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The incorporation of AQ= —AS currents into SU (3) theory implies its extension into an R (8) symmetry.
Universality requires that these “skew’” currents have a much weaker coupling than the AS = —AQ transi-
tions. The R(8) currents may cause the breakdown of CP invariance as suggested by Wolfenstein. An R(8)

model would not allow the existence of SU(3) triplets.

I. INTRODUCTION

NITARY symmetry having been experimentally
validated, it is only natural that the next item on
the Particle Physics agenda should consist in unveiling
any further physical superstructure the symmetry
approach may yield. The most intriguing prospects
reside in those extended symmetries that straddle
internal and external transformations—chiral sym-
metries, spin-unitary spin ones and their suspected
covariant parentage. Yet it also seems necessary to
inquire whether unitary symmetry itself is the largest
allowed endosymmetry (“internal” symmetry), i.e.,
whether there is no larger group whose algebra com-
mutes with spin and parity.

One approach to this question has materialized in
the work of Schwinger,! of Giirsey, Lee, and Nauenberg,?
and of Bacry, Nuyts, and Van Hove.? The motivation
in these studies has sprung from the fact that known
particles span zero-triality* representations of SU(3)
only; triplets and other nonzero-triality multiplets, if
they do exist, would have fractional baryon, hyper-, and
electric charges® (the quark-ace®? hypothesis). To
allow for the hypothetical existence of integer-charge
triplets, one has to add new quantum numbers to the
basic algebra, i.e., to introduce new terms in the Gell-
Mann-Nishijima relation. The minimum such scheme
would be the SU(4) theory proposed by Tarjanne and
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Teplitz8 as interpreted by Maki® or Hara.®® Other
suggestions have included SU (3) X SU (3)'~3 and Sp(6).
The implications of this approach have been discussed
by numerous workers in the field. Since triplets have
yet to be discovered, most of these ideas do not readily
yield to experimental checking. Some indications in
favor of SU(3)XSU(3) have been extracted from the
¢-w degeneracy, with its suggestive nonet structure;
yet this has been shown to be equally derivable from
SU(3) itself in its triplet version under certain dynam-
ical assumptions.

The weak hadron vector current should reflect the
structure of the endosymmetry’s algebra. The eightfold
A4 algebral2 of SU(3) now seems to represent at least
a good approximation, as shown by Cabibbo’s work.!3
Earlier, when AQ= —AS transitions had appeared to
occur at the same rate as AQ=AS ones,'»¥% it had
seemed one might have to abandon the SU(3) descrip-
tion which does not possess AQ=—AS generators.!®
Alternatively, Ne’eman had suggested” using an
extension of SU(3) into eight-dimensional rotations,
thereby incorporating the missing transitions. Some
work on R(8) was indeed initiated,'® soon coming to a
stop when further experiments seemed to invalidate
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the previous observations, and put an upper limit of
some 129, on the ratio AQ= —AS/AQ=+AS.Y

Two experimental observations, however, seem to
call for another look at the R(8) theory, provided we
include certain modifications connected with the re-
phrasing of weak-coupling universality in a two-
neutrino picture.’®® It is our contention that this
endosymmetry is preferred, in the context of conven-
tional current-current formalism,? provided either or
both of the following two experimental facts hold:

(a) The actual observation of the decay
2T — ntut+v (1)

by Barbaro-Galtieri et al.1%;
(b) the recent observation of the mode

K — 2 )

and the related CP invariance breakdown.??:2

Neither of these decays is allowed to occur if SU(3) is
indeed the largest parity-retaining symmetry (or
“restricted” endosymmetry, in the same sense as in
“restricted Lorentz group”). A V-4 current-current
Hamiltonian with octet currents will yield no appro-
priate matrix elements (in the case of the CP experi-
ment, one could perhaps introduce major alterations,
but the consequences would be felt in the entire picture
to a degree which does not seem to us justified at
present).

In the following pages we introduce the mathematical
physics of R(8) symmetry ; we then impose weak-current
universality and see that it does indeed predict an
extremely low rate of AQ= —AS decays. We then study
the possible emergence of CP= —1 terms in the current-
current Hamiltonian and the observational implications
of such an origin for the K4 anomalous decay mode.
Finally, we review other aspects of the R(8) hypothesis,
perhaps the most interesting one relating to the search
for hadron triplets, quarks, or others: Their existence is
not allowed at all by this theory.

II. THE D4y ALGEBRA AND ITS A; CONTENT

We are using the rank-4 algebra D, of 8-dimensional
rotations,’* which found some applications in global
symmetry times, yet in an entirely different physical
picture. Our definition of the generators is picked so as
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to make D4 appear as an extension of 4, thus enriching
the original physical SU(3) algebra by adding additional
operators. This fact is embodied in what we call the
“A4 content” of Dy. In the following exposition, we try
to make this meaning precise. Throughout, we use
tensor language, hoping to gain some didactic clarity
from the geometric picture.

Let us start with some considerations concerning
representations of D, and 4. which are going to be of
importance below. It is well known that in an 8-dimen-
sional linear vector space X, those linear transforma-
tions 4, B, which have skew-symmetric matrices, form a
linear representation of Ds. We note that the regular
representation of 4, is contained in this representation
of Dy, since these are the F matrices, Hermitian and
imaginary,® i.e., eight skew-symmetric matrices span-
ning an 8-dimensional subspace of the 28-dimensional
linear vector space of the D, algebra.

The Kronecker product of this 8 representation
of D, with itself induces in the space T of second-

rank tensors (in X space) Tqp (a,6---=1, -+, 8) the
linear transformations
8 8
Ta'= 3 Y AacAdvaTeca, (3)

c=1 d=1

the (4,.43q) forming a 64-dimensional representation
of D,. Note that this representation of D, then contains
a 64-dimensional representation of 4, since it includes
the Kronecker self-product of the 4, 8 regular represen-
tations. To visualize the transformations (3) in this
light, denote (ad) by 4, (cd) by B, etc., (4, B thus go
from 1 to 64), and A 453= 4 (ab) (cay= A acA va, 50 that (3)
is mapped into

64
TA’= Z AABTB.

B=1

4)

Let us now return to the former picture of a tensor
space T,s (in an 8-space X), i.e., a set of 64 (8 by 8)
matrices. This is a reducible representation space with
respect to D4, decomposing into the direct sum

(Dg)=8X8=1+435+28. ©)
The corresponding invariant subspaces
T=I+S+K

are the trace T,q, the symmetric tensors 7" (45 and the
skew-symmetric tensors T'[43), respectively.?s

The representation matrices 44, of (3) contain the
F; of As. The tensor space T3 thus decomposes further
with respect to this subalgebra into

(45) 8X8=1+(27+8)+ (8+10+10), (6)

2 M. Gell-Mann, California Institute of Technology Synchro-
tron Laboratory Report CTSL-20, 1961, published in M. Gell-
Mann and Y. Ne’eman, The Eightfold Way (W. A. Benjamin,
Inc., New York, 1964), p. 11.

% We use repeated indices to denote summation,
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the parentheses reproducing the connection with (5).
The K piece thus reduces into the subspaces

K=7Z+V+U, 0]

where we have adopted the notation?®
z=8, v=10, U=10.

Z, V,and U are then irreducible invariant subspaces in
terms of this 28-dimensional representation of 4,. If we
choose in K space a base such that the first eight
vectors form a basis of Z, the next ten a basis of V, and
the last ten of U, then the twenty-eight (28 by 28)
matrices representing D, when operating on K (the
irreducible T'q4; subspace) contain the eight 4, matrices
in their decomposed form, i.e., filling up three discon-
nected boxes (8 by 8, 10 by 10, 10 by 10) along the
main diagonal:
8 ] |
| v K. (®)
|

| |
[ A |
| ]
] I

Now D, has only one irreducible representation 28
(up to similarity transformations, corresponding to
different choices of the basis in the underlying vector
space) : This is the regular representation, operating by
definition upon the 28-dimensional linear vector space
of D, itself. The picture is the same as in the traditional
view of the Pauli ¢ set as a basis whose three unit
vectors g1, o9, o3 Span a three-dimensional vector space
(e.g., the expression o-g); or of the SU(3) Ar---Xs
spanning an 8-dimensional space,? for example, in
coupling the meson octet to a quark bilinear gys-dg.
Any 28-dimensional vector space supporting an
irreducible linear representation of D, can therefore be
regarded as the vector space spanned by the D, algebra
matrices themselves, in some particular basis.

Our K space thus supports the regular representation
28 of Dy; and K itself is identifiable with the D, algebra
matrices, each unit vector in the K basis representing
a certain matrix. The basis is now chosen so that the
A subset of the D, representation (28 by 28 matrices)
is in the above reduced form. The three boxes contain

the corresponding generators of 4. in their 8, 10, 10
representations. The 8 box operating on the Z subspace
is identifiable with the regular representation of A,
since this is the only existing 8-dimensional representa-
tion of this algebra, up to equivalence (i.e., it can be
brought by a unitary transformation into any specific
form we prefer).

To reproduce the correspondence between the K basis
and the D, basic set of (8 by 8) generators, we follow
the following line of reasoning. Any 2z is some linear

26 H. Goldberg, Israel Atomic Energy Commission Report
TA-834, Table 3 (unpublished).

27 This is the picture in which SU(3) was introduced in
Ne’eman’s version, where these matrices form the V basis: Nucl.
Phys. 26, 222 (1961).
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combination® of the \; matrices of A, viewed as
vectors; we transfer to a \; basis, where we can now use
the usual mapping through commutation relations*

DsM]=ifahe (4, &, I1=1, ---8) )
into the form

[F;Fe]=ifimF, (10)
through the definition
Fi®Y=—ifi, (11)

thus getting the explicit (/) matrix element for all
(8 by 8) F; matrices; we can regard the gz itself from
now on as the appropriate 8 by 8 Fj matrix. We can
make the further identification of this z; with a certain
Zi, a (28 by 28) matrix of the decomposed form (8).
This Z;, operates upon the V or U subspaces, yielding

10
Zk7)r=1: Z fkrsvvs 3

8=l

(12)
10
Zkur=7:2fkrsuus, (k=18,r,s=110),

8=l
where the constants f.." and f.7 are the (rs) matrix

elements of 10 and 10 representations of 4, and now
appear in the Z; matrix

FkV(rs)= _ifkrsvy FkU(rs)= _iflcrsU- (13)

Considering that v and # span the regular representation
of D,, the equations (12) can be rephrased as com-
mutation relations of the D, algebra in our particular
Agreduced definition,

[Zlc;vrjz ifkrsvvs 5
[zk,ur]= iflcrs Uus ’

thus identifying the (8 by 8) matrices v, and u,. We
can now complete our identifications by reading (14)
backwards, to define their (28 by 28) representatives,

(14)

VTZ/G: _ifkmvvs ) Urzk= —ifkrsvus (15)
which implies a form
EEREEE
1__127__ } — | i (16)
0 | i fY |

for these matrices operating on K space.

The entire K-space basis is now identifiable with a
thus defined base of the D, generators set. The com-
mutation relations are such that

[zz]Cz, [zZv]ICV, [zZU]CU. (7)

From our knowledge of the SU(3) transformation
28 The correspondence between Goldberg’s set and the Gell-
Mann \; is Z (1)~} \s+2Xs), Z (2)~3 (Ne+2A7), Z(3)~% (Ai+iNs),

Z(4)~21Ng, Z(S)~27VNs, Z(6)~3 (M—iNa), Z(T)~F(Ne—iN1),
Z(8)~%3(\i—1iNs).
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properties of the Z, V, and U, we can complete this

with
[v,vlcu, [o,uicv, [v,Ulcz  (18)

which is yielded unambiguously by the Kronecker
products?

10X 10=235+28+27+10,
10X 10=35+28+27+10,
10X10=64+27+8+1.

We now make use of our above definition of the Dy
set in its reduced 4, form to suggest an easy way to
construct the matrices explicitly. We remind ourselves
that the 2, v,, and #, vectors span the K subspace of
T'(ay) skew-symmetric tensors of the second rank in the
original 8-dimensional space X, as exhibited in (3).
The basis of X is also defined by A4, and the reduction
(6) is indeed generally given by a table relating the Z,
V, U to the original vectors x,

(19)

(20)

where the second expression displays b, as a matrix
whose (j%) component is the corresponding component
of the reduction tensor. We can now insert these
expressions in (13)

._.FlV(rs)v_—_ _%ijl(ra)xk

=& 0= F [ F0. Ju,  (21)
where we have expressed the / variation of v,, first in
terms of the operation of the 4. generator’s representa-
tive directly in 10 space, and then in terms of the A4,
generators in the X space itself. We have also used the

fact that the F; are skew-symmetric.
This can now be compared with (14),

iflrsV'Uaz [Zl,‘l’,-] .

29 J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).

Vp= Drjkxjxk= X0:%%

iflrs V'Us =

(14)

We have already identified the z; with the F; set in
(11); we now learn that the reduction matrices 9, are a
representation of the V,. Our proof can be extended to
the #, and to the 2, themselves, and we have gained a
construction-procedure for our Dy algebra basic set in
their 45 reduced form.

If we perform in the original X space a unitary trans-
formation diagonalizing F3 and Fg, and keep the same
diagonalization in the reduction of K space, the base
vectors 2, v., #s Will be eigenstates of A, u, I, and
y [\ and u are one way® of characterizing an irreducible
representation of SU(3), I, is the third component of
isospin and y is the hypercharge]. The corresponding
D, generators will produce transformations with just
these quantum numbers; inserted into a Dirac bilinear,
they will produce a boson operator destroying these
quantum numbers. If this is a vector bilinear, we have
a destruction operator for a current.

In Appendix A, we have produced an explicit set of
generators, based upon a matrix construction from the
Goldberg reduction tables? of 8X8 in SU(3). The
weight diagram of these operators (Fig. 1) is useful for
quick identification and suggests algebraic shortcuts
(e.g., commutators are given by vector addition,
provided the three A, representations are regarded as
three levels 1, 0, —1 of a third dimension).

To allow us to exponentiate, we define a Hermitian
set. In K space, this reduces to a transition from a metric
of the transposing type (like the gs; of Ref. 27) to a
Euclidean metric; the Hermitian matrices are rep-
resented by real vectors in the basis, replacing the
former complex set of 7., y eigenvectors. Eight of these
Hermitian matrices are the F; of Ref. 24; we have
named the others Gy to Gas, attempting throughout to
make the numbering suggestive of the 4, content.

D, has four diagonalizable commuting generators,

% See, for example, H. Goldberg, in Theoretical Phyncs (Inter-
national Atomic Energy Agency, Vienna, 1963), p. 2
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i.e., states have 4 weights or quantum numbers. Two of
these are 7, and y, given by

[=T'=F;, (22)
y=2(3)"12y0=2(3)~12Fy, (23)
the other two are
u=23"12%(C'—C" = (2)12G oy, (24)
v=(C'4C*)=V2G;. (25)
The (u,w) eigenvalues of the baryon octet are
$(0,1), =(0,—1), =+(0,—1), =°(1,0), =-(0,1),
A(—1,0), E°0,1), E-(0,—1). (26)

Although SU(3) is a subgroup of R(8), # and v do
not commute with SU(3); this is because Schur’s
lemma does not allow any operator except for the
identity to commute with SU(3), since its 8 representa-
tion is irreducible.l” Similarly, # and v do not commute
with isospin.

The introduction of a higher symmetry always
restricts couplings allowed by the lower symmetry. In
the original search for a good physical endosymmetry,?
it was important to restrict the rank to two, in order to
allow all reactions of the basic multiplets allowed by 7,
and y. At the present stage, we know a priori that the
higher endosymmetry is going to be badly broken
[the situation is the same in SU(3) XSU(3), etc.].

III. UNIVERSALITY

Weak-interaction universality has gradually been
generalized to include all types of weak coupling. The
basic formalism consists in requiring weak currents to
satisfy a set of commutation relations, thus defining a
Lie algebra. The algebra generates a symmetry group;
any interaction which is invariant with respect to the
group will thereby conserve the “charges” carried by
these weak currents, i.e., it will keep their couplings at
some fixed value throughout. Usually, one makes use of
the fact that for the hadrons, the weak-symmetry
algebra coincides with a subalgebra of the strong
interactions; the result is then a lack of renormalization
of the weak coupling by the strong interactions. The
best-studied example of this type is found in the
neutron beta-decay vector coupling, which retains
approximately the same value as in u decay. That the
lepton currents also satisfy some such algebraic condi-
tion can be learned from the equivalence of muon and
lepton currents. Indeed, these seem to satisfy universal-
ity in their axial-vector part almost as well as in the
vector part ; considering that the partial conservation of
the beta-decay axial-vector current is required by the
successful Goldberger-Treiman relation, one is finally
led to the concept of total universality, which we adopt
here.

31'Y. Ne’eman, in Proceedings of the International Conference on

Nucleon Structure, edited by R. Hofstadter and L. I. Schiff
(Stanford University Press, Stanford, 1964), pp. 172-187.
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Gell-Mann noted® that in a two-neutrino theory, the
lepton currents can be regarded as the partially con-
served currents of an algebra of SU(2) generators, the
W spin; the leptons transform as 2-spinors®? (u,»,) and
(e,ve). The same group W now operates on the hadrons,
yielding a hadron current where both # and A decay
into p; the effective spinor is then (an+bA, p) with
@®>+b°=1. Note that this parallelism is required by
the fact that the couplings of hadrons and leptons are
equal; had the hadrons appeared in a different represen-
tation of W, we would have gotten factors of V2 etc.
Since n-beta decay is similar in strength to u decay,
a~1 and 6<K1. This is Cabibbo’s weak hadron current®
in SU(3) theory. The entire formulation is made with
respect to the complete weak current, i.e., the left-
handed spinor representations

Hy= (GN)WHW ;+, (27
We= W“hadrons_l_ W“muons"" W“electrons ) (28)
W”hadrons= (L/\/z-)‘l—/h(l"_'yﬁ)'yﬂ{aTw_{' bD“}\&h: (29)

where AQ=—1, T~ and D~ are the SU(3) generators
2712(F+iF,) and 2-V2(F ++1iF5), respectively.

W”muons=‘Zmu(1+75)')’”(71+’i72)1//mu, (30)
W"electrons= ¢e1(1+75)7”(71+ 'i7'2)1//e1 . (3 ])

Cabibbo’s formulation seems to be at least a good
approximation. We now note that if this is to hold,
any new term we would like to add to the current will
display an extremely weak coupling, since the ¢ and &
terms in (30) are experimentally known to yield

(a*+0)~1. (32)
It would be difficult to assign an exact limit to the
summed squares of all additional terms, but it seems we

can exclude anything stronger than
0.01>4-d?4-- - .

This is in fact a theoretical prediction : Any hadron weak
currents besides 7—, D, and their Hermitian conjugates
produce extremely weak interactions. This runs counter
to phenomenological studies that have assumed the
existence of large AQ= —AS currents.®

Such considerations seem superfluous in SU(3)
theory, where 77 and DT have anyhow used up all
|AQ|=1 currents, and no neutral currents have yet
been observed. On the other hand, the observed =+ beta
decay® in (1), if confirmed, would imply the existence

3 An alternative description of the leptons in terms of the
Konopinski-Mahmoud definition of lepton number (u*, », ¢~ are
the leptons, with both », and », redefined appropriately and
included in a four-component ») leads to a different structure of
W, which was studied by Y. Ne’eman [Nuovo Cimento 27, 922
(1963)]. The two descriptions are equivalent with respect to the
leptons as long as no neutral currents are involved, and if the
neutrinos are both massless. The connection with the hadrons can
be different ; it has recently been used by A. Salam and J. C. Ward,
Phys. Letters 13, 168 (1964).

3 R. G. Sachs, Phys. Rev. Letters 13, 286 (1964).

(33)
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of a very weak (only this one event and another
““possible’” one!® have been seen to date) current of the
AQ=—AS type, with |AI|=%. This leads us out of
SU(3) proper, and we now view the R(8) extension
described in the previous section. Clearly, our particular
current is described by the operator

0-=22(Gyy+iGy) (in 10) (34)
and its conjugate @* (in 10).
IV. CONSTRUCTION OF THE WEAK CURRENT

We are faced with the problem of determining the
contents of a new W set of currents, including

WH~aTH+bDtcQt+ - -, (35)

such that it will again yield for
Wy=2"12(W+4+W"), (36)
Wo=2"12(W+—W~-), @37
(W W =ideisWi (G, 7,k=1,2,3). (38)

Finding exact solutions of the most general type for
W is a laborious problem which we shall tackle in
Appendix B. In fact, we study the vector part V;; the
problem of W;=V+A4; is left to our discussion of
chiral extensions. For the physics we are interested in
at this stage, we shall adopt an approximate solu-
tion, discarding terms in all but first order in & or ¢
in the amended current (35). Following Cabibbo’s
transformation

e 21T+ 1= (cosf) T+ (sind) DT, (39)

we shall look for a transformation of T+ into @+ or 7—
into Q. A look at the weight diagram will show that Q°
in 10 will give the appropriate transformation; since
(° is not Hermitian, we shall have to combine it with
@° in 10. There is a choice we can make in the phases,
and we shall use it to produce an answer to both the Z+
beta decay and the recent CP= —1 decay,?? Eq. (2).

To understand the emergence of a 90° phase, let us
replace the exponential by its first term, in Cabibbo’s
transformation

(1—2i0F ) T~(14-2i6F ;) = T-—2i6[F7,T~]  (40)

we adjoin a transformation

(1—246F )T~ (14-2i0F s) = T~—2i6[ F, T~]. (41)

Since
27V (Fg—iFy)=D", (42)
2712(FetiF7)=D", (43)

we find from vector addition in the weight diagram (or
from the commutation tables in Appendix A)

[D°T-]=0,
[D"T-]=—-(N2)D-,

(44)
(45)
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which leads to
—246[ Fo,T-]=146D, (46)

— 2i§[ F+, T-]=6D~. (47)

We see that the Fy variation used by Cabibbo
produces an in-phase D~ current whereas an F variation
would have yielded a 90° out-of-phase D~. Wolfenstein?*
has shown that the inclusion of an out-of-phase small
current with

10-7< ¢ <108 (48)

could reproduce the K5° anomalous 27 decay.
To achieve such a result, in the context of current
universality, we use

e~ 12G26(cosfT - sinf D) et G2 (49)

noting that _
Gas=2""2(Q+Q"), (50)
[O°T—]= ()0, (1)
[Q,T-1=—v2Q~. (52)

We get in first order in « or @ a current [ X, implies

‘Z(l+75)7uX¢]

W ,—= cosf cosaT',~+sinfd cosaD,~+V27 cosd sinaQ)~
—2-12v37 cosf sinaQ—lepton currents L~

~+terms in sina sinf, (53)

where the 7,~ and D, couplings are lowered only very
slightly through multiplication by cosa, @ has |AT|
=2 AQ=AS, and Q~ is our AQ= —AS operator. Note
that both new currents are out of phase and will produce
CP=—1 terms in the Hamiltonian,

H'= —i cosf sinaG{ (L+Q,*—Q—+L,")
+-cosb cosa(T—#Q,+—Q—+T,)
+-sinf cosa(D—*#Q,*—@Q—+D,*)}
+4V3 cosf sineG{ (LFQ+*—Q—+L,)
+cosf cosa(T+Q,+—Q—+T,")
+sing cosa(D~*Q,t—Q~+D,")}. (54)

V. CP VIOLATION

The various terms in H’ all contain the factor sina’
which makes them generally weaker than a CP-
invariant weak interaction. However, it may occur that
some reaction is allowed to proceed via H’ in first
order, whereas it would appear in higher order only
in H.

We first check the effect of H” upon the neutral K
decays. Now that a CP= —1 Hamiltonian allows some
Ky — 27 and K,"— 3w, we shall have to redefine the
two actual components of the K° system in weak
interactions. This is done by computing the squared-
mass matrix in the (K°K°) basis and diagonalizing it
to reproduce the physically distinguishable states. We
keep the names K,° and Ky for the CP eigenstates,
since these are still useful for computational purposes:

3 L. Wolfenstein, Phys. Rev. Letters 13, 562 (1964).
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The various parts of the Hamiltonian have definite CP
eigenvalues. The new physical states will be denoted
K (short-lived) and K (long-lived). We use the
convention:

CIKO>___+1KO>, PlK0>=—_lK0>)

_ _ _ (55)
C|K)=+|K%, P|K%=-|K",
1 -
|K°>=\E|:1K2°>+1K1°>J,
. (56)
‘K°>=\EEW2°>-‘K1°>],
0 1 70 0 |
1K1>=\‘/§UI& )— K9],
. (87)
|K2°>=6[|K">-HK°>],
CPIK®)=1, CP|KS=—1. (58)

_The two diagonal matrix elements (K°| M2| K9 and
(K| M?| K% will have only time-reversal-symmetric
contributions,

(K°| M2 K= (K| M?| 22 | M?| K1)
H{KL| M2| 3)(3n | M?| KO+ - - -

(K| M2] 2% | M2 K )+ -+ . (59)

Odd CP terms like the last one here are allowed to
contribute, provided they multiply conjugates. The
result is thus a sum 4 of positive-definite quantities,
which will reappear identically in (K°| M?2|K°).

The off-diagonal matrix elements are each other’s
Hermitian conjugates. There are two kinds of terms:
real and symmetric, which we denote by B, and
an imaginary and antisymmetric part —iC (for
(K| M?| K"%).

In the pre-CP, violation age, only B existed and was
given by

(K| M?| K%)= — [(K | M?| 2m) |+ [(K"| M?| 3m) |2, (60)

It will now acquire terms like B'= —|(K"|M?|3x)|2
+ [(K| M| 2) [ 2.
The resulting matrix is now
M2=A1+BT1+C7'2. (61)

For C=0, diagonalization had been achieved through
the unitary transformation

UMU" = Mg,
11
RV

1 (62)

U

. . ’
1 1
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thus defining the diagonal states as
AN Ko+ |K)]=K,

: 5o (63)
(/N[ Ko)— | Koy]=iKy".
In the new system, we have to use
(B-HC)”2 .
1 |\B—iC
U=— . (64)
V2 _ . 13+ic>—~1/2
’ Z<B—iC
The physical states are thus
K= UADIEYFIRY, o
| K= (/N2 KD)—i| K],
where
t=((B+iC)/(B—iC))2=1{"1, (66)
The mass difference is
MK %) —M2(K°)=2(B4-C?)'2. (67)

We can now study the 2= decay mode, following roughly
the analysis in Refs. 33 and 34, and using the exper-
imental result of Ref. 22:

(r|H+H'|KL%)| 14¢]Y]
£=2.6X10"3= ~ , (68)
Qr|H+H'|K) 1—¢|t]
Q2r|H+H'|KY Qn|H'|KH—{2x|H|K L )
CQn|HAH'|\KY Q| B | KS)+Qn|H| KO
1 sinaGA*— G2
i sinaGA2+GL?’
¢~ —(1—ia)/ (1+ia). (69)

¢{=—1 for a CP-invariant theory. We get an upper
bound for « from the ofi-diagonal mass matrix element
of (67); experimentally, this was shown to fit a second-
order process in the weak interaction,’:3¢ i.e., it is of
order G?A* (A is a cutoff). For the first-order process in
C, we would get aGA?, so that

a<<GA2.

With « thus of the order of the weak coupling or less,
we may use {~—1 and get from (68)

1=1+42¢.

Reinserting this value for # into Eq. (66), and utilizing
again our knowledge of the couplings involved in B and

(70)

3 See, for example, R. H. Good, R. P. Matsen, F. Muller,
O. Piccioni, W. M. Powell, H. S. White, W. B. Fowler, and R. W.
Bridge, Phys. Rev. 124, 1223 (1961).

36 For the theoretical argument, see L. Okun and B. Pontecorvo,
Zh. Eksperim. i Teor. Fiz. 32, 1587 (1957) [English transl.:
Soviet Phys.—JETP 5, 1297 (1947)].
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C, we find
a/GA2~C/B~¢E,

a~10"7 to 1078.

This estimate is Wolfenstein’s.3* On the other hand, it
seems we should also consider the fact that the AS=2
Hamiltonian is in an SU(3) 27, or in some higher R(8)
representation. The dynamical octet enhancement
results®” would account for a factor of 1/700 in .,
since we are comparing one ‘non-octet” to a double
“octet” amplitude, i.e., a squared enhancement equal
to the rate-enhancement in (K+/K°) — 27 decays;
thus, a~1075~GA2.

(71

VI. OTHER WEAK EFFECTS

Considering that any amplitude containing a non-
eightfold current will be reduced by the factor «, it
is doubtful whether such reactions can be observed in
the near future. The =t beta decay (1) if repeated,
would imply a larger value of a. Contrary to what was
expected in an R(8) theory without a Gell-Mann-
Cabibbo type of universality,'® we do not expect to
find decays of the type

E-— nte+5 (72)

as we have included only two additional currents (to
first order) out of the 20 allowed by R(8) outside the
octet.

Itisin the K° system that we may expect to find easier
verifications of these ideas. Wolfenstein has noted that
K° leptonic decays would be 5%, asymmetric between
the two charge states:

K!—>atde+5 1

—— = (73)
K> atet+v £
Again, there is a nonvanishing amplitude for
K" — 3 (74)

experimentally complicated by phase-space factors.

In cases where the new currents provide for a weak
reaction in first order, as against second-order processes
in the former currents, we can distinguish the effects
only to the extent that we would have reached these
interactions observationally anyhow. For the Ks°— K 1°
mass difference, we would expect to find a larger om,
i.e., an increase of 25-1009, over the expectation for a
second-order weak interaction.

VII. CHIRAL EXTENSION AND MULTIPLET
ASSIGNMENTS

There are various ways in which R(8) could be defined
as the vector-current algebra within a larger chiral
symmetry. One is tempted to use R(9), with only an
octet of axial vectors added to the vector currents;

3 R. Dashen and S. Frautschi, Phys. Rev. Letters 13, 497
(1964).
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SU(8), with 35 axial vectors currents [reducing into
SU(3) 8+427] has some advantages (the axial octet
couples through D). However, the nonlinear equations
corresponding to the universality idea do not allow
these choices.’® One is thus led to postulate

R(8)XR(8)

as the chiral symmetry. The proof of universality of
SU@B3)XSU(3) in Ref. 38 can be generalized to this
symmetry.

In this picture, the baryon octet (separated into left-
and right-handed components) forms an (8,1)4 (1,8).
Note that we have at this stage no clear knowledge as
to which 8 in R(8) this is, since all three representations
have the same SU(3) content. It is conceivable that by
studying the reactions occurring between baryons in
terms of the two new additive quantum numbers
supplied by R(8), X, and Z, we may be able to deter-
mine whether the baryons use a spinor or a vector
representation.

For vector and axial vector mesons, the assignment
should be (28,1)-- (1,28). This predicts the existence of
an SU(3) icosuplet of vector mesons and an octet
and icosuplet of axial vector mesons. Lee, Okubo,
and Schecter® have conjectured the existence of a
boson icosuplet including the B (1220-MeV 7w
resonance)® and the 4 (1200-MeV -p resonance)? as
diagonalized unitary parity eigenstates of the two
isotriplets. They also included the 1175-MeV Kur
resonance® in this representation, with T=% or % and
conjectured that another such resonance with the
complementary isospin should be found at 1265 MeV.

It seems probable that an icosuplet will indeed be
the right answer. A Kwm resonance with T'=314
u=1215 MeV (it is not clear that this is what was
observed in Ref. 42) has been observed and another
Kz resonance has been found44 at 1270 MeV and
has T'=4%. There seems to be some difficulty with the
masses, which have moved away from the mass formula
level: The 4 is now considered to have a mass® of 1090
MeV and since the lower Kz is put at 1215 MeV,
both strange resonances have risen above the center of
the triplets. However, these moving peaks are broad

(1;86 lzg Gell-Mann and Y. Ne’eman, Ann. Phys. (N. Y.) 30, 360
(13962)' W. Lee, S. Okubo, and J. Schecter, Phys. Rev. 135, B219

964).

% M. Abolins, R. L. Lander, W. W. Mehlhop, Ng.-H. Xuong,
and P. M. Yager, Phys. Rev. Letters 11, 381 (1963).

# G. Goldhaber, J. L. Brown, S. Goldhaber, J. A. Kadyk, B. C.
Shen, and G. H. Trilling, Phys. Rev. Letters 12, 336 (1964).

4T, P. Wangler, W. D. Walker, and A. R. Erwin, Phys. Letters
9, 71 (1964).

4 R. H. Dalitz, Chicago APS Review, October 1964.

“R. Amenteros, D. N. Edwards, T. Jacobsen, L. Montanet,
A. Shapira, J. Vandermeulen, CH. D’anlau, A. Astier, P. Baillon,
J. Cohen-Ganouna, C. Defoix, J. Siaud, C. Ghesquiere, and P.
Rivet, Phys. Letters 9, 207 (1964).

4 8. U. Chung, O. I. Dahn, L. M. Hardy, R. I. Hess, G. R.
Kalbfleisch, J. Kirz, D. H. Miller, and G. A. Smith, Phys. Rev.
Letters 12, 621 (1964).
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and they could well all be thought to lie at nearly
1200 MeV. The spin-parity 17 is favored in most cases,
considering that these resonances do not seem to decay
into two pseudoscalar mesons (except for some
traces reported by one group). In the case of the 1270-
MeV “C” meson, the decay

CO— K044
N
ot

shows no deviations for isotropy** in the first step,
which would imply an .S wave and give j= 1 indeed.

Tt should be noted that a baryon-antibaryon-vector
meson coupling is R(8) invariant only if we put the
baryons in the vector 8. This assignment would require
28 pseudoscalars too; alternatively, we could put the
pseudoscalars in an 8 and have the Yukawa pseudo-
scalar interaction break R(8), leaving SU(3) invariant.
(This seems preferable to having an 8 for the vector
mesons,* considering that they should appear in the
adjoint representation and couple to quasiconserved
currents.) In this case, the symmetry-breaking Hamil-
tonian could be in either 56 (vector) or 112 (vector)
[these representations include an SU(3) scalar and
appear in the product of 8X28 and 8X35, with 8X8
=1+284-35].

VIII. DYNAMICS OF THE SYMMETRY BREAKING

In the light of bootstrap theories, we would prefer
getting the R(8) breakdown from the same model we
suggested for SU(3).4” The basic idea is that although
the bootstrap may settle on a nonsymmetric solution,
there is no visible way in which it could pick an asym-
metry which does not correspond to the existing
imbalance—electromagnetism. We therefore introduce
an interaction similar to electromagnetism and to the
weak interactions, in that it is defined by a given
coupling and is not generated by the bootstrap; it is
mediated by a vector meson with definite elementary
properties, i.e., it is a (C.D.D.) Castillejo-Dalitz-Dyson
pole and exhibits the appropriate behavior with respect
to the Levinson theorem count.*

In our model, this vector meson is coupled to an
SU(3) octet eighth component, mixed with a singlet.
For this current to be approximately conserved, we
have to assign it in R(8) to a 28. This determines the
algebraic features of the symmetry breaking, which
should be given by the self-product of our current,

- 28 28=1-300-+350+- - - . 7s)

46 G. Cocho, Phys. Rev. 137, B1255 (1965), has dealt with R(8)
and suggested using the spinor 8 for the baryons and the vector
8 for the pseudoscalar mesons. This would imply that the vector
meson coupling to the baryons breaks R (8) though leaving SU(3)
invariant.

47Y. Ne’eman, Phys. Rev. 134, B1355 (1964).

18 See, for example, S. C. Frautschi, Regge Poles and S-Matrix
Theory (W. A. Benjamin, Inc., New York, 1963), p. 34.
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(we list only representations containing the SU(3)
scalar) where the figures in parentheses are the SU(3)
representation dimensionality and the index of the
appropriate component. The product contains three
SU(3) scalars; one of them is identical with the R(8)
scalar, the other appears in the representation 300; the
third scalar, in 350, is antisymmetric and does not
contain a (\g)? contribution. The 300 breaks R(8) and
leaves SU(3) as a good symmetry. Note that its eigen-
values split 28 into 2048, which fits in with the
experimental picture in which we have, to date, perhaps
an SU(3) 8 for vector mesons at ~0.9 BeV and a 20
for the axial vectors at 1.2 BeV: The missing 20 vectors
and 8 axial vectors should be clustered around different
energy levels.

IX. NONEXISTENCE OF SU(3) TRIPLETS

If our R(8) model should be true, there would be one
additional important implication with respect to SU (3):
The eightfold symmetry is then only SU(3)/Z(3), and
SU(3) itself never arises. R(8) yields only zero-triality
representations, starting at 8, and will never generate a
triplet, either independently or inside some larger
representation. We could then understand more readily
the nonappearance of such representations to date; if
any triplets be found, this model would not hold.
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APPENDIX A: THE LADDER OPERATORS

The following set of generators of the D4 algebra
(i.e., the infinitesimal algebras of the group of rotations
in 8-dimensional space) in an SU (3)-oriented classifica-
tion is based upon the Goldberg 8 X8 reduction table.?
Our generators operate on the same space as Gell-
Mann’s* F;. The correspondence between the bases is
given by comparing the meson octet in Table 2 of
Goldberg’s report with Table 4.2 in Gell-Mann’s. This
is done explicitly in our Table I.

T aABLE 1. Connections between notations.

Goldberg Gell-Mann

@1 (7r4—-i7r;,)/\/2
P2 (re—1im)/V2
é3 (r1—1mwe) V2
o 8

s T3

o2 (1r1+i7r2)/\/7
@1 (7! 5+i7r7) /\/2
¢s (ratims) /V2
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The notation for the “ladder” operators is given in Table II. Here, A(\,u) is taken in the sense of the com-
mutation relations (17) and (18) of our text. All Goldberg tensors are multiplied by V3 to bring about the same

normalization as for the F;. The Hermitian generators are listed in Table III.

TasLE II. Notation for the “ladder” operators.

A(\u) |AI| Al AY A(\p) |AI Al AY
T+ 8 1 1 0 Cc- 10 1 -1 0
70 8 1 0 0 Bo 10 3 3 -1
- 8 1 —1 0 B~ 10 i —1 -1
D+ 8 3 3 1 S- 10 0 0 -2
o 8 3 -3 L Q- O -3 -1
D 8 3 } ~1 ¢ 10 -3 —1
D- 8 -3 -1 Q 10 i —1
¥o 8 0 0 0 Q* 10 3 3 -1
(Oans 10 2 3 1 C- 10 1 -1 0
ot 10 3 1 1 o 10 1 0 0
Q° 10 3 -3 1 C+ 10 1 1 0
Q- 10 3 -3 1 Bo 10 i -1 1
ct 10 1 1 0 B+ 0 i L 1
c 10 1 0 0 S+ 10 0 0 2
TasLE III. The Hermitian generators.
T+ =(1/V2) (F1—iF2) Dt = (1/V2) Fa—ils) D= (1/V2) (Fs+iFs)
T0 =T DY = (1/V2) (Fs—il) D0 = (1/v2) (Fo+iFy)
T= = (/) (FretiF) n g
=1
Q= (1/2)(Gy—iGio) Q" =(1/V2) (Ga—1iGy) Q" = (1/V2) (Gas—iGy)
Q™ = (1/V2) (Gro+iG) Q= (1/¥2) (Gy+iG1o) Q™ = (1/v2) (Gast+iGos)
Q0 = (1/V2) (Gas+iGar) QF =(1/v2)(Gr—1Gzo)
Ct =(1/V2)(Ga—iG) Co =(1/V2) (Grs—iGus) C™ = (1/V2) (Gu+iGr)
C~ = (1/v2) (Gau+iGas) C0 = (1/v2) (Gis+iGas) C+ = (A/V2) (Gu—iGhy)
Bo= (1/v2) (G1s+iGrr) B~=(1/V2) (Ga+iG1s)
Bo= (1/V2) (G1s—iGrr) Bt=(1/72) (G14—1G15)
S~ = (1/v2) (G1s+4Gas)
St = (1/v2) (G13—1Gas)

In Table IV we provide an explicit matrix representation. In Tables V (a)-(f) we give the commutation
relations explicitly.

TasBLE IV. The R(8) generators.

V2
TH=—
4

V2
T-=—
4

2

. —2
2 .

—2

. —2
2 .

—1

-1

~1

—

T0——

(38

2i

-2
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TABLE IV (continued)

=S

1/6

Q++=___

=S

=S

1 &

1 —3
- —1

—1 —
—i =1

- -1

|
<
C o Se e .

-1

—1

W3

V3

&

Yo=—

. s

I e

[ Y

© P e e e e

V3

. S,

=,

2

CSe e e

S e e .

3
—iv3

—V3
—iV3

V3
—iV3

—V3
—iV3

S

Do=—

C oS . .

|
-
o -, . . . .

\é_

-1
-1 -1

=,

V3

-1

-1
—1

-1

V3

\k?
—iV3

V3

—\3
c o —iV3
V3 .

—1

=,

-1

_'(3’

—V3
]
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TaBLE IV (continued).
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. 1 i : . . - —1
. P -1 . . 5 2 1
4| 0 1 4 =2
. i .
-1 .
1 i . . 1 7
—1 1 . 2 . —1i 1
I T ' o 6| L
L e
. —17 -1 3
—2 |
. —7 . . - —1 —1 . . . . . .
o1 i . . . . . . . . . . . V3
é_ \/_'2 . . . 3 1 ; o :1 . —1 . . .
4 . . . -7 =1 T, i . . .
. . - 1 . —i .
V3 V3 . —V3 .
. . 1 . . - =3 . . —i . .
. . —i . . . i3 . . i 1 . .
I . . . . . . . . -1 3
V2 . _ V2 . )
ot B o L i T o
4 . . R . . 4 . 1 . V3
. . -1 —1 —3 . . =3
V3 —iV3 . . -3 V3 .
. . . . [ - . . . .
. . . . —1 -1 . . . .
. . . 1 —1 . . . . . . .
) . . —1 . V3 Gt V6 . . 1 —
Bt=— . : St=— .
4 . . 7 —iV3 4 . . -3 —1
-1 3 . . . -1 4 . .
i 1 . . i 1
. —V3 V3 .
TaBLE V. Commutation relations.
T+ 0 - D+ Do Do D~ v
T+ 0 T+ — 70 0 —(1/¥2)D* 0 (1/v2)Do 0
10 0 = —iDt 1po —ipo iD- 0
1= 0 — (1/v2)D° 0 1/v2)D~ 0 0
~ —170
Dt 0 0 - /N2)TH _ %\Z/SYO 13D+
170 -
I 0 _haT -/ 13D
Do 0 0 — 13D
D~ 0 —3V3D~
Yo 0
o+F o Q 0~ ct co c- BO B- 5
7T+ 0 (3)v2Q++ —V20* — (HrQe 0 —Ct Co 0 (1/v2)Bo 0
S A 3Q° - —cr 0 o —3B 3B 0
- (et —V2Q° — Q- 0 —C° (o 0 1/v2)B~ 0 0
D 0 0 0 0 —@wett @ —@ADE viCt -0 @0
D 0 0 0 0 /v0e* Q@ =@ c° VIC=  —(3)¥2B-
Do 0 N2 cr co — (e 0 B V2B~ 0 — ()vas- 0
D~ — @t C—ae 0 V2B —B- 0 (@S- 0 0
o —Lv30tt — 130+ —Lv3Q0 — V30~ 0 0 0 $V3B° $V3B- v3S-




B 1486 Y. NE'EMAN AND I. OZSVATH
TABLE V (continued)
Q' — Q‘ Q" Q+ - o -+ Bo Bt S+
T+ — (g V(o &)1+ 0 co —C* 0 —(1/v2)B* 0 0
70 30-- 10~ —1Q0 —3Q+ c- 0 ~C+ 1Bo —1B+ 0
- 0 — g V2g- @neQo 0 C- —C° 0 —(I/NDB 0
Dt @ —Co amges o -2 BY 0 = @8 0 0
) 0 —(pNDC~ = @20+ 0 —B —vaB*+ 0 (3)128+ 0
D 0 0 0 0 /g —@ @nQr ~(Co —va0+ GueBr
D- 0 0 0 0 G- Q- (/N —V2C- o — (B
v W3- 130~ 1300 W3O+ 0 0 0 — V3B —1\3B* —V3S+
o+ QF ol 0" c* e c- B B- 5
o+ 0 0 0 — (Hre8+ 0 0 (BBt 0 —~ @)l G)eQr
o R 0 0 —B*  —(A/N2)B A2+ oo e
o 0 0 ANDBY  —Bo 0 ) —aD -G
0" 0 (3B 0 0 — @)c- 0 =@
cr 0 cr —(Ce 3@+ A/ 2)Q 0
o 0 - —Q0 _ ——Q_‘ 0
c- 0 = (1/V2)Q- Q- 0
B 0 0 0
B- 0 0
S- . 0
Q- Q- @ Qr c- co cr B Bt S+
—_ _3_T0
o+ %z/gyo @ner+ 0 0 —@mwpt 0 0 0 0 0
__.lTO .
o+ @)= —%\2/31/0 —\27T+ 0 (1/V2)D° D+ 0 0 0 0
1 TO
1o 0 —V2T~ _; Gre  —@wrt 0 D —(1/v2)D* 0 0 0
370
0- 0 0 —@E L 0 0 —@wD 0 0 0
ct  —@wp- A/V2)De 0 0 —T70 ~T* 0 V2D* 0 0
co 0 D~ Do 0 _ -I- 0 T+ D° —D* 0
c- 0 0 —QA/N)D~ —(§)VDP 0 T- 70 0 V2 DO 0
- —1
B 0 0 0 0 V2D~ Do 0 +%\2/3Y° a/v2)T+ (3)12p+
B 0 0 0 0 0 -Dp- D AN T lf/;;,o —(@ywpe
2
S~ 0 0 0 0 0 0 0 @D —@De V3T
G- G Q0 gr c- co c+ Bo Bt S+
g- 0 © 0 Gas— 0 0 — @) B 0 @Gnec- —(1/N2)0-
Q- 0 @nres- 0 0 B~ (A/V2)B° —Q/v2)c = — G0
Qo 0 0 —(1/V2)B~ B 0 —C° a/v2cr &)+
a+ 0 — (2B 0 0 @rect 0 @t
o- 0 -C- c — Q- —A/V2)Q° 0
o 0 —ct 10 o+ 0
ar 0 an2e* = (§)Qt+ 0
B 0 0 0
B 0 0
S+ 0
APPENDIX B. THE FORMAL PART OF where a, b, - -+, & are complex numbers a, b, - - -4 their
THE UNIVERSALITY PROBLEM complex conjugates satisfying the equation
i iversi Lly. -
We consider here the university problem formally. We ad- - +hh=1. (B2)

consider two operators of R(8) defined by

V+=aT++4+bD++cQr+dCH-e B f8++ O+ nC+

and

V-=aT-+bD~+eQ—4dC—+eB- )
+ fS~4g0—+hC—,

and a third operator V3 by
ngZ [V1V2] .

(B1)

We then define the operators ¥y and V', by the equations
Vi= AN2)(VHHV7), Ve=GA2)(VH—V7)  (B3)

(B4)
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The problem is the following: Can we find a, b, -+, %
such that Vi, Vs, V; satisfy the further commutation
relations

V= [VzV;;] and iV,= [V3V1:] (BS)
One sees immediately from (B3) and (B4) that
Ve=[V-V+]. (B6)

Using (B1) and the commutator relations given in
Table II of Appendix A, we find that

V= 7T04-8D'+ 5D+ ¥ 4k Q'+ Q"

+vC4+3C4+-8B+BB°, (B7)
where we introduced the notations
7= ad~+1bb+ tce+dd-+See+3gg+ ik (B8a)
b= —(ab/V2)— (cd/V2)— (3)"ef
— (3)"2gh~+V2eh, (B8b)
n=V3bb+V3ce+LvV3ee+V3 ff—1V3gq, (B8c)
k= —V2dac— (3)2¢f— (de/V2)
+(3)2ag+ (bh/V2), (B8d)
v= —ad-+bc— ce+dh-+bé—ah, (B8e)
B=— (aé/V2)+-V2bd+ (¢h/V2)
+(@)vedg— (3)7f, (BS)
a@+ - -+hh=1. (B8g)
We note that
7+ (1/V3)n=1 (B9)

which is a consequence of (B8a), (B8c), and (B8g) and
may be useful by later calculations.
The requirements (BS) impose the conditions

a=ar— (b/V2)5+ (3)2gx—V2ck

—hy—dy—(e/V2)8, (B10a)
b=1%br— (a/V2)o+3V3bn+ (h/V2)x
+ey+ey— ()2 fB+V2d3, (B10b)

c=2%cr— (d/V2)6+3V3en—V2ax

— ()2 frtby—ev+ (h/V2)B, (B10c)
d=dr— (¢/V2)5— (¢/V2)i—ay
+hy+V206+(5)"%gB, (B10d)
e=Ser+V2hs— (3)V2 fo6+1V3en— (d/V2)x
—cy+by—(a/V2)B, (B10e)
J=— @B - (Ao (8, (B10D)
g=3g7— ($)"*h6—5Bgn+ (3)V2ar+-(§)2dB,  (B10g)
h=hr— (3)"2g6+V2ed+ (b/V2)k
+dy—ay+(c/V2)8. (B10h)

Multiplying the Eqgs. (B10a) through (B10h) with
a, - - - h, respectively, and adding up, we get the equation

724285+ n?+ 2+ 2v7+268=1 (B11)
as a consequence of (B8) and (B10).
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The formal part of the universality problem would
now be to find @, b, - - -, & satisfying these equations.
If one would substitute (B8) into (B10), one would get
a system of cubic equations whose solution would give
all physical currents allowed by the universality condi-
tion. One would hope that one such solution would
have some special features, providing a possible reason
for its appearance in the weak current. We have
preferred not to attack the exact problem and use
instead a linearization procedure.

One imagines that one has a solution as a function of
some real parameter p, a=a(p), -+, b=5b(p), which
one can expand into a power series according to p:

a=art Y apt, - h=heb 3 gt (B12)
k=1 k=1

The leading terms ao, - - -, ko give an exact solution of
Egs. (B8) to (B10) and ax, - - -, /4 are unknown complex
numbers. Substituting (B12) into (B8) to (B10) and
rearranging it according to the powers of p, we get
systems of linear equations with known coefficients for
our unknowns, which we could solve successively. Since
we know that exact solutions exist (the T system, or
the Cabibbo set), one can make the assumption that
for small values of p our procedure gives a good approx-
mation even if we break at small powers of .
It is easy to see that the Cabibbo set

a=cose, c=d=e=f=g=h=0 (B13)

is an exact solution of (B8) to (B10). Choosing this as
the leading term in (B12) which we then use in the
simple form

b=sing,

a=cos¢p+Ap, b=sing+Bp,
c=Cp, -+, h=Hp, (Bl4)
where
A, B, -+ H (B15)

are unknown complex numbers, and substituting into
(B8) to (B10) and considering only zero and first-order
terms in p, we get the equations

(A+A) cosp+ (B-+B) sing=0 (B16)

and a system of homogeneous linear equations for C,
-+ H, which has the solution

C arbitrary, D=E=F=0, G=%3C, H=%. (B17)

Therefore, (B14) is a solution of (B8) to (B10) up to
higher than first-order terms in p, if (B135) satisfies
(B16) and (B17). Therefore, taking the special choice

A=B=0, C=1,
we see that the set
V+=cos¢pT++sing D+ pO+—+ W3 pQ++1P,
V== cos¢pT+sing D~+pQ~+3V3pQ~+3P,

is a solution of the universality problem up to first-
order terms in the parameter p.

(B18)



