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As an application of the method for computing coupling constants proposed in a previous note, the
—' mass difference is calculated from the consistency requirement on the various determinations of the

same coupling constant. We also make some predictions concerning XXm and ZZx couplings.

" 'N previous notes, ' ' we have proposed a method of
~ ~ computing the residue of the pole of the amplitude
in the first sheet, i.e., the coupling constants, in terms
of masses without introducing any approximation in the
context of strong interactions. In addition to the uni-
tarity condition and analyticity, we assumed that one
of the "residues" of the pole-like singularity' on the
second sheet, which has no definite angular momentum,
must vanish. '

In the previous papers it has been shown that' the
"residues" of the pole-like singularity R(a,h) are given
(apart from numerical proportionality constants) by

ELE.(~)7-yo( —it)
R(a,h) =— d(

2o . c 1+@ 'Eo($)

where Jo(s) and Eo(s) are Bessel functions of the first
and third kind, respectively, and Cz is a contour in the
$ plane from 0 to ~ in the sector 6 (see Fig. 1). In
Fig. 1, P;;+I are the points where the denominator of
the integrand of Eq. (1) becomes zero. The numbering
of the sectors is also shown in Fig. 1. The graphs of

R, (o)=—-,'LR(o, a)+ R(o*,a)j

the second sheet, A (sr', t), where s and s+ are de6ned
by the solutions of N —m&'=0 for fixed 2;= —1 and
s=+1, respectively. For the case of a l pole at f=nzi2,
the pole-like singularity appears at p' =—4imi2. The con-
nection between a, the solution of Rq(a) =0, and the
coupling constant G is given in Table I (See Fig. 3),
where G', for convenience of normalization, is defined
by the Lagrangian density

Z=iag'(~)~, y(x) p(x)+" .

For the vr and /Ex coupling, G=V2g, or G=go, de-
pending on whether the pion is charged or neutral, re-
spectively. Charge independence requires g, =go. On
the other hand, the nonzero ZZm coupling constants are
the same for all the charge states except for sign dif-
ferences. These three cases are the only ones where the
pion interacts with baryons belonging to the same
charge multiplet. Up to this point, we have not made
any approximation in the context of strong interactions.

We now introduce the approximation that AM/M
and li'/M' can be neglected compared to unity, where

M, p, hM are the baryon mass, pion mass, and mass
difference of baryons within the same charge multiplet,
respectively (maximal error in this approximation is

are given in Fig. 2 for even integers A.
If there is a pole at u=mI' on the erst sheet, then

there occur pole-like singularities at s=s and s=s+ on

*On leave from University of Colorado, Boulder, Colorado.' T. Sawada, Nuovo Cimento (to be published).
2 A. O. Barut and T. Sawada, Nuovo Cimento (to be published).'T. Sawada, Phys. Rev. Letters {tobe published).

A pole-like singularity is an essential singularity whose be-
havior is, however, the same as a pole, as long as the singular point
is approached in a given sector d, , that is,

lim (z—a) f(z) =Eg for bg&arg(z —a) &by+1.~ll
Thus, a pole-like singularity has several "residues" Eg, each af
which corresponds to a given sector (6).

'This rather complicated condition can be reduced to an as-
sumption that a particular series of poles must vanish on the
second sheet of both s and t surfaces. The equivalence of these two
assumptions is shown in a separate paper (Ref. 3). The latter
assumption is a special case of the usually accepted hypothesis
that the scattering amplitude is as analytic as possible, as long as
it is consistent with the unitarity condition for all channels.
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FIG. 1. Integration p
contour C& of Kq.
(1) in the sector h.
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TABLE I. Connection between c ' and the coupling constant
G', Here E=

I g' —(j//I —m) j/L(iV im) —p, j I+'/2 and

I.=pL) (2M2+2m2 —p,2)

+~ l (2M~+2m~ —y'l' —4(M2 —m'l~}'~'] '~'.

The corresponding pole graphs are given in Fig. 3.
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FIG. 3. Graphs for the corresponding pole term in Table I.

In Eq. (4), M& and Mz are the masses of baryons which
belong to the same charge multiplet but which have
different charges. At this point, we use the consistency
requirement that different determinations of the same
coupling constant must give the same value. In the case
of ™~ or SÃ~, the values of 6' corresponding to the
poles shown in Figs. 4(a), (b), and (c) are 2g,~,V2g,go,
and go', respectively. Since the equation Rz(a)=0 has
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except one case, namely, that of the pole-like singularity
at s=s generated by the I pole of the baryon-baryon
scattering, in which case we get instead of (3)

about 2%). Then all the relations in Table I which
connect the value of a ' Lwhere a is the solution of
Rq(a) =0], and the coupling constant G' reduce to a
single relation of the form

Pro. 4. Pole graph of pion-baryon scattering amplitude with
various charge states of pion.

the following solutions (see Fig. 2)

a '=0.0,

a '=1.006,

a '=1.445,

a '=2
)

a '=3.7,
~ ~ ~
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—I/2 it is evident which solution should be used in each case
of Figs. 4(a), (b), and (c), in order to restore the charge
independence g, =go. (About this consistency with
charge independence, a detailed explanation is given in
Ref. 2.) In this note, we examine the consistency of
Eqs. (3) and (4). As the u pole of the baryon-baryon
scattering comes from the exchange of a charged pion
(see Fig. 5), G' is 2g„.' for the case of $$ or scatter-
ing. Writing down Eq. (3) for the case of G'=2g, 2,

01

02

03
Fro. 5. u-pole diagram of
baryon-baryon scattering.

l'ro, 2. Graph for I/'. g (g) versus u ' for 6=0,2,4,6.
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FIG. 6. Possible solution for the
mass difference of a ™particle, and its
experimental value.
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FIG, 7. Possible solution
for the mass difference of Z
particles (ilE=/1f s and
M0 —M+), and their ex-
perimental values (marked
"exp.v.")
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namely, for the pole corresponding to Fig. 4(a) or
s=s~ of Fig. 5, and taking the ratio of this equation and
Eq. (4), we obtain

The experimental errors are at present larger. Ac-
cording to the measurement by London et al. ~

(AM), ,=6.9+2.2 MeV,
u,.'/ (Mr' —Ms') =a'—'/a —'

and according to that by Carmony et al. ,
'6

where p, is the mass of the charged pion, and a is the
solution of Ra(a) =0 corresponding to Fig. 4(a,): a' is
also a solution of Ra(a)=0. For the case of E1Vrr or

vr coupling, we get6

a—'= 2.076.

In the following we examine Eq. (6) in each case
separately.

(i) . z. coupling The m. ass diA'erence of the charged
and neutral ™particle hM is

AM = (fs,s/2M) (2.076/a' '),
where M is the average mass of ™.In Fig. 6 possible
values of AM are given which follow from Eq. (7) and
the solutions a' ' in Eq. (5). In order to take into
account possible errors in the numerical solutions of
Ra (a) =0, we have used solutions which lie in the range

—0.01(Ra (a) &0.01

from which we get the theoretical range for DM shown
in Fig. 6.

6 Since the root of Ep (a) =0 at a '=2 is not sharply determined
numerically, we compute the right-hand side of Eq. (3) for a '=2
in the following way, using the solutions a '= 1.006 and
a 1=1.445:

g 2 p 2 -I/O

1.006=a" '=——1—,for Fig. 4(c)
4x 2M 4%2

~~a@. (P0J .)"
1.455=a'- =—-- — ——1—— —,for I ig. 4(b)

4~ 2u am

for I ig. 4(a).
4~ 2iV 4N~

Ehminating the coupling constants, we have

(1.455)2=1.006' a-l,
g '=g, 07$,

63f= 7.2&0.7 MeV. (9)

The range given in Eq. (8) covers also the forward-
backward discrepancy' in the pion-baryon case.

(ii) SEr/ coupling In thi.s case, the mass difference
of the proton and the neutron has already been meas-
ured very accurately. Putting the experimental value
into the left-hand side of Eq. (6), we obtain

(u,s/ (M.'—M„') )..p
=8.01+0.01,

which implies a solution of the equation Ra(a) =0 at
a' '= 16.66. The higher roots of Ra(a) =0 have not yet
been determined, but we predict a solution around this
value in some higher sector A.

(iii) ZZz coupling In this .case, since there is no re-
striction on account of charge independence consist-
ency, we cannot determine the value a ' in Eq. (3).
However, if we assume that the coupling constant of
ZZz is not much larger than that of ill Srr (say
gzs(1.4gNs), then there are only two possibilities for
a ', namely,

a '=1006
or

a '=0.00,

where the normalizations of gz and gz are Aefinecl by
the Lagrangian density,

+r &g//QN'Ys'span' pe+&gz(gzfsX Qz) ' p/+ ' ' '
~ (10)

'A. H. Rosenfeld, A. Barbaro-Galtieri, %. H. Sarkas, P. L.
Bastein, J. Kirz and M. Roos, Rev. Nod. Phys. B6, 977 (1964),

(AM),„e——6.1&1.6 MeV.

Thus we see that the solution a '=2 should be used to
get the more accurate value of the mass difference. In
spite of the fact that the solution a ' = 2 is not very
sharp (see Fig. 2), we obtain the following theoretical
limits:
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Using Eq. (6) and the values of the roots given in
Eq. (5), possible mass differences of Z particles (M —Ms
and Ms—M+) can be calculated for u '=1.006. The
result is shown in Fig. 7. The experimental values, '

M —Mp= 4.75+0.10 MeV,

Mp —M+ ——2.9~0.4 MeV

do not agree with the calculated values. The only way
to restore the consistency of Eqs. (3) and (4) under our
assumption is to choose a '=0.0. From Eq. (3), that
choice means'

gg'/4s. =0.0.
'R. Capps, in Theoretical Physics, edited by A. Salam (Inter-

national Atomic Energy Agency, Vienna 1963), p. 163.

A very small value for this coupling constant is also
implied by the experimental branching ratio

I'r* ~ &~/I'a* ~~s.&3%.

%e also remark that under a pure D-type coupling g~'
is identically zero.
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The one- and two-pion-exchange contributions to the nucleon-nucleon interaction, which seem to pre-
dominate outside the phenomenological core, are investigated in the exact relativistic form up to fourth order
in the pion-nucleon coupling constant. It is shown that the fourth order radiative correction to the usual one-
pion-exchange interaction is not negligible for larger scattering angles and higher energies. Further, the
fourth-order two-pion-exchange interaction is found to contain appreciable relativistic eRects, and in
particular the relativistic spin-orbit interaction is found to be larger than the nonrelativistic estimates.
These results can be expected to yield a more precise determination of the role of the one- and two-pion-

exchange interactions in nucleon-nucleon scattering.

1. INTRODUCTION

' 'T has become increasingly clear in recent years that
~ - the problem of nuclear forces can best be treated by
a combination of field-theoretical nuc/eon-nucleon inter-
action and a phenomenological core.' It is of particular
importance for this purpose to carry out an accurate
determination of the one- and two-pion-exchange con-
tributions to the nucleon-nucleon interaction.

Although the calculation of the one-pion-exchange
interaction is quite simple, the two-pion-exchange inter-
action presents considerable difhculty. In an earlier

paper, ' an improved calculation of the two-pion-
exchange interaction was given by taking into account
the e8ect of the nucleon recoil, but this treatment in-

volved the nonrelativistic approximations. Since it is

hardly reasonable to expect tha, t the nonrelativistic
results can be accurately applied to nucleon-nucleon
scattering up to incident energies of about 310 MeV in

the laboratory system, we shall now present the

* Supported in part by the National Science Foundation.
' G. Breit, Rev. Mod. Phys. 34, 766 (1962).' S, N. Gupta, Phys. Itev. $17, 1146 (1960),

rela, tivistic results for nucleon-nucleon interaction up to
fourth order in the pion-nucleon coupling constant.

It is convenient to divide the fourth-order pion-
theoretical interaction into two parts. The first part
represents the so-called radiative correction to the well-

known relativistic one-pion-exchange interaction, ' and
it corresponds to processes in which one pion is ex-
changed between the nucleons while another pion is
emitted and reabsorbed by the same nucleon. The
second part represents the effect of the exchange of two
pions between the nucleons. All these processes have
been described earlier, ' but we shall now express their
exact relativistic contributions in a form suitable for
numerical evaluation, and thus carry out a very accu-
rate determina, tion of the relativistic effects appe*ring
there.

As far as possible we shall follow the notation of
Ref. 2„and for numerical evaluations we shall take
g'/4scA=14, yc'=138 MeV, and M/p=6. 8. It shoul&l

a.iso be noted that X=lrc/)1 and lr= Mc/k.

' (1, Breit and M, H, Hull, Nucl. Phys. 15, 216 (1960).


