertainty in the measure-
ment of n. In Sec. II, we shall consider the relationship
between the probability distribution W(A) and the
weight function P(u).

It will be made evident in Sec. III that the trace
rels, tions, Eq. (1.4), impose R, restriction on the asymp-
totic behavior as

~

n
~

—+~ of P(n). We shall prove that
the trace relations hold whenever the functions in-
volved, P(n)(n*) "u, are absolutely integrable or, more
generally, whenever P(n) is a tempered distribution that
decreases in magnitude rapidly enough for large ~n~.
We shaH also show ths, t if P(n) is a tempered distribu-
tion then the following limit formula is valid:

6 The classical stochastic techniques are described in J. Lawson
and G. E. Uhlenbeck, Threshold apoise Signals (McQraw-Hill
Book Company, Inc., New York, 1950), pp. 33-56. See also,
M. Born and E. Wolf, Priwci pres of Opt& s (Pergamon Press, Inc.,
London, 1959), Chap. X.

'Limitations on the class of density operators for which the
P representation is appropriate were first discussed by R. J.
Glauber in Ref. 3.' Distributions and tempered distributions form classes of singu-
lar functions that include the delta function and its derivatives.
Definitions are presented in the Appendix.

9 This result was first suggested by D. Kastler and R, J. Glauber
(private communication)."E.C. G. Sudarshari, Phys. Rev. Letters 10, 27/ (f963},and
ProceedirIgs of the Symposium orI Optkal. Abusers (Polytechnic
Institute of Brooklyn, 1963), p. 45. The form of the weight func-
tional for the case of many modes is incorrectly written; a cor-
rected version appears in Ref. 14.

Tr[p(af) "II~]= lim e 'l~l P(n)(u*) "n~d'u (1.6}

In Sec. V, we shall study two equations that are
generalizations of Eqs. (1.3) and (1.4):

0=
/
n}Q(u)(u f

d'n

Tr[fl(@f)noes] ~(n)(n8) enmdsn

where 0 is an arbitrary operator. YVe shall see that Eq,



(1.8), when specialized to density operators, provides a
correspondence vrith classical optics that is universal
and somevrhat closer than that aGorded by the I'
representation.

In Sec. VII, vre shaH exploit the analytic properties of
the coherent states to obtain new measures of their
completeness.

illustrated by considering the in6nite hierarchy of cor-
relation functions G&"&, of vrhich the 6rst is defined' by

G „&'&(zi x2) =Tr[pE &-&(xi)E„&+'(zg)j. (2.7)

If the I' representation is used for p, Eq. (2.4) allows us
to simplify Zq. (2.7) to

In)=e-'~ ~* P ln),
n=o (rg!)'I'

(2.1)

where le) is the occupation number state having e
photons in the given mode. The state In) is the eigen. -

state of the annihilation operator a with eigenvalue n,
i. e., a

I n) =n
I n), as is evident from the relation

ulN)=e"'le —1). These states are normalized but not
orthogonal,

&&In) =ex@A*n—l(lnl'+ I I')3, (2 2)

and form a complete set of states for the given mode,
as is shown by Eq. (1.1).

For a multimode system, the coherent state
I }n}) is

speci6ed by a sequence of complex numbers o,;, one for
each mode i,, and is defined by I In})=g;ln;);. These
multimode coherent states are eigenstates of each of the
annihilation operators: a,

l
In})=n;I In'}), for all j. In

terms of these states, Kqs. (1.3) and (1.4), which specify
the I' representation for a single mode, have the follovr-

ing natural extensions:

(2.3)

»[p(n") "n~"3= (n'*)"n~ ~(In})II~d'n~ (2 4)

The positive frequency part of the electric 6eM opera-
tor E„&+&(x) at the space-time point x may be ex-

pressed as a linear combination of the annihilation

operators
E„'+'(x)= i PI.(,'hcaa)"'uI-Np„(x), , (2.5)

where the NI, ,„(x) are a complete orthonormal set of
vector mode functions. The coherent state I(n}) is
therefore an eigenstate of E„&+&(x), and we may write

E.'+'(z)
I ln})= ~.(*,In}) I In}), (2 6)

where the function 8„(x,ln}) is obtained from the
operator E„&+&(x)by replacing the annihilation operator
ur, by its eigenvalue n~ for each mode k.

The usefulness of the P representation, as well as the
correspondence between it and classical optics, may be

IL P REPRESENTATION AND CLASSICAL OPTICS

For a given mode of excitation of the electromagnetic
6eld and for each complex number o, the coherent state
In) is given by

(2.8)

An entirely similar simpli6cation occurs for the higher
order correlation functions, vrhich, like t"('&, are also
expectation values of normally ordered products of
E„& & and E,&+'.

Iil tile classical vel'sioll of Eq. (2.8), tile welgllt func-
tion P(In}) is replaced by a probability distribution for
the Fourier coeKcients, In}, of the electric 6eld vector
h„(x,ln}). This is a significant restriction since the
class of all weight functions P(In}) is much larger than
the class of all probability distributions, as is shown in
Secs. IV and VI. This vrider range of mathematical
possibibties is characteristic of the greater physical
generality of the quantum description.

It is perhaps vrorth noting how the greater generality
of the quantum description arises from the uncertainty
principle. The classical description assumes that the
electric 6eld is precisely measurable at all points in space
time and therefore that the Fourier coefficients In} of
8„(x,In}) can also be measured exactly. From this it
follows that statistical phen. omena arising from b„(z,l n})
may be described in terms of probability distributions
fol these Foulier cocKclcnts. IQ thc qUaQtUm theory,
however, the commutator [E„'+'(x),E„&—

~(y)) does not,
in general, vanish; a measurement of the electric 6eld at
one point disturbs measurement at other points. The
Fourier coeflicients I n} are therefore not precisely meas-
urable, and there is no physically meaningful probability
distribution for them in the quantum theory. Conse-

quently, the quantum theory is free of the restrictive
assumption that all optical phenomena may be ade-
quately described in terms of probability distributions
for these Fourier coeS.cicnts.

For simphcity, most of the subsequent discussion will

bc carried out for systems having excitations in only
one mode. The generalization of our results to the case
of 6nitely many modes is straightforward. The case of
in6nitely many modes introduces convergence problems
characteristic of integrations over in6nitely many vari-
ables. These problems also occur in the classical theory,
and. we shall not consider them in this paper.

In OUr dlmensionless UQlts the uncertainty ln thc
measurement of the parameters is of the order of unity:
(A Ren)(A Imn) =1.It is therefore possible to estimate
the probability W(A) that a field has a value of n lying
w1thin a square A in the complex o.' plane whose area
IIA II » l«ge comp«ed to u»ty. To do t»s, we s a!1



In)(nl d'n, (2.9)

where the integral extends over the square A, has this
property. For, f»m Eq. (2.2), we have

and since

(PIM(A) IP)=- e-)--P~'d'n, (2.10)

d'n exp( —In —PI'),

exhibit a Hermitian operator M(A) that, in an approxi-
mate" sense, is a projection operator for o, lying within

A, i.e., M(A) I n) = In), if n is iil A; alld M(A) ln)=0 if
n is not in A. The Hermitian operator

The relevant question is, if F (n) is a sequence of func-
tions converging to a function F(n), under what condi-
tions will the expectation values (F„) converge to the
limit (F)?

If the weight function P(n) has all the mathematical
properties of a probability distribution, we can easily
show that the sequence (F„)converges to (F), provided
the functions F„(n) and F(n) are integrable and the con-
vergence of the sequence F (n) is uniform. Because the
convergence is uniform, we have that IF„(n)—F(n)

I
(~,

for all n if e& V(e). Since P(n) is assumed to be non-
negative and normalized, it follows that

P(n) IF(n) —F-(n)
I
d'n

& e P(n)d'n= e.

C IM(A) I~)=1 PinA,
P not inA, (2.11)

p»»ded IIA II»1
The approximate probability W(A) is therefore given

by the relation W(A)=Tr[pM(A)j. When A is the
entire complex plane, M(A) is the unit operator, so that
W(A)= Tr(p)=1, which indicates that W(A) is cor-
rectly normalized. Using the I' representation for p and
the trace relations, Eq. (1.4), we obtain

g (A) =- d' d'P P(P)e ~. P~'. -(2.12)

When the weight function P(n) has the mathematical
properties of a probability distribution there are closer
relationships between P(n) and 8'(A). If P(n) is well

behaved, we have, from Eqs. (2.10)-(2.11),

W(A) = P(n)d'n. (2.13)

If P(n) is non-negative and slowly varying th»ughout
.4, then we may write

II'(A) =P(n) IIA II, (2.14)

(F)= F(n)P(n)d'n. (2.15)

"The approximation is necessarily poor for 0. lying near the
boundary of the square A.

where o. is in A.
As we have mentioned earlier, in order to describe

some states of the radiation 6eld by means of the I'
representation it is necessary to use extremely singular
weight functions. These singular weight functions may
be classified and contrasted with the probability dis-

tributions of the classical theory by studying the con-
tinuity properties of their expectation values,

Thus the sequence (F„)converges to (F). In this sense,
weight functions having the character of a probability
distribution generate an expectation value functional
(F) that is continuous with respect to the function F(n).

Tempered distributions' are defined by the require-
ment that they generate an expectation value functional
that has a restricted form of the continuity characteristic
of probability distributions. The conditions under which
the sequence (F ) converges to (F) are more restrictive
in two ways. First, the functions F„(n) must be infinitely
differentiable and must, together with their derivatives
of all orders, go to zero at infinity faster than any power
of 1/lnl. Second, the convergence of the sequence of
functions F„(n) to the function F(n) must be stronger,
and the derivatives of the F„(n) must converge to the
derivatives of F(n)

The class of all distributions is much wider than the
class of all tempered distributions, but its greater
generality does not seem relevant to the I' representa-
tion. This is because distributions are required to make
sense only when operating on in6nitely diGerentiable
functions F(n) that vanish outside some bounded region.

Some index of the restrictiveness of the classical as-
sumption that weight functions may be replaced by
probability distributions is provided by Sudarshan's'0
general weight functional Ps(I n }), which, for one mode,
reduces to

(nl plm)(n!m!)')'
P (n) —Q h(w+m)(~)

~.~=o 2s'i (ii+m) !

Xexp[r'+i(m —ii)(8+s.)j, (2.16)

where 0 &")(x)—= (d/dx) "5(x) and n= re" When only
finitely many matrix elements, (el p! m), are nonzero,
Ps(n) is a tempered distribution. For such density
operators, it does not seem possible to avoid the sort of
singularities exhibited by Ps(n)

When infinitely many matrix elements (ill plm) are



KEVIN E. CAH ILL

nonzero, Ps(n) contains infinitely many derivatives of
the delta function, all evaluated at the origin. However,
we shall prove in the Appendix that Ps(n) can have only
a 6nitc ~umber of derivatives of the delta function if it
is to be a distribution. Consequently, Sudarshan's
weight functional is not a distribution (and therefore
llot a tempered distrlbutlon), except 111 tllosc special
cases mentioned above.

Many of the density operators for which Sudarshan's
weight functional is not a distribution possess other
weight functions that are tempered distributions. As we

shaH show in Sec. IV, however, a density operator must
satisfy a set of restrictive conditions if its weight func-
tion is to be a tempered distribution.

The radical extent to which some weight functions
di6cr from probabihty distributions docs not appear
to have been gcncraHy recognized. . In a recent paper,
Mandel" has used the I' representation to compute a
probability distribution p[V(x,n)5 for a 6eld amplitude

V(x,n), depending linearly upon n, according to the
relation

p[V(x,p)5= P(ot)8[V(x,a)—V(x,p)5d'n. (2.17)

While this relation may be valid for those well-behaved

weight functions to which Eq. (2.13) may be applied, it
is not a general result, "

In another paper by Mandel, " the direct use of
Ps(In} ) as a probability distribution has led to the con-

clusion that for a stationary density operator, i.e., one
«r w»ch [p,II5=o, "the expectation value «»y
pI'odUct opclRtor containing UQpRlI'cd CI'cRtlon Rnd Rn-

IllhllatloIl opclRtols cat ol cA, Rs fRctols vanishes. A

more accurate result is that for a stationary density
operator, expectation values of the form

Tbc second SUIDIQatlon ls time-independent, lf p ls stR-
tionary, since, in view of (2.19), those terms for which

Egg E) vanish. The remaining tcrIDs of thc sccoQd sum-
mation exhibit a three-dimensional interference pattern,
and if they also vanish, (I{x))is independent of x.

III. TRACE RELATIONS

In this section, we shaH present conditions under
which a weight function P(n) satisfies the trace relations,
Eq. (1.4}. These relations are essential both to the
analogy with classical optics and to the usefulness of the
I' representation Rs a computational device.

An examination of Eq. (1.4) suggests that if the ex-
pectation value Tr[p(at) "a"5 is 6nite, the weight func-
tion P(n) must, as InI~~, tend to zero faster than

""+".If these traces are finite for all e, it would
seem that P(a) must go to zero at in6nity faster than
any inverse power of IuI. For a wide class of weight
functions, these asymptotic conditloQss arc nccessRly fol
the trace relations to hold. They are also SUKcicnt if
P(n) is well behaved, as the following result will show.

Let us assume that the P representation, Eq. (1.3),
exists for the density operator p and that P(n) is a weli-

behaved, i.e., measurable, weight function. ID this case,
we shall Dow show that the trace relation

Tr[p(gt) eom5 (~a)e~mP(~)di~ (3.1)

tion index has been suppressed. Using the plane-wave
expansi» EI+i(x) ~ Zi a, exp(th) x), we have

(I(x))~ P 1 Tr[paitu(5

+P 2 cos[t'.(k;—ki}.x5 Tr[pa tai5.

VRnlsh Unless

T [pII ( ")""( )"'5

Qa{tts—tits}Ex=0,

(2.18)

(2 19)

follows from Eq. (1,3},provided the Lebesgue integral
J'IP(n)

I I+I
"+ d'n exists and is 6nite.

Sy the de6nition of the trace we have
where EI, is the energy of a photon in mode k. To prove
this, we note that quantities like (2.18) must be time-

indcpendent if p is stationary. From this Rnd the fact
that a(,(f) =aI,(0) exp( —iFi,t), we see that (2.18) must

vanish unless {2.19) holds true.
It is easy to construct density operators for which

(2.18) is nonzero when the degeneracy condition (2.19)
is satished —in fact, the ordinary interference phe-
nomena exhibited by stationary fields (e.g., in Young's
double-slit experiment) are described only by such

density operators. To iHustrate this last assertion, let
us consider the electric 6eld intensity {I{x))for an
cnselnble of plane-polarized photons. It has been shown'
that (I(x))~ Tr[pÃ'-&(x)B'+'(x)5, where the polariza-

"L.Mandel, Phys. Letters 7, 117 I,'1963).
» In fact, when P, (cx} is used for P(a}, it follows directly from

Eqs. (2.t6)—(2.1'/) that pLV(x,p))=0 for V(a,p) 0V(x,O)."I. Mandel, Phys. Letters j.0, 166 I',1964).

Tr[p(at) "o"5=2 (pI a"p(at)"
I p)

CC [(I+p)!(tN+ p) l5'"
E (p+~I pl p+~)

wllicll, llSilig Eqs. (1.3) alid (2.1), bCco111CS

Tr[p(~t) nrim5 P(n)e i i'(n*) "n"d'n. (3.2)
I

Now the sequence of functions
Q

g (&) (&a)n&m&—[a[& p (3.3)

converges to $(n) = (n*)"n, and we have the in-



equality IS;(n) I
& IS(n) I

for all n and aH i. Then, by
the Lebesgue dom1nated convergence theorem, " the
interchange

lim S;(n)P(n)d'n= S(n)P(a)d'n (3.4)

is valid, provided the integral J' IS(n)P(n) Id'n exists
and is finite. Equations (3.2) and (3.4) directly imply
Eq. (3.1) and our proof is complete. This proof is easily
generalized to cover the case of 6nitely many modes.

We now consider the case in which P(n) is not well

behaved. We shaB show that Eq. (1.3) implies Eq. (3.1),
for all n and m, provided that for some arbitrarily small
positive constants e and 6 the function

where s is a complex variable. As we show in the Ap-
pendix, flic filnctlon Q(s,Ã, m) Is RIlalyflc fl1rollghoilt tile
right half-plane, Res&0, and. in this region the 4th
dcI'1vat1vc ls glvcn by

Q"'(s,e,m) = (—I nI ') "e ' i'(n*) "n"P(n)d'n (3.10)

But, by Eqs. (1.3) and (2.1), we have

QI"'(1,N, m) = (—1)'k!(k
I
a"p(a')" Ik). (3.11)

Then, since Q(s,u,m) is analytic for Res&0, we have
for Is—1I &1 that

Q(s u, m) = 2 (1—s)'{k
I
a p(a')" Ik) (3 12)

T(n) =P(n) cm(~ I
a I') {3.5)

is a tempered distribution. Our proof will utilize the
coIlflnlll'ty pl'opci'ty of thc fcnlpclcd distr lbutlon T(n).
We let f (n)=S (a) exp( eIn—I') where S (n) is given

by Eq. (3.3). It is easy to see that f;(n) converges to
f(n)=S(n) exp( —cIuIs) and that the convergence is
uniform on every bounded set. Since

I f;(u) I
&

I f(n) I

= Inl
"+ exp( —eIaI'), it is clear that we may find con-

stants C(r,s,u, w) such that, for aH i, r, s, u, and v,

(3 6)

where a=g+Iy, Thell„by tile collflllllltv of T(n), wc
have

lim T(n) f;(n)d'n= &(n)f(a)d'n

S(n)P(n)d'a, (3.7)

whIcll, togctllcl' with Eq. (3.2), 1111plics Eq. (3.1). SIIlcc
I and m are arbitrary, our proof is complete. For the
case of 6nitely many modes, one must require that con-
dition (3.5) hold for each mode.

Wc shRH Ilow show tllaf. If P(n) Is R tempered dis-

tribution, the formula

Tr[p(af) "a"]=lim e-'~ ~'(n*) "n"P(u)d'n (3.8)

Q(s,e,m) = e
—'i i'(n*) "n"P(n)d'n, (3.9)

15%. Rudin, Erincip/es af 3futhemelicu/ Analysis (Mcoraw-
Hill Book Company, Inc. , New York, I953), p. 209.

16 This follows directly from the definition of a tempered dis-
tribution, which is given in the Appendix.

is valid, provided I Tr[p(af) "a"]
I
& ~ E«each pair of

non-negativc integers, e and m, we de6ne the function

If the trace Tr[p(af) "a ] is finite, then the power series
for Q(s,l,m) converges also at s=0, and, by Stoltz's

17 we may conclude

Tr[p(af)"a ]= lim Q(e,ii,m),

which is just Eq. (3.8). This result and its proof are
caslly gcncI'alizcd to cover the case of 6nitely Inany
Inodcs.

IV. SINGULAR NATURE OF SOME
WEIGHT FUNCTIONS

In this section, we shall show that the weight func-
tions corresponding to some density operators are ex-
tremely singular. As we have mentioned earlier, this is
an evident limitation both upon the computational
usefulness of the I' representation and upon the analogy
between it and classical optics.

Tile Rssu111pflo11 fllRt P(n) is R 'teIIlpclcd dlstrlbutlon
leads to certain restrictive conditions on the density
OpelR'tor p, Rs WC S11RH 11OW SlloW. If P{n) ls R telllpCI'Cd

distribution, then the functions Q(s,e,m), defined by
Eq. (3.9), are analytic for Res)0, and Eqs. (3.10)-
(3.12) hold true. Now the power series for Q(s,l,m),
Eq. (3.12), which converges for Is—1I &1, may be
rewntten as

(1 s) I.

Q(s, fi,m) = p — [(k+m)!(k+e)!]11'
I =O

X(k+mIpIk+I). (4.1)

Since Q(s,n, m) is analytic for Res)0, this power series
must have an analytic continuation Q(s,n,m) throughout
the right half-plane, Res&0. This is true for all non-
negatlvc 1ntegers R and 8$.

These are conditions on the matrix elements {nI p I m)
that by no means all density operators satisfy. For ex-
ample, if (2e I p I

2n) = (1—x)x"and (2II+1 I p I
2m+1) =0,

'7 E.Hille, ANulytic FNecfioN Theory (Blaisdell Publishing Com-
pany, New York, 1963), Vol. I, p. 123.
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This is true for all non-negative integers, m and m, . As we

shall show in the Appendix, this follows directly from
Eq. (3.9) and the continuity of the tempered distribu-
tion P(n).

An example of a density operator that violates these
conditions is one for which (222

~ p ~
222) = (I!) 'x"e ' and

{222+1~p~222+1)=0, where x)0. For in this case

Q(s,0,0)=exp[sx(s —2)].
Since some density operators do not possess weight

functions that are tempered distributions, it is reason-
able to consider whether these density operators may
be represented in some more general way, e.g., in terms
of a limiting process. %e shaB now mention a difhculty
connected with representing density operators in terms
of a sequence of tempered distributions P {n), in the
form"

p= lim
~
n)P. (n) {n

~

d'n. (4.3)

It has been shown" that a sequence of tempered dis-

tributions P (n) is convergent if and only if, for every
test function F(n), the sequence of expectation values

{P)p„ is convergent. Consequently, if p is a density

operator that cannot be represented by a tempered dis-

tribution but for which the limiting process (4.3) is

valid, then there will be test functions F(n) such that
the limit

lim P„(n)F(n)d2n

will not exist.
If a weight function P(n) is to bear any close mathe-

matical resemblance to a probability distribution, it can
have, at worst, delta-function singularities. %e shall

now show, under quite general assumptions, that if P(n)
has only delta-function singularities, then the analytic
continuation of the power series, Q(s,0,0), of Eq. (4.1)
must obey a strong asymptotic condition.

Performing the angular integration in Eq. (3.9) and

letting x=
~
n

~

' and P'(x) =2»J22 P(n)d8, we obtain

where 1)x&0, then Q(s,0,0) =(1—x)[1—(1—s)'x] ',
which has a pole at s= 1+x 'I'.

If P(n) is a tempered distribution, the analytic con-
tinuation of the power series of Eq. (4.1) must also
satisfy the asymptotic condition

lim Q(~s~l, n, 222)
~

s~-"=0, for some 1V(22,m) .(4.2)
[ s[~@

We shall not assume that P(n) is a tempered distribution
but shall rather assume that, for some /& 1, the function

p(y) = e "P'(x)dx

is of bounded variation on every 6nite portion of the
interval [G, n1) and that P(y) converges as y —&~.
Under these assumptions, it may be shown'0 that
Q(s,0,0) is analytic for Res)t and that, as before,
Q&"i(1,0,0)= (—1)"{22

~ p ~

22)22!. Consequently, the power
series of Eq. (4.1) may be analytically continued to the
function Q(s,G,G) for Res&t Sinc. e P(y) is of bounded
variation, it follows that the limit

exists and is finite.

lim Q( f
s /, 0,0) (4.5)

n(n) =—P e'-'n, .r{r)
2'F &=

00

~sn8~
fb—

(5 1)

Substituting into Eqs. (1.7)-(1.g), we have, for rn)0
and e+m~&0,

[m t(~+~)!]'~2{m
~

O
~
~+~)

»2™+n+1Q(r)e r2d» (5 2)—

Tr[fl(at) n+mana] »2m+ n+ 1~ (r)dr (5.3)

It is important to note that for all pairs of integers e
and rN, with fixed 22, the left-hand sides of Eqs. (5.2) and
(5.3) depend only upon 0„(r) and a& (r), respectively.
For each integer I, we form the sequences

M(N, N2) = [»0!(22+222)!]'12(222
~

0
~
222+22)

V. ALTERNATIVE COHERENT STATE
REPRESENTATION

%e shall now show that, for an arbitrary operator 0,
Eqs. (1.7) and (1.8) always have solutions Q(n) and
co(n) that possess formal Fourier expansions in terms of
relatively well-behaved functions. %'e let a=re" and
Fourier-analyze Q(n) and co(n):

Q(s,0,0)= e *P'(x)dx. -(4.4) I2(22,222) =Tr [Q(at)n+™a"],

'8 Limiting procedures of this type were introduced by J. R.
Klauder, J. McKenna, and D. Currie (to be published) and by
C. L.Mehta and E.C. G. Sudarshan, Phys. Rev. 138,3274 (1965);
both procedures are subject to the limitation mentioned above.

» R. F. Streater and A. S. %ightman, I'CT, Spil aed StatisIk's,
aud A// That (W. A. Benjamin, Inc. , New York, 1964), p. 34.

where each sequence starts at the 6rst non-negative
integer m such that e+tg & 0.

Now, according to the Stieltjes-Boas theorem, "there

~ D. V. Widder, The Jap/ace Transjone (Princeton U'niversity
Press, Princeton, New Jersey, 1946), p. 57.
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exist functions B„(r) and p„(r) of bounded variation of E[ ' and n factors of E{+),it is clear that p))({{It)
such that may be used to represent those correlation functions

G{")for which n&X T. hus, for example, Kq. (2.8) may
M(n, ~)= r2-+-+id B.(r) be replaced by

y(n rn) = r'"+'4+IdP (r)

Q(~,X)=—P e'.eQ.(r),
2~- n

(5.4)

wltll R SIII111RI' equation fol' {t)(o),E).
Now, from Eq. (5.2), it follows that the operator Q))[

de6ned by

This is true for all n, as long as all the elements M(n, nI)
Rlld p, (n, rn) Rl'c flllltc Rs wc 11Rvc Inlpllcltly assumed.
Setting Q„(r)=e"(dB (r)/dr) and a„(r)=dP„(r)//dr, we

we see that Q„(r) and co„(r) contain, at most, a countable
number of singularities of the form h(r —r'), since B„(r)
Rlld p„(r) Rl'c of bounded vRI'IRtloll. All additional coll-

sequence of the Stieltjes-Boas theorem is that the
integrals J'{)"

l
Q.(r) )

e-"dr and J'0"
l ca„(r) l

dr are finite
for all e. The presence of the damping factor e "' in the
integral of

l
Q„(r) l

reflects the mathematics, l difficulties
associated with the universal use of the P representation.

Tile FOUI'lel SCI'1CS CxpR11810118 fol' Q({X) Rnd M(e), Eq.
(5.1), Rl'c pUI'cly fol'111R1, Rlld wc 811R11Ilot lllvcstlgRtc tile
question of their convergence. Instead, we shaB exhibit
the extent to which these series, when cut off at the
points n= +E, still respect Eqs. (1.7)—(1.8). For each
X~&0, we define the cutoff series Q(n, X) and a&(0{,$)
by Kq. (5.1) wltll tlM plovlso tllRt tllc sllIIIIIIRtioll extend
only from n= —S to n =+X, i.e.,

where X&~1. Since the trace functions p)){({III) are
tempered distributions with no singularities worse than
a(r r), tll—ls 1cpl'cscntRtioll fol 'thc col'I CIRtloil fllllctioils
would seem to suggest a correspondence with classical
optics that is universal and perhaps somewhat closer
than that a8orded by the I' representation.

s correspondence Is also hmited, however, ace
as we shall show in Sec. VI, p))[({aI) is not, in general,
positive definite. In addition, as the results of Sec. II
indicate, p v({n I ) must not be thought of as a probability
distribution for the Fourier coefficient {nI, except
perhaps in an approximate sense for states near the
classical llDllt.

In this section, we shall present restrictions on the
dcllsity opei atoi p, If lts wclgllt fllllc'tloll P(Q) 01 its tl Rcc
function p3[(n) is to be non-negative. We shall show that
the requirement I'(n) &~ 0 excludes all pure states, except
the coherent states themselves. %e recall that Eq.
(2.14), which expresses a close relationship between the
pl'obRblllty fllllctloll W(A) Rnd 'tllc wclgllt functlonP({x),
is valid only when P({){))~0.

Let A(n) be any non-negative polynomial in the com-
plex variables 0)' and 0'.

q
i.e.q

Qpp—- ln)Q(a, X)(a l
{f'e, (5.5)

A({){)=Q a(r, s)n"(n*)'&0. (6 1)

differs from Q only in that for n —ni
l )E, (n l Q)){l nI) =0.

C0Iiseqllclltly, lf tllc tl'Rcc Tr|Q Q] ls flnltc, lt Is cRsy to Then lf p( ))0
check that as E-+~, Tr/(Q —Q))T)t(Q —Q))[)]-+0, and
therefore that the convergence of Q~ to 9 is strong.

From Kq. (5.3), it follows that if +) ln —nil, then 2 a(r,~)(~l plr)(r'~. )"'
the exact value of the trace TrLQ(at) "a ] is given by

Tr[D{s')"s )=f {Ã){ ) t0d u, '""' &(n)P(n)e-) )'d'n&0 (6 2)

without any llIMtmg pI'ocess.
These results are easily generalized. to the case of

finitely many modes.
Let us now consider the analog of Eq. (5.6) for the

case in which 0 ls a density operator describing a 6eM
of 6nitely many modes. The relations Qt=Q and
Tr(Q)=1 imply that the "trace function" p)){({nI)—=co({nI,Ã) is real and normalized to unity for all X.
Since the correlation function G&") contains e factors

These conditions have an obvious generalization for the
case of 6nitely many modes.

We shall illustrate the restrictiveness of Eqs. (6.2)-
(6.3) by showing that the pure state density operator
p= li)(fl cannot have either a, non-negative weight
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operator 0 is uniquely determined by the matrix ele-
ments (n„lQln„).

We shall now show that if 0 is an operator such that
(n I

Q
I P) is finite for all n and P, then Q is uniquely deter-

mined by the diagonal elements, (x +iy IQlx„+iy ),
where x„and y are any two convergent sequences of
real numbers.

To prove this, we shall show that if

function or a non-negative trace function. Letting
A(n)=(1 —lnl')', we have

(0
I p I 0&—2&1

I p I 1)+2&2 I p I 2&= —2

Tr(p) —2 Tr(putu)+ Tr[p(ut) 'u'] = —1,

which violate Eqs. (6.2)—(6.3).
We shall now show that if p represents a pure state

and P(n) &~0, then p= ln')(n'I for some n'. If p repre-
sents any pure state, then we have p'= p and

(x„+vy„l Q
I
x„+Zy„)=0,

Tr(p') = 1= P(n)d'n.

But we may also write

then under these conditions Q=O. The function f(x,y)
=(x+iyIQIx+iy) may be written as an everywhere

(6.4) convergent power series in the complex variables n, n*
or in the real variables x, y, since

Tr(p') =Tr
I && le&&VIP(.)P(e)d' d'e

e ~~ e~'P—( )n—P(P)d'nd'P (6.5)

Now if P(n) &&0, Eqs. (6.4) and (6.5) leacl to the contra-
diction Tr(p') (1,unless P(n) = 8(n —n') —=8[Re(n —n') j
XI[1m(n—n')] for some n', in which case p= ln')(n'I.
Thus the only pure states representable by non-negative

weight functions are the coherent states themselves.

VII. SUPERCOMPLETENESS OF THE
COHERENT STATES

We shall show that the coherent states In) are "super-

complete, " in the sense that if e„ is any convergent
sequence of complex numbers, then the corresponding
coherent states In ) are themselves complete.

Let (fl be any normalized state vector tha. t is or-

thogonal to all the ln„), i.e.,

Therefore, as a function of the two complex variables
s, w, the function f(s,w) is entire. " Consequently, if

f(s,w) =0 for s= x„and w=y for each n and rn, where
x„and y are two convergent sequences of real numbers,

f(e,w) vanishes identically. Hence, by Eq. (7.3), Q=O.
A special case of this theorem is that the matrix

elements (nl Q ln), where n ranges over any region of the
complex o. plane having nonzero area, uniquely deter-
mine the operator Q. The weaker result that 0 is deter-
mined by the elements (nlQln), for all n, was first
suggested by Jordan. "
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(fin„)=0; n=0, 1, 2, (7.1) APPENDIX

f(n)=e'I lo(fin&= Q(fin)
o o(n ~)=i i'

(7.2)

is entire. But by Eq. (7.1), we find that f(n ) =0 on the

convergent sequence of complex numbers, ~„,and hence
that f(n) vanishes identically. Thus (fin)=0, for all n,
and (f I

=0. Since only the null vector is orthogonal to
the states ln„) for all n, the states ln„) are complete,
i.e., they span the Hilbert space of the occupation
number states

I
n).

As a consequence of this result, any vector (g I
in the

Hilbert space spanned by the states ln) is uniquely
determined by the scalar products (gin„), provided the
sequence n„ is convergent. Similarly, any Hilbert space

We shall show that (fl =0.
Since the states ln) are complete, the expansion

(fl =g„(fin)(nl is valid, and we have+ l(fin)l'=1.
Then the function

In this Appendix we shall de6ne the terms distribu-
tion and tempered distribution and shall then use these
dehntions to prove three assertions that were made in
Secs. II, III, and IV.

Let S denote the set of all infinitely differentiable
functions P(x) that, together with their derivatives of
all orders, go to zero, as

I x I gloo, faster than any power
of 1/ I

x I. The members of S are the "test functions" on
which tempered distributions are defined to operate. A
sequence of test functions p (x) is said to converge in S
to the function p(x), if in every bounded region the
derivatives of all orders of the p„(x) converge uniformly
to the corresponding derivatives of p(x) and if there are

"D.V. Widder, Ref. 20, p. 139.
"S. Bochner and W. T. Martin, Several Complex Variables

(Princeton University Press, Princeton, New Jersey, 1948), p. 34.
'3 An incomplete proof of this result was first given by T. F.

Jordan, Phys. Rev. Letters, 12, 607 (1964).
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is analytic for Res&0 for each integer e ~» 0 and that its
4th derivative is given by

Q(ki(g ii) —( 1)k P(x)xII+kk~ —IIzidx (A3)

Now it is clear that P,,(x)—=x"e '" is in 5 for all

n&~0, so that Eqs. (A2) and (A3) are well defined. We
must show that for each 6xed s, Res&0, and each
sequence s' —& s,

Q'@(S',e)—Q'k'(S, N) —Q&k+" (s,e) =0, (A4)
s —s

I

for all e and k, where Q'k'{s,n) is given by Eq. (A3).
Since I'(g) is a tempered distribution, it is sufficient to
show that for all integers e&»0 and for each sequence
s' —+ s, the sequence of test functions, P„,, (x)—= (s' —s) '
)& I g„,,(g) —g„„(x)]+p„+k,,(x), converges to zero in 5.
Now it is easy to verify that

f,, (x)= (s' s)x"+'s -'r;(x)—,
-

constants CI„such that, for all x, e, k, and q,

I
xk(di/dxi)y. (x) I

&Ck, . (A1)

The set K of test functions for distributions is the set
of all infinitely differentiable functions p(x) that vanish
outside some bounded region, which may be diferent for
each of the @(x).A sequence of test functions qb„(x) is
said to converge iw K to the function tf (x), if the functions
P„(x) all vanish outside some fixed bounded region, the
same for all of them, and if their derivatives of all
orders converge uniformly to the corresponding deriva-
tives of p(x). A sequence that converges in 5 (in E) to
tile llllll fullctloil 0(x) =0 is said 'to COBMfg8 $0 MFO AZ

5 (ie K).
Distributions (tempered distribNtions) are continuous

linear functionals on K (on 5). More explicitly, a func-
tional f(x) that associates with each tb(x) in K (in 5) a
number Q)f, given symbolically by (g}r J'p(——x)f(x)dx,
is said to be a distribution (tempered distribution), if the
following conditions are satisfied: (1) If p(x) and f(g)
are in K (in 5) and n and P are complex numbers, then
(a/+a)r=e(g)r+P{iP)r (2) If P. „(x) is a sequence of
test functions that converges in K (in 5) to the function
P(x), then lim„„Q )r=(@)f. We note that these
definitions imply that every tempered distribution is a
distribution.

We shall now prove that if P(x) is a tempered dis-
tribution, then the function

Ps'(x) = 2 c.bi"i(x), (A7)

where b&"i(x)—= (d"/dx")8(x) and where an infinite num-
ber of the c are different from zero whenever the
matrix (n I p I m) has an infinite number of nonzero entries.

Let U(x) be an infinitely differentiable (Urysohn)
function such that U(x)=1, if lxl &-', ; U(x)=0, if

I
x

I
&&—,', and

I
U(x)

I
& 1, for all x."We define g„(x)=0,

if c =0; y„(x)= U{x)x"(e!) ', if Ic
I
&~1; and y„(x)

Because of the factor e ", the functions P„,, (x)
satisfy Eq. (A1), since for I s—s'I & k the constants Ck,
may be chosen independent of s'. Now, in any bounded
region

I
x

I &R, the functions r, (x) converge uniformly
to ~ as s' —+ s, and all their derivatives converge uni-
formly to zero. For lxl (R and fixed s, Res&0, the
function x"+'e ' ' and all its derivatives are bounded.
Hence P„,, (x) and all its derivatives approach zero
uniformly for

I
x

I
(R as s' ~ s. Consequently, for each

e, the functions f,, (x) converge to zero in 5 for each
sequence s'~s, Res)0, Eq. (A4) is established, and
our proof is complete.

Equations (3.9)—(3.10) are the two-variable generali-
zations of this result, The arithmetic is somewhat more
involved, but the argument is identical to that given
here.

We shall now show that if P(x) is a tempered dis-
tribution, then for all I the functions Q(s,m), given by
Eq. (A2), must satisfy the asymptotic condition

lim Q(lsl, e)lsl =0, for some E(ii). (A6)
I8I ~~

We note that the functions 8 „(x)=—x"e ~'~*' and all
their derivatives converge uniformly to zero, as

I
s

I

—+~,
in the region lxl )r, for any r)0. Thus it is easy to
verify that constants C(k, q,e) may be found such that

I
xk(di/dxi)8. „(x)I

&
I sl ic(k,q, ii),

for Isl &R. But if Q(s,n) violates condition (A6), then
we may find a sequence s, such that IQ(ls, l,e)l
&~q I s, I

iC(k, q,e). Thus the sequence

~i,-(x)—= IQ(l~. l,~) I
'8- ..(*)

converges to zero in 5, as q
—+~. Hence the sequence

b, ,
„=J'P(x) k, ,—„(x)dx converges to zero, as q

—+~. But
this is a contradiction, since by Eq. (A2), I b, ,„l =1,
and our proof is complete.

The proof of Eq. (4.2), which is the two-variable
generalization of this result, follows this argument very
closely.

We shall now show that Sudarshan's functional, Eq.
(2.16), is not a distribution uriless (m I p I m) =0 for e)S
and m&Ã, where X is a finite integer. The relevant
structure of Ps(n) is exhibited by

g2(m —2)

r, (x)= P(s—s')
m=2 (~!)

(AS)
~ The existence of such functions is proven in I. M. Gel'fand

and G. E. Shilov, Gene~alised IencHONs (AcadenIic Press Inc.,
Neer York, 1964), Vol. I, p. 142.
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=c„'U(c 'x)x"(e!) ', if 0(~c„~(1. The sequence
p„(x) has been explicitly constructed so that it converges
to zero in K, as e~~, as may easily be verified. Theo,
if I' s'(x) is a distribution, we have

However, from Eq. (A7), we have as well

I' s'(x)4„(x)dx & 1, (A9)

&s'(x)4„(x)dx= 0. (Ag) unless c =0. Thus there is a contradiction, unless
c„=0for e&E, and our proof is complete.

P 8 YSI(:AL REVIEW' VOLUME 138, NUMBER 6B 21 JUN E 1965

Classical Relativistic Mechanics of Interacting Point Particles
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The possibility of formulating a classical relativistically invariant mechanics of an arbitrary number of in-
teracting point particles is demonstrated. This theory is similar to Newtonian mechanics inasmuch as the
interaction between any pair of particles contains an arbitrary function of their distance; The conservation
laws for energy and linear and angular momenta are established in the sense that the sum of these quantities
for the particles entering a collision is equal to the corresponding sum for the collision products. The possi-
bility of such a mechanics contrasts with the impossibility, demonstrated recently, of establishing a rela-
tivistic mechanics within the framework of the canonical representations of the Lorentz group.

1. INTRODUCTION

! 'HERE appears to be a body of opinion according
to which an interaction between point particles

must necessarily be via a field if the theory is to be
invariant under Lorentz transformations. ' This held is
thought to be essential and, in collisions between the
particles, the field can carry away energy, linear mo-
mentum, and angular momentum. Also there exists a
wide spread opinion according to which the interaction
between point particles must be via "signals, "the veloc-
ity of which does not exceed that of light, if the theory
is to be Lorentz-invariant. The present considerations
show that these opinions must be revised. The equations
which we shall consider postulate that a particle "inter-
acts" at a de6nite space-time point with those points of
the other orbits which are spacelike with respect to the
point under consideration (see Fig. 1).The interaction
is analogous to Newton's "aetio in Chstuetia" and reduces
to the gravitational interaction in the nonrelativistic
limit and if the distances between the particles (in the
usual sense) are always "large. "

The possibility of such a mechanics contrasts with the
impossibility, demonstrated recently, of establishing a

University of North Carolina, Chapel Hill, North Carolina.
f Oak Ridge National Laboratory, Oak Ridge, Tennessee.' I . D. Landau and E. Lifshitz, The Qassica/ Theory of Fields,

(Addison-Wesley Publishing Company, Inc. , Cambridge, Massa-
chusetts, 1951),p. 41.' D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod.
Phys. 35, 350 (1963); also D. G. Currie, J. Math. Phys. 4, 1470
(1963) and J. T. Cannon and T. F. Jordan, ibid. 5, 299 (1964);
also H. Ekstein, University d Aix-Marseille, 1964 (unpublished).
These "no interaction" theorems apply to Dirac's Hamiltonian
framework, given in Rev. Mod. Phys. 21, 392 (1949). In this

relativistic mechanics within the framework of the
canonical representations of the Lorentz group.

2. KINEMATICS

It is our aim to describe equations of motion for
interacting point particles which satisfy the following
postulates:

1. The equations are Lorentz-invariant in the sense
that the orbits transform as expected under proper
inhomogeneous Lorentz transformations.

2. The rest mass of each of the particles is constant.
3. The total energy, total linear momentum, and

total angular momentum are conserved in the asymp-
totic sense, i.e., they have the same value when the
particles have separated after a collision as they had
before the particles came close together. The law for the
motion of the center of mass should be valid in the same
sense.

We shall also make the assumption that there are
6m degrees of freedom, where e is the number of particles.
This means that 6m independent position and velocity
components completely characterize the orbits.

In order to give the equations of motion in a mani-
festly Lorentz-invariant form, it is convenient to intro-
duce a proper time v; for each of the mass points and
give the orbits parametrically, in terms of these proper

framework, Lorentz transformations are canonical transforma-
tions. The "no interaction" theorem can be circumvented if one
is willing to give up the existence of world lines, as was done by
L. H. Thomas, Rev. Mod. Phys. 1'?, 182 (1945); B. Bakamjian
and L. H. Thomas, Phys. Rev. 92, 1300 (1953);L. L. Foldy, ibid.
122, 275 (1961).


