
SELF—CHARGE —CONJUGATE MESON MULTI PLETS

C(Rf' =CRC 'Cf = S—f *= u—f * . (A4)

Apparently these two relations contradict each other
ess @=0.Thus the invariant operator (R which satis-

fies the relation (21) has zero eigenvalue for any
self-conjugate multiplet.

Indeed the eigenvalue of the operator I(3) vanishes
for the self-conjugate multiplet, as is easily seen in the
following. The eigenvalue of I(3) is given in Ref. 3 as
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whereAPPENDIX
l, =m, +r, and r, =-', Q C,,".

0'&0Let us suppose f to be a self-conjugate multiplet
such asthe singlet oranoctet, etc. Therefore, f' *=a f „
with a certain numerical constant e . Then if The m, represent the highest weight and r1——'1, rg ——0,

and r3———&. In the case of the octet. , m1 ——&, ~2——0 and
ma ———1, so that, Q;(lP—rP) =0. More generally, for
the self-conjugate multiplet, the highest weight m;
satis6es the relations,

it follows that

Then we have the two relations,

(A2)

m1 = —m3 and m2= 0.

(A3) Thus, it is evident that P;(l,s—r ) =0.

This is because there is a one-to-one correspondence and
between the octet bases and the operators B; and E,
and we normally consider that the charge conjugate of
f', is e f' (see Appendix). Then it is obligatory that
the charge conjugate of H; be H;—(see Sec. V).
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A method of spin and parity determination has been worked out for boson resonances of spin 5 which
decay into a spin-1 particle and a spin-0 particle. It is shown that the quantity S(5+1) can be given in
terms of experimentally measurable averages. This aBords a straightforward way of determining the spin
uniquely. For the parity assignment, one 6nds that certain experimental averages are identically zero for
one parity ease and not the other. In addition, for the parity case in which two orbital angular momenta
are allowed, decay parameters as well as multipole parameters for the spin-5 particle can be determined.

I. INTRODUCTION

HE purpose of this paper is to present a method

of determining spin and parity of boson reson-

ances which decay into a spin-1 particle and a spin-0

particle. This method can be applied to 8-+~+co,
A| &~ ~+@, and %&~E+p.' Several authors have

discussed these problems before. ' 4

In this paper we adopt the approach of Byers and

Fenster, which they used to describe fermion resonances

*Work done under the auspices of the U. S. Atomic Energy
Commission.' For data on these particles, see the Summary by A. H. Rosen-
feld et a/. , Rev. Mod. Phys. 36, 977 (1964).

~ C. Zemaeh, Nuovo Cirnento 32, 1605 (1964).' M. Ademollo, R. Gatto, and G. Preparata, Phys. Rev; Letters
12, 462 (1964).

4W R. Frazer, J. R. Fulco, and F. R. Halpern, Phys. Rev.
136, 81207 (1964).

decaying into spin-~ and spinless particles. ' 8 %e also
use the helicity formalism of Jacob and Wick' for the
decay particle of spin 1, which makes it possible to
bring out certain salient features of the problem as well
as to reduce the amount of algebra required. Perhaps
the most interesting result would be the relation (23),
with which one could determine, with enough statistics,
the spin of the resonant partjcle unalnbiguously. m

' N. Byers and S. Fenster, Phys. Rev. Letters 11, 52 (1963).
'A similar approach has been applied to boson resonances

decaying into two spinless particles; see P. E. Schlein, Phys. Rev.
135, 81453 (1964).' A slightly different approach to fermion resonances has been
made by M. Ademollo and R. Gatto, Phys. Rev. 133,B531 (1964).

8 For applications of tests proposed by Byers and Fenster, see
P. E. Schlein et al. , Phys. Rev. Letters 11, 167 (1963) and J. B.
Shafer and D. 0. Huwe, Phys. Rev. 134, $1372 (1964).

OM. Jacob and G. C. Wick, Ann. Phys. (¹Y.) 7, 404 (1959).
'0 For similar relation for fermion resonances, see Ref, 7; also

J. B. Shafer in Ref. 8.
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II. MULTIpOLE PARAMETERS

Consider a reaction of the type

A+8 —+ S (spin S)+C,
5—+X (spin 1)+I' (spin 0).

The spin state of S is described in its own rest frame
(S RF), where, for convenience, the quantization axis
(s axis) is chosen to be along the production normal.
One may define the density matrix of S in this frame by

It depends on the orbital angular momentum l~. As-
suming parity is conserved, one has two different sets
for helicity amplitudes:

l,=S~1 l,=S
A+i ——(1/425)[a+5"'+a (5+1)"'g A+i ——1/v2

A i=A+ad A i ———1/v2

Ao= (1/5)[—~+(5+1)"'+a 5'I~j A, =O,

where Is@& is the familiar spin state in the S RF.
Let us define an operator TI,~ by"

r,~=2» (sp'L~I sp) I st &&st'I,

(2)

(3)

whe~e a~=amplitudes for t,=5&1 and la+I'+Ia I'
=1. If S=O, only one angular momentum state is
possible, i.e. , 1,= 1. In this case, one has A+i ——A ~

——0
and Ap= —1.

The decay angular distribution can be calculated from
Eq. (10) by taking the trace. Using the relation

*——Q „„p» t'i (Sp'LM
I
Sti) . (6)

Note that 1.~&2S and that tpp=1 since trp')=1. Be-
cause the Hermiticity of the density matrix, one has

M8 —( )Mt —M

where (Sp'LM
I Sp) is the usual Clebsch-Gordan coeK-

cient. In terms of this, one now de6nes the "multipole
parameter" tl,~ by'

p (si g (1/5) 2t ilrST 3E (4)

where I= (2L+1)"' and S= (25+1)'t' Comparing (2)
and (4), one finds

p- "=(L/5)' Z~~ ti *(Sp'L~lsp);

then, by inverting,

one gets, for angular distribution,

I(Q) = Qr, ilr [5/(4r)"'jtr, ~"Irl, ~(0)
x(g.(—)-i(sl 5—xlL0) IA„I ~).

Note that the expression inside the bracket vanishes
for odd I or for 1.& 25.

One may describe the density matrix of X in the
same wav as p". For the purpose, one defines the rest
frame of X as follows: First, one rotates the S RF by
Euler angles" (g,g, —P) and then goes to the rest frame
of X by pure time-like Lorentz transformation. "In this
frame one may dehne the density-matrix operator p("
for X by [in analogy to (2) and (3)]

If A and 8 are unpolarized and one sums over the
spin states of C, one has the condition, " for parity-
conserving reactions,

p"'=Xi-(t'/3)«"*Zu, (»'trrtl ll~) l&&&l~'I, (14)

(s) e j,(ft,—p, ') m (s)
YPItt Ppp'

Substituting (8) into (6), one gets'

ilr ( ) Mt 3f III. RELATION FOR SPIN DETERMINATION

where rg stands for the multipole parameter of X.
(g) Note that t &~2 and that ro'= 1 since trp

"i= 1. Note also
that states

I X& are just the helicity states for X.

This means that tI.~=0 for odd M.
We now turn to the description of the decay of S.

Let us define
I X& to be the helicity state for the decay

particle X and k to be its momentum in the direction
0—= (0,&). If OR is the transition matrix for S decaying
into X and I', where X has momentum k and helicity
X, then p&'i becomes (see Appendix I):
5'(')5K

=p,~(si/4 )t,~*p», (—) -i'(szs —x'I Iz—x')

X +M, x—x'"'*(y 8, —4)A)A ~ *I li&(&'I, (10)

Since the trace of p(" is equal to 1, one may write
ORp"ORt=I(Q)pt". One then obtains, by comparing
(10) and (14),

I(Q) Q (t/%3)ri'" "'*(—)' "'(1ll.1—X'ID~ —X')

=Ql ilr (SI/&)tr, ~*(—) '—"'(SXS—X'
I
LX—X')

XAi,Ai *&~,l l. "'*(y,e, —y), (15)

after using the relation (A10). Using the formula"

where Az is the "helicity amplitude" for the decay. " dQ 5) gi'&*X) .i,&'i = (4ir/t')8ip8 (16)

"See Eq. (20), Ref. 5.
"R.H. Capps, Phys. Rev. 122, 929 (1961).
J' For the deanition of S~~ ( ), see Ref. 9.

'4 See A. R. Edmonds, Angular 3Eomentum in Quantum Me-
chanics (Princeton University Press, Princeton, New Jersey, 1957)."See H. P. Stapp, Phys. Rev. 103, 425 (1956).
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one gets, from (15)

P, (//~3)(17, 1—~ ~n-V)

dQI(0)r, '" ~')*X) ), ),' '(&8 —P)

= (—)'+'(S/L)t, ~*(SXS—X'iIX—X')A~A& ".
For a fixed en=—X—X', multiplying both sides by
(1Ã1—X'~ lm) and summing over X and X', one obtains

(/L/~&)( "p -"'*(~,0, -~))
=(—) +'Sti" P» (1Z1—Vi/m)(SXS —Z'~Lm)A, *A,. ,

(17)
where one has taken the complex conjugate.

Let us denote the left-hand side of (17) by

G(lm; LM)= (/L/%3)(r—pX)~ & '*($,8, —y)). (18)

Then, we have

G(lm; LM)
= ( )'+'Str~ Q—».(1&1—&'i lm) (5&5—&'i Lm)A g*A ).. .

(19)

It is shown in Appendix II that G(lm; LM) can be
evaluated from experiment for /=0 or 2.

Using (7), (11), a,nd (19), one has the condition

G(lm; LM) = (—)~G(/ —m; LM) (even l) (20a)

These relations show that it is not necessary to consider
negative values of m and M when evaluating G(lm; LM).

It is convenient to write down the relation (19) ex-
plicitly for different values of / and m:

G(22; LM)= (—)'+'Sty~(5151iL2)A+g*A g

(even L), (21a)
G(21; LM) = (—) '+'Sty~(5150

' L1)
X(1/&2){A+1 Ao+( —) Ao*A z), (21b)

G(20; LM) = (—1)'+'Str, or(2/3)'t'f (S15—1
~

LO)
i A+,

~

'
1 (SOSO~LO) ~Ao~') (even L), (21c)

G(00; LM) = (—)'+'5/L~(1/3)'i'f2(515 —1iLO) [A+a('
—(5050~ LO) ~Ao~'} (even L). (21d)

From (21c) and (21d), one has

V2G(00; LM)+G(20; LM)
= (—)'+'S/L~(6)'t'(515 —1iLO) ~A+pi'

(even L), (22a)
—G(00 LM)+V2G(20 LM)

= ( )'+'Stz~v3 (—5050
~

LO)
i
A o

~

' (even L) . (22b)

The Clebsch-Gordan coefficients in (21a) and (22a)
can be expressed in terms of (SOSO~ LO) if L is even:

(S1S—1
~

LO) = (LL(L+1)/25(5+1)j—1) (5050
~
LO),

(51S1
~

L2) = PL (L+1)/(L —1)(L+2)J"(SOSO
~

LO) .
and

Taking the ratio of (21a) and (22a) and using the above
G*(lm; LM)= (—)™G(/m;L—M) (even /). (20b) two relations, one gets, for the spin S(&1),

L(L+1)G(22; LM)
5(5+1)=

«[2L(L+1)/3 (L—1)(L+2)ju'Lv2G(00; LM)+G(20; LM)]+2G(22; LM)
(23)

where L is even (&2) and «= &1. «=+1 corresponds
to l,=$&1, and e= —1 to l, =S.

It is to be understood that the relation (23) is true
both for real and imaginary parts of G(lm; LM) sepa-
rately for all allowed values of L and M. Using (9) and

(20b), one can show that there are (L+1) independent
tests for a given L. Note that formula (23) can be ap-
plied only after the parity is determined.

IV. TESTS FOR SPIN AND PARITY

Suppose S=O. Then only one angular momentum
state is possible, i.e., l,= 1. For this case, all G(lm; LM)
should vanish except G(00; 00) and G(20; 00). Further-
more, we must have G(00;00)=1/V3 and G(20;00)
= —(2/3)'".

Now, consider the case S~) 1. If the parity of S is
such that l, =S, we must have Ao=0 from (11).There-
fore, for this parity assignment, we have

where L can be either even or odd. Also, from (22b),

G(00; LM)=%2G(20; LM) (even L). (24b)

One does not expect in general that these conditions
hold for the other parity case (l,=5&1), so that con-
ditions (24a) and (24b) afford a means of determining
the parity of S. However, for the latter parity case
(/, =5&1), one may have G(21;LM) =0 for odd L,
if /, =S 1dominat—es over /, =S+1. So (24a) is a

strong test only for even L.
In order to determine the spin itself, one applies the

condition that G(lm; LM) =0, if L) 2S. This gives the
minimum value of S consistent with the experimental
data. For direct determination of the spin, one uses the
relation (23). If I. ,„ is the largest even value of L for
which G(lm; LM) is nonzero, one has

(1/4)L, (L, +4)

G(21; LM) =0, (24a) independent tests available for (23).
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0!=2 ReQ Q+

«p=21mo g+

.v= Io-I'—lo+I',

(25)

where o'+P'+y'= 1. In terms of these,

We refer to Ref. 8 for the statistical treatment in-

volved in evaluating G(lm; LM) from experimental
data. One notes that some care needs to be taken when

using the formula (23), for the statistical distribution
of S(S+1) as evaluated by the relation is not of
Gaussian form. However, the distribution cue be calcu-
lated for various hypotheses of S,"from which one can
assess confidence levels on the experimental value of
S(S+1).

Once spin and parity are determined from experi-
ment, one can evaluate decay parameters if the decay
proceeds by two orbital angular momentum states
l, =5&1 (we consider the case 5~&1).Decay parameters
are defined in the usual way [see (11)]:

APPENDIX I

Here we derive Eq. (10).We may define the "helicity
amplitude" for the decay of S by

mtlsp)=—(—)'+'P), A)(Qlsp, x), (A1)

where (Qlsp, X) stands for a two-particle state with
the relative momentum in the direction 0 and eigen-
values S and p and helicity X. In terms of orbital angular
momentum /„ one may write

Owl Sp) =Z4( —)'a (4-s)(Q Il,1')
=P (—)'+"a„(QIS+v, 1;Sp), (A2)

(Sp, Xl/, 1')= (},/S)(l.01&ls&). (A3)

Using this relation, one has

where one has set l,=—S+v and v= —1, 0, +1,and where

a„ is the amplitude for the orbital angular momentum

l,=S+v.
There is a prescription' which connects the helicity

state with a state of definite orbital angular mo-

mentum:

(Ql I,15&)=P,(Q Is„;x)(s~; x
I
I,15„).

(26b) sale)= (—)'Q~(Qlsp. , X)

XQ„(—)"a„[(2$+2v+1)'~'/S] (S+v, 0; 1X ISA) .
IA-~l'= IA+~l',

I
A o I'= [2(25+1)] '{2S+1—y —2u[$($+1)7'"}

(26c)
One may compare this with (A1) to get:

Ag= P„(—)"+'a„[(2$+2v+1)"'/S]
X (S+v, 0; 1X ISA). (A4)A+i*Ao=[2v2(25+1)7 ~{ a+2y[$($+1)J~o

+zP (25+ 1)}. (26d)
The Clebsch-Gordan coefficients in (A4) can be

calculated in general"

(S—1, 0; 1) &1IS, &1)= [(5+1)/2(2S—1)Jlo,

(S+1 0'1 &1IS &1)=[$/2(25+3)7"'
(5, 0; 1, &1

I 5, &1)= W1/v2,

(S 1 0'1 OIS 0)=[S/(2S—1)7'"

(S+1,0; 1, 0
I S, 0)= —[(S+1)/(2S+3)7'",

(S, O; 1, 0IS, O)=0,

where the first four relations are valid for S&~ 1. Using

these, one gets, from (A4),

A+&——(1/V2) {a+[5/ (25+ 1)Jlo

+o-[(5+1)/(25+1)7"+«}
A g= (1/v2){a+[5/(25+1)7"' (A6)

+a [(5+1)/(25+1)7'~'—ao},

A o= —ay[($+ 1)/(25+ 1)7"'+a [5/(25+ 1)7'~'.

Note that gz I
A q I

'= 1 if P „I
u„ I

'= 1. Since parity is

conserved, (A6) breaks up into two different sets, which

are given in (11).
States (Qlsp, X) can be expressed" in terms of

Using (21), (22), and (26), one evaluates various ratios
from G(lm; LM) for given L and M (both even) but
with different I and m. This gives two (or more) inde-
pendent equations involving n and p, so that one can
solve for them. Note that the sign of P cannot be
determined.

Once these parameters are obtained, one can deter-
mine tl,~ for all allowed values of I and M by using
(21) and (22). However, one cannot determine the
over-all sign of tl.~ if I. is odd. For a consistency check,
one may apply inequality relationships which exist for
absolute values" of tl,~. If the parity of S is such that
l,=S, it is not possible to determine tl.~ for odd I..

ACKNOWLEDGMENTS

The author wishes to express his sincere thanks to
Dr. Robert W. Huff for many enlightening discussions.
The interest of Professor D. H. Miller, Dr. Janice
Button Shafer, and Dr. Janos Kirz is greatly appreci-
ated. Finally, he is grateful to Professor Luis Alvarez
for his constant encouragement and support.

~6 J. B. Shafer and D. W. Merrill, Lawrence Radiation Labora-
tory Report No. UCRL—11884, 1965 (unpublished)."See Eqs. (23) and (24), Ref. 5.
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IA+gl'=[4(25+1)] '{25+1+y+2a[$($+1)7'"},
Then, from (A2),



$„1(8&~(&,8, —g) and the helicity state
~
X} of X:

{Q~SI ) )=La'/(4~)'&'jn„, ( &*(y,8, —(t) ~X). (A7)

Substituting (A1) and (A'I) into (4), one gets

mP(*&m&=g, ~(L /4~)&, *P„„.(SI'LM&Sl }
Xgu &1('&'((t 8 —4)& &,

('&(4 8 —4)
&(A) A), *i)I){)I'i. (AS)

Using the relation

{&)~m , , {i')

=P, (fm„ I'—m, '~ jm, —m, ')(Im, ; I'—m, '~ jm, —m, '}
)( ( ) i'—s'Q, , (l&+ (A9)

(limil1m1
~
lImI)
= (—)I~=~(i,/i, )(f,m, ; l,—m,

~
l,m, ) (A10)

one can reduce (AS) into Eq. (10).

APPENDIX II

In order to evaluate G(lm; LM) from experiment,
one first needs to reste rr to experimentally measur-
able quantities.

For convenience, the rest frame of X as dehlied in

Scc. II may bc referred to as the X RF~. In this frame,
one defines a unit vector (or a pseudovector) I1 to de-

scribe the decay of X. Thus, in the case of &, n is the
unit vector normal to the decay plane of ~, whereas
for the p decay 6 stands for the momentum direction
for one of the decay pions.

As X decays, its helicity state
~
X) transforms into

Fi"(n). Using (14), one may then calculate the following

average in the X RF~.
)2

(F,"*(n))=PI .-r,-*P„(1)'f'm'~ 1) )
3

dQ(6) V&1(4)VI"'~(&4) VI"*(n),

where dQ(6) is the element of solid angle in the (4

space. The integral on the right-hand side is equal to

L3/(4~) ( ij(««l@)(—) (»1—) 'I lm).

Using (A10), one gets 6nally

ri"= —(4&r/3)"'(Fi (I1))o/(1010' 10), (A11)

where the sum is over all events in which the decay of
the particle 5 is observed and E is the total number of
these events. Note that Fz,~(Q,) and Sir (~&*(p;,8,, —p, )
alc cvallIa'tc(l 111 tllc 5 RF, wllcI'cas F1 ('8;) is cvalll-
ated in the X RFj.

Since vs~& 2, S~ {~)*can be easily related to simpler
functions. For convenience, we list a few useful for-
Inulas involving S~ {~)2o:

n»I (~&($,8, —$)=e '(~ "&&die (~&(8), (A13)

2((L+2) (L+1)1»'dir1(" (8)
=L(L+M)(L+M —1)j'('(1+cos8)d, ,( —"(8)

+2(L'—M')"' sin8 dirI(~ '& (8)

+(((L—M) (L—M —1)ji('(1—cos8)

Xd&&r I I( &(8) (A14)

dIII(~&(8) = —LL(L+1)j "'(M(csc8+cot8)d»ro(~&(8)

+$(L—M) (L+M+1)j»'die+I, o(~&}, (A15)

-(I—M) (-»'
diro("(8) = (—)I — - I'I,-"(cos8), (A1('&)

(L+M)!'
Pi, (cos8) is tl1c assoclatcd Lcgcildl'c poly-

nomial.
There exists an alternative method of evaluating

G(lm; LM). It involves defining multipole parameters
of X in a d16crcnt coordinate system. Lct X RF2 bc
thc rest frame of X obtained by pure time-like Lorentz
transformation directly from the 8 RF (no intermediate
spatial rotation). Then the X RFI and the X RF1 are
related by Euler angles (&,8, —p) with respect to each
other. Since r~ transforms in the same way as spherical
harmonics I'p under spatial rotations, ' one has

ri"=p„ri"'S„. (I&(y,8, —y), (A17)

where rp is the multipole parameter of X in the X RF2.
In this frame, r( is again given by (A11).

Now ollc substl'tll'tcs (A17) Illto (18) alld tllc11 uses
formulas (A9), (A10), and (12) to get":

G{lm LM)
= (4ir/3) "'(i/I-) QI.„.i'(I'Olm

i Lm)

X (l'm'lM —m'~ LM){r,(~--'&F,,-'), (A18)

where 1=0 or 2. Using (20a), one sees that l' has only
ever& values. The average appearing in (A18) can be
determined from experiment Lin analogy to (A12)$ by

where the average is to be performed for a Axed Q,
so that rp is now a function of Q. Note that rp can be
evaluated in this way only for even /, i.e., l=o or /= 2.

Now, 011c may cvaluatc G(lm; LM) fI'0111 cxpcl'llllcil't

by using (A11) and (18):
N

G(00; IM) = (4ir/3)&"—Q FI~(Q,),
iY '=I

J N

G(2m IM}=—(10 /3) ( —g F.-(n,)
1V

N

{r~oV,m'} p Vi,m'(Q. )
QT s=y

(Al())—(2s.)I(1»(
(r~waV, m') .. . p V w~(ri, )V,m'(Q, )

'0 See, for instance, Kq. (A4) and Table I, Ref. 9.
~' This is related to the "test functions" 3 (l'/; LM) proposed in

Ref 3 G(lm L&&E)=(1/AI) &,. l'(1 olmllm)A(ll; IM)X~ "&*(e~,8', —e'),

Note that FI '(Q;) is evaluated in the 5RF, while

(A12) F1 (l1() Is evaluated II1 tile X RF1.


