
PHYSICAL REVIEW VOLUME 138, NUM HER 68 2 i JUN E 1965

Calculation of the X*Vector Meson Parameters from One- and
Two-Particle Exchange Forces

J. L. GzRvAzs

Centre de Physique de l'Ecole Polytechnique, Paris, France
Laborato~re de Physique Theorique et Bautes Energies, Faculte des Sciences, Orsay, Seine et Oise, France

(Received 28 December 1964)

Previous calculations of the E parameters by Diu, Gervais, and Rubinstein, based on the approximation
of Zachariasen and Zemach, are improved by taking into account two-particle exchange forces using a
method already proposed by the author for the p bootstrap. The forces due to Ew and ~m exchange are added
to the p and E forces considered by Diu, Gervais, and Rubinstein. Self-consistent solutions are obtained
both in the one-channel problem (Xs. scattering with elastic unitarityl and in a two-channel problem in-
volving the Ew and Eg states. In contrast to the one-particle exchange forces, the forces obtained are r cally
strong enough to generate the E*.Consequently, the numerical results show a much better agreement with
experiment. Assuming that Sakurai's universality holds for the p coupling, a one-parameter family of solu-
tions is obtained. The coupling constants (E*Ex), (E*Eq), and {pm~) are calculated for several values of
m~". The first two have the right order of magnitude while the third one comes out in agreement with ex-
periment. The qualitative features of the one-particle exchange model are shown to be maintained when
two-particle exchange forces are added. This raises the possibility that they are not linked to the approxi-
mation of the forces. Thus one might understand why they are in agreement with experiment even though
the one-particle exchange forces do not really give a good approximation of the unphysical jumps considered
in the problem.

INTRODUCTION

ECENTI.Y, the equations obtained by expressing
self-consistency conditions in very simplified

models have been shown to possess many qualitative
features in agreement with experiment, particularly
when combined with SU3 symmetry. ' 4

However, attempts to derive numerical results from
those models have mot yet been very successful. In
particular, Diu, Rubinstein, and I tried to calculate the
K* vector meson parameters from one-particle ex-
change (OPE) forces. ' p and It* forces were taken into
account. A one-channel model was considered where
the E*pole was generated in the Ex scattering ampli-
tude satisfying elastic unitarity. In a two-channel
model, we improved the unitarity approximation by
adding the Eg channel to the Em one. We used a method
already proposed by Zachariasen and Zemach for the

p bootstrap. ' The conclusion of that paper was that no
quantitative agreement could be reached, though the
qualitative features of the model appeared to be very
interesting. Moreover, this seems to be also true for
other mesonic amplitudes. '

~ See, for instance: R, H. Capps, Phys. Rev. Letters 10, 312
(1963); Nuovo Cimento 30, 341 {1963);27, 1268 (1963); Phys.
Rev. 131, 1307 (1.963); 134, 8461 (1964); H. M. Chan, P. C. De
Celles, and J. E. Paton, Phys. Rev. Letters 11, 521 {1963);
R. E. Cutkosky, Phys. Rev. 131, 1888 (1963);Ann. Phys. (N. Y.)
23, 415 (1963); R. K. Cutkosky, J. Kalckar, and P. Tarjanne,
Phys. Letters 1, 93 (1962); R. E. Cutkosky and M. Leon (un-
published); R. E. Cutkosky and K. Y. Lin (unpublished); A. W.
Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963); Nuovo
Cimento 31, 1324 (1964); R. E. Cutkosky, M. Leon, and K. Y.
Lin {unpublished); B.Diu, H. R. Rubinstein, and J.L. Basdevant,
Preprint. Orsay Report No. Th. 62 1964 (unpublished); R. E.
Cutkosky and P. Tarjanne, Phys. Rev. 133, B1292 (1964).

F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962).
B.Diu, J. L. Gervais, and H. R. Rubinstein, Nuovo Cimento

31, 27 (1964).' B.Diu, j.L. Gervais, and H. R. Rubinstein, Nuovo Cimen
31, 341 (1964).

to ' J. L. Gervais, Nuovo Cimento 34, 1347 (1964).

8 1457

As we pointed out in Ref. 5, that failure casts a doubt
on the validity of the whole approximation scheme,
since one is led to believe that the forces considered are
not sufhcient to generate bound states or resonances.
In particular, the qualitative success of the bootstrap
in its simplified version, as it has been developed till
now, becomes questionable since, clearly, the terms
which one neglects do in fact give important contribu-
tions. Consequently one is faced with the problem of im-
proving the dynamical models which are used to express
the self-consistency requirements.

In Ref. 5 we studied that question in xm scattering
with elastic unitarity. We tried to improve the left-
hand cut approximation by adding the xx-exchange
forces to the p forces on which Refs. 2 and 4 were based.
It seems natural to consider the forces due to the ex-
change of more than one particle since the deficiency of
the OPE model shows that they are important. The
difhculty in doing this is that one gets infinite con-
tributions, the corresponding diagrams being divergent.
However, the absorptive parts of the fourth-order
square diagrams are finite. In Ref. 5 we used that fact
to get finite answers from a model including xm-exchange
forces by considering only the exchange of two pions
with an angular momentum equal to 0 or to 1 in the
crossed channels. Results were encouraging; in par-
ticular the mm forces considered are attractive for /= 1,
I=1 in the direct channel so that they facilitate the
generation of the p. In fact the forces considered in Ref.
5 seemed to be really strong enough to produce a
resonance.

Our aim in this work is to see whether the E*genera-
tion studied in Ref. 3 is improved when two-particle
exchange (TPE) forces are added approximately in the
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same way as in Ref. 5. Among the TPE contributions
we take into account only the Ex forces and the mvr

forces. In fact it will appear that, for the other TPE
forces, the rest mass of the two particles which are ex-
changed is at least of the order of 1 BCV, and we shall
show that those forces are likely to give small contribu-
tions by considering explicitly the infiuence of the E
exchange.

Section 1 is devoted to the calculation of the TPE
forces. The method used is the same as in Ref. 5. How-
ever, it has been modified because the mass diGerences
among the external particles introduce some new
diS.culties. In that section we also try to justify the
approximation made to include the TPE forces using a
qualitative argument based on the nearby singularity
approxlmatlon.

In Sec. 2, the E* generation with TPE forces is
studied in Em scattering with elastic unitarity. Numeri-
cal results are discussed. Similarly, the two-channel
model including TPE forces is studied in Sec. 3. Finally,
the main results of the TPE model are presented in the
conclusion.

The qualitative features of our model are studied
very CRrcfully ln this paper. In fRct lt is very important
to see whether the qualitative features of the OPE
models are preserved when TPE forces are considered.
Effectively, if this is true, the qualitative results
of the OPE approximation will appear to be model-
independent. Then we will understand why they seem
to agree with experiment despite the failure of the
OPE forces on which they are based. In the conclusion
it will appear that this is indeed the case in our problem
and that one really improves the numerical results by
lncludlng TPE fox'ccs.

j.. CALCULATION GF THE FORCES

As in Ref. 3, we shall study the E* generation both
with elastic unitarity in the Em scattering amplitude
(one-channel problem) and with the unitarity improved

by adding the Erl channel to the K7r one (two-channel
problem).

We then consider the reactions

~(pi)+K(P2) ~ ~(P3)+K(P4)

(P )+E(P ) n(p )+E(P )

n(p~)+K(P2) ~ ~(p~)+K(P4)

~(p~)+K(P2) ~ n(P3)+K(P4)

where p~, pu, p3, p4 are the four-momenta of the reacting
particles. The usual Mandelstam variables a,re

(P+P )' &= —(P—+P )' &= (P+P)'—
and the T matrix is dc6ned, in the s channel, according
to

&p3 p4ls;;I p~, p~)= ~' (P3 P4IP~ P~)

+(2i/(~&~2M3~4)'")4(pi+ p2+P3+ p4) &e, (1 1)

Fxa, i. The OPE
diagrams.

the E~ and the Ej channels being labeled by subscripts
1 and 2, respectively.

We shall use a matrix Ã/D method to calculate the
partial-wave amplitude t@(s) corresponding to the K*
quantum numbers in the s channel (1=1, I=-',). It is
deduced from T;; in such a way that the two-channel
unitarity takes the form'.

Im&,"=Ra(q~'/g~)& ~4'O(~ —~~) (1.2)

where O~(x) is the unit step function, and sq and qq

are, respectively, the threshold and the center-of-mass
momentum of channel 0:

sg= (my+1)' 21.3, s2 ——(mg+m„)' S7 5, .

gP(s) = (1/4s)[s —(my+1)'][s—(mg —1)'],
q22(s) = (1/4s) [s—(my+ m„)'][s—(mrs —m,)'].

In (1.3), as in the following, we take m ' to be 1. The
properties of the OPE diagrams have been discussed in
Ref. 3. In ~+K -+ s+K, the p and the K* can both be
exchanged. For /=1, J=-,' in the s channel, the E*force
is repulsive and no self-generation is possible. In that
channel, the sign of the p forces depends upon the rela-
tive sign of the p-xm and p-EX coupling constants. In
the OPE model, one is led to assume that the p forces
are attractive (f fx(0) and stronger than the E*
forces. In ~+K —+ &+K and in g+E —+ rl+E, only
the E*exchange is allowed. The corresponding diagrams
are shown in Fig. 1,

The following Hamiltonian indicates our coupling-
constRnt dc6nltlon:

K=(f ~XB„a+ifx[(8„Kt),'~K Et(,'s)B„E-])p—„-
+yx*[iE„*t~(EB„m mB„K)+h.c.]-

+y„[iE„*t(EB„g gB„K)+h.c'.].—(1.4)

We calculate the graphs of Fig. 1, and project them
on the angular momentum l and on the isospin J in the

, 't;; is deduced from T;; by projecting on the partial wave1=1,
J=-, and dividing the result by q;(s)q;(s). This division does not
introduce any new singularity, since the partial-wave projection
of T;; vanishes at thresholds; moreover, by performing it, one
avoids the kinematical singularities which otherwise would appear
in $12 and t.„I, and one obtains convergent integrals into the E/D
equations.
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s channel, writing the result in the convenient form:

&' (sm ')= —(f~flr/4n)C 'F &"(sm ')

B»X lI(s mKe2) ( 1)l+1(7K~2/4g)

X3C '&F» '"(s,mme') (1.5)

Bg '2(s, m l*r') = ( 1)—'+'(yx. y„/4')
X&3F»"(s,mire')

Bg2'(s mx*') = (—1)'+'(y '/4%. )F»"(s mxe') .

FIG. 2 (a). Two-pion
exchange in ~++ —+

x+E. (b) Two-pion ex-
change in the fourth
order.

v. M ~ v.

(In Bqq, a superscript p or E* indicates what particle is
exchanged. ) In (1.5) Crr' represents the isospin crossing
matrix elements of the Em scattering, the subscripts
being such that, for instance, C, ~

' describes the cross-
ing from the t channel to the s channel. Explicitly,

(1.6)

K K K

Cy2= qP(x)+q22(x)+x
2qg(x)qg(x).

(m„'—1)' (mls' —1)(mls' m—')-

4x y

/1/ 6 1

&1/+6
42=1+ y-

2q2'(x)

(mx' —m ')'-

Since the q is an isoscalar particle, only one value of the
isospin is allowed in n.+E~ rt+E and g+E +rt+E;—
therefore, 8~2 and 822 have no isospin indices.

We want to introduce the TPE forces in the same way
as in Ref. 5, so we need the functions F"(x,y) which
appear in (1.5) for /t' equal to zero or to one. They can
be written in the form

1 (mls' —m„')'
822= 1+ -- x-

2q, '(x)

In the OPE model, we introduce the functions

g»"&(s) = LBjg"'*(s,m, ')+B&P"l(s,mz~') j,
qg'(s)

+I
F;;"(x,y) =— Go+ v

F((v) —dv,
b,;—v

(1.7)

g "'(s)=g "'(s)= B»'(s,mire'),
q (s)q (s)

(1.9)

where

1 +1
F "&o(x y) =—

4
F)(n) dv,

b"—vv

yb»'=1+
2q~'(x)

'

(mx2 —1)2-

a» ——1+ x—
2qP(x) x

g»"'(') = (1/q2'(s))B»'(s mx")

and assume that the unphysical jump of t;,(s) is equal
to the jump of g;, &'&(s):

28t,,(s) =2';,(s) .
As explained in the introduction, we add to the OPE
forces given by (1.9) the TPE forces due to the ex-
change of the lightest two-particle states.

bg2 ——

1 — (mls' —1)'-
&iP*=1+ y-

2qg'(x)

1 — (mx' —1)'x"—1+
2qP(x)

1 —q, '(x)+q2'(x)
2qg(x)q2(x)

1—(2mx2 —m 2—1)&+y
4x

A. Two-Pion Exchange in ~+K ~ ~+X
The t channel corresponds to the reaction m+n —&

E+E and the first intermediate state is em [Fig. 2(a)].
The diagram which provides the forces involves the ~m

scattering and again the n+n. —+ E+E reaction. In the'
same way as in Ref. 5, we take those forces into account
in fourth order by replacing the black boxes of Fig. 2(a)
by the one-particle exchange terms. Thus, in the graph
2(a), the m7r scattering will be approximated by the p
exchange amplitude, and the ~x —+ EX reaction by the
K* exchange contribution. This leads to the graphs of
Fig. 2(b).
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In order to compute the corresponding jump of t»
one has to evaluate the absorptive part A»& of the
graphs 2(b) for t~&4. This can be done by writing the
unitarity in the t channel. According to (1.1) one gets

(] 4) 1/2 2l'+1
A„,r'(~, s)=~

~
O(~—4) p« i l'=0 4~

XB33'I'(t,m, 2)B34'I'(t,mz")P& (cos8') . (1.10)

In this formula, /' and I' are, respectively, the angular
momentum and the total isospin in the t channel; 8', the
scattering angle in that channel, is defined by

cos8'= 2/((t —4)(f—4m''))'I'(-', t—m&r' —1+s) . (1.11)

B»' '(t,m, ') = (f '/4s)2A 'F33"(t,m, '),
1.12

Bg4"'(t,m&r*') = (y&re'/4s)3Cg '~F34"(t mme')

A
' is the isospin crossing matrix of the ~~ problem

'1/3 1 5/3
A i' 1/3 1/2 5/6

.1/3 —1/2 1/6,

and C„' is easily deduced from (1.6). The functions

Fqq and F34 are also given by (1.7) if one defines the

a;, 's and the b; s according to

b33 = 1+m, '/2qa'(/),

a33 ——1+t/2qp(t),

b34 = (1/2qa(t) q4(t)) L-,
' t—mls' —1+mls "],

a34 ——(1/2qa(t)q4(&'))L2't —m&r' —1+(m&r' —1)'/mlr~'].

(1.13)

Only even or odd values of /' appear within the ex-
pansion (1.10) according to whether I' is even or odd.
The xx state has been labeled by 3 and the EE state by
4. Therefore, in (1.10), B33' '(t,m ') and Bq4' '(t,mxe')
are associated, respectively, with m.+s ~ n.+s and to
x.+sr —& K+K They are the partial-wave projections
in the t channel of the exchange of one particle in the s
channel.

Those Born terms are calculated according to (1.4).
The result can be written in the form

The center-of-mass mornenta q3 and q4 may be written

qa(&) = &(&
—4)"', q4(&) =-,'(t—4m'')'". (1.14)

The half-jump (ht») & of t» associated with A», can be
calculated from (1.10) by projecting on /=1, I=-', . In
the same way as in Ref. 5, we approximate the TPE
forces by keeping only the first two terms of (1.10), i.e.,
/'=0 and /'= 1.By doing so we avoid the difhculties due
to the divergence of the square diagrams considered.
In fact, the terms corresponding to /'~&2 would lead to
divergent integrals in the E/D equations.

In Ref. 5 we studied an expansion similar to (1.10) in
the mm problem; we showed that it converges on a fairly
large part of the left-hand cut.

Moreover one deduces from (1.7), (1.11), and (1.17)
that, for fixed s,

B33(t,m, ')B»4(f,mx") P& (cos8')

=0[(t—4)'], as t ~ 4

g»g (s) = (Qii) g(s) . (1.15)

We shall show that gii, &'&(s) can be calculated from

From this it follows that, in (1.10), the terms which we

neglect do not contribute much to the longest range
TPE forces, since they are very small at the beginning
of the t cut. %e believe, on physical grounds, that the
longest range forces dominate. Thus one would expect
that, in a more satisfactory theory where no divergence
would appear, those terms would in fact lead to really
small contributions. This makes it plausible that useful
results will be obtained if the divergences are removed

by discarding the terms corresponding to /'~& 2 as we do
here.

It is convenient, in order to solve the J&'//D equations
approximately, to introduce a function g»& "&(s) analytic
everywhere in the s complex plane except on the left-
hand cuts associated with A»&, its half-jump being-

given by

f 2 jrK'2 2 +

gii, &'&(s) =—
4&r 4&r s qi'(s)

cos8 d(cos8) ($—$i)
q (~')

dt'
gt' (t'—&,)(r' —r,)

dt
XF33"(t',m, ')F340'(t', mar*')+3q~(t)q4(t) cos8' — p»»(f, m, ')F,4»(&,',mz, 2) (1 16)

4 q4(&')v'&' (&'—&)

8 is the scattering angle in the s channel,

cos8= 1+(/2q&2(s) . (1.17)

In (1.16) the integration over cos8 has to be performed
after expressing cos8' and t as functions of s and coso.

The integrals over t' are convergent, since the functions

F@behave like 1n(t') as t'goes to infinity. Equation (1.16)
is obtained by writing dispersion relations for the two

values of /' separately:

For /'= 0, one has to perform a subtraction at an arbi-
trary point tj, However, since we project on /=1,
gii& "&(s) does not depend on ti.

For /'= 1, we have obtained a convergent integral by
writing a dispersion relation for the partial-wave ampli-
tude divided by the product q3(&')q4(&!). This does not in-



I'zG. 3(a). Err exchange
diagram in E+x —+ E+m.
(b) Em exchange in the
fourth order.
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(a) Fio. 4(a). En ex-
change in ~+X-+g+E.
(b) Xw exchange in the
fourth order.

A K

K g

troduce any new singularity, since the E-wave amplitude
in the 3 channel has to vanish both at the mm and at the
EE thresholds. Besides, in that way, one gets rid of the
kinematical singularities, since for 4&/ &4m'-. , the
quantity P34"(3'mx~3)/q4(1') remains real, though P34"
and g4 become complex according to (1.14) and (1.7).

We immediately see from (1.11) and (1.14) that the
product q3(t)q4(t) cos8' is a polynomial in E and t. There-
fore the singularities of g»&&'& come only from the de-
ilolnlllatoi's (if —3), so tllat flic 1'lgllt-llRnd side of (1.12)
has only the two-pion exchange cuts. Moreover, by re-
placing 1/(t' —t) by in.b(t' —t), we can verify that its
half-jump is given by (1.15) and by (1.10) restricted to
its 6rst two terms. We see then that the gii, ' (s) de-
fined by (1.16) do have the desired properties. Integrat-
ing over cos8 by means of (1.7), we get finally

f 37xe' 2 2
glii"'(~) =

43r 43r irq33(s) gi3(s)

XP34"(&' 313x*3)PII"'(3',&')+3 P33"(t' m ')P34"(t' 433x»3)P»&"(s,t') . (1.18)
4 q4(t')gt'

In this calculation, we have not taken into account the
other two-particle exchange forces. In fact the 6rst
intermediate state neglected is ~~, which has a rest mass
much larger than the irir rest mass (tl3 +m 920 MCV).
This will be discussed again in Sec. 3.

3. E~ Exchange Forces in 33+X~ 33+X

The I channel corresponds again to the Ex scattering
and the 6rst intermediate state is ir+E Lsee Fig. 3(a)j.
These forces will be taken into account in fourth order
of the coupling constants by replacing the black boxes
of Fig. 4(a) by the p and IP' exchange contributions.
This leads to the graphs of Fig. 3(b).

Writing the unitarity in the u channel gives the cor-
1cspoIldlllg absorptive pR1 t 3II„"(u,s):

21"+1
X p LBIIP""(u,il,3)

gPI 0

where t", I", and 8" are respectively the angular mo-

mentum, the total isospin and the scattering angle in

the I channel:

cos8"= 1+1/2g '(u) (1.20)

qi3(u) cos8"=~4/ —s+(413lr3—1)'/uj, (1.21)

The half-jump of Ill corresponding to the graphs 3(b)
is obtained by projecting (1.19) on /=1, I=2. As in

Subsec. A, we keep only the 6rst two terms of (1.19) and

introduce an analytic function g11„3(s).However, since
the external masses are not equal, the method of Subsec.
A has to be modi6ed. For l"=I, the partial-wave ampli-

tude vanishes at the E+ threshold, so that one's first
idea is to write a dispersion relation for the partial-wave
amplitude P'= 1 divided by qi3(u). This does not work

because, according to (1.3) and (1.20), the product
ql3(u) cos8" which would appear in gli„&3&(s) is

+pip""tl"(u iux43) j3FI (cos8"), (1.19) so that a kinematical pole at u=0 would be introduced.
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s) byToavoid t at d'fliculty we def'ine g»~

+1 (Q') 1
5t 7

~~ Lp, lz*"(u' 2)2zp )jgu' (u'-Q)(u' —»)$1

dg

d(cose) cost)(u ul)g»e ( )
2(&)

d(cose) cos
z)( t Q)gug1 $1

fpfz 7K
21( t ~ 2)pllz 21(u ~IRK* )

2( )4g 4x'

f~fz 7
11 ~ ~ 2)pll (Q,I))z& (1.22)s~ p K*"(Q 2)2K')j +

(mz' —1)'x- t—&+
Q

2 2(yzP
gll (2)(g—

2i 4w ) gP(s) gi (s)

Vz"f fz2
KP11Lp» *"(u' 222zp'])'Fll *"(s,u

2 p1

ql(u')
P11P (u, pN pgu'ql(u') Qu'

1 23)2 P K 11(u 2)2 2)P KFlip)'(u', 2)2p2 11
' ', ' K s uP 1 & 2 P Z*l()(g u~)+ ~ 2F»z ' (Q,I)2zp )

2 „ql(u )gu

e than the E+eads to forces of shorter range than t e
S 3h hzf630 MCV. In fact we shall show, in ec.1040 M V heal + ()30exchange since 2)2K+2))„

+X
are negligible.

~ ~

Rr tic18 ExchRIlg8 111 22+% ~ q

tes onl

C. Two P

tran e- article intermediate sta y+ E Among the two nonstrange-partic e2r —+E+ . moh nel the react~on is g
scc easily that ln x'

d that approximation

In the $ c ann
ed. Molcovel -one can sc

the have a shorter range
corres onding forces in )r

1 t those forces since yE hange eshalln gthe longest
1BHT. hisms which we take into accoun

E g+E dth lo
+E) The E)r excha-ge iagrthe next interme iaiate state is q'
n which we approximate y

'
P mstheir OP ermsand the 2r+E +2)+E reaction, w ic—w

e co absor tive part 212(The corresponding absorp p

2)2 p2 Pi (cost)"). (1.24)12 u, — ' —s fB»p""(u,))2p2)—+B», ' " Iu p2 F,- c()sA 12(u,s) =—0(u —sl)g

&»~&s& is de6ned byAccordlnglyq. g i2

7z*y, f.fz.j.

»(~) .
ZN

pll"' u' 2)2p2)F 12"(u', INK p2)p 12"(s,u')+
gu'

g12(2) (g) =
ql(S)q2(S)s 4)r 4)r ql( )q

PK'a
V3XF P '(Q 2)2p ) 12 u,"F "( 'rr) ")F12"(s,u') +

12
' z ' "SQ' . 1.25)10)&F 2'(u', 2)2zp2)F1212(s, u )—— F "u 2))zp 12

ql(u')
Fll (Q )8$ze

gu'

l

»4)r)2 SinCe the. !»Sp'n
u' —u) SinCe, fOr P =1

gll "'(~) do "
he right-hand s'de c .

21 b (2))z' —1)'/u .
,1 22) the s;ngiilarities of t 'g .

ld a pear according to 1 y .
h lf mp caiciilated by «-s. Moreover) '"s a j '

1 it

e laced the «rm (~z f . „the E2r exchange c«s
f (1.19) on (t=1 I=2 as '

have rep ace
)&s& is ~~alytic except o

f the 6rst two terms o
Consequently g»,

ual to the projection o((„„)by 2 ()(u' —u)» eq"

Integrating over cos8 by means . , et fin y

—,Lp "'( ' ")3'p '"(, ')du' —Fgg N,
gu'



In that relation, the kinematical singularities have been removed using the same method as in (1.16), i.e., by divid-
ing the 1"=1contribution by the product qg(N)qs(N). This introduces the factor

qg(N) jm(N) cos8"=,'P-s—+ (mx' —1)(tax' m—,')/u),

which has a pole at I=0. Consequently, in the same way as in Subsec. 8, we have replaced (esx' —1)(mx' —m, ')/I
by (mx' —1)(mx' —m, ')/I' in the definition of ggx"& (s).

D. Two-Particle Exchange in q+X -+g+X
Here also we shall not consider the exchange of two particles in the I, channel since, in the same @ray

as in s+E~g+E, the lowest intermediate state in that channel which gives a nonvanishing contribution in the
fourth order is E+E.

In the I channel, the reaction is again g+E ~g+E and the first intermediate state is x+E [Fig. 5(a)). We
approxnnate those forces by the square diagram of Fig. 5(b) which leads to the absorptive part.

(1.26)

A reasoning similar to the previous ones shows that gmx&'&(s) is

g22(2)(g) =
4x 4x ~q2'(s) q22(s) .„

qg(u')
dN' [Fg "(I',mx")]'F "(s,u')

gu'
3 dN gy(Q )+- [Fge"(u', mx")O'Fms" (s,N') . (1.27)
2 „QN' q22(e')

E. ConcIusion

%e are now ready to introduce our new approxima-
tion of the forces into the X/D equations, namely, we
shall assume that t;;(s) has the same left-hand cut as the
function (tr,),;(s) defined by

all g2

+11 VK+ 2tll (@11 +f 11 )
(1.31)

K-exchange diagram in Ex scattering is calculated from
(1.30). If Bn"' is its partial-wave projection on 1=1,
I=2, it is easy to deduce from (1.5) that

Evaluating (1.31) at the Enthreshold, on.e gets

and that its unphysical jump is given by

A last point is worth emphasizing about the question
of forces: There exists another vrK resonance called K

which has 1=0+ and I= —',.' As in Ref. 3 we do not con-
sider the K-exchange forces. That approximation can be
justified as follows:

%e define the KmE interaction by the Hamiltonian

so that g is deduced from the full width I'„according to

I'„=,'(qg(m„')/m„')(g—'/4x)

Taklllg Ig~ 10 MeV this g1ves g /4%~0. 3'~ . The

' Evidences of the existence of the a meson have been reported
by Q. Alexander, G. R. KalbReisch, D. H. Miller, and G. A. Smith,
Phys. Rev. Letters 8, 447 (3.962); D. H. Miller, G. Alexander,
0. I. Dahl, L. Jacobs, G. R. KalbQeisch, and G. A. Smith, Phys.
Letters 5, 279 (1963);S.G. Wojcicki, G. R. KalbQeisch, and M. H.
Alston, i'. 5, 283 (1962); M. Ferro-Luzzi, R. George, Y.
Qoldschmidt-Clermont, V. P. Henri, 3, Jongejans, D. Qf. Q.

since yx*'/4x 0.9, Eq. (1.31) is very small at thresh-
old. On the other hand, at high-energy Eq. (1.31) goes

K K q

(a) (b)

Fin. 5(s). E~ exchange in X+e~Z+q. (h) IC~ exchange in
the fourth order.

Leith, G. R. Lynch, F. Muller, and J. M. Perreau, Dubna Inter-
national Conference j.964 (unpublished).

The spin-pal ity of the a nmson ls not yet defolitely knovo1; how-
ever, as pointed out by Wojciki at u1., if it were 0, the decay
E*~g+~ via strong interactions would be forbidden. Ferro-
Luzzi eI u/. have observed that the ratio

E*~~+x &0,01,

which strongly favors the 0+ assignment.
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to zero. Thus the ~-exchange forces are really negligible
compared to the E'*-exchange contribution.

2. ONE-CHANNEL SOLUTION

In this section, we shall determine the Km scattering
amplitude assuming that this elastic unitarity holds
everywhere on the right-hand cut. Consequently, we
write

tii($) =S/D. (2.1)

1
N($) =

left-hand cuts

h(t&)»($')
d$'— D($'),

($'-$)
(2.2)

$—$p gi ($ ) N($ )d$
$) = 1— — . (2.3)

s s —s s —sp

According to (1.28), 1V and D satisfy the coupled integral
equations

(n K)
4 rr exp.

37

I

40

K exp.

(2)

50
m

K

One has to perform at least one subtraction in the dis-
persion relation of D($) since ImD($) does not go to
zero at infinity.

By eliminating D between (2.2) and (2.3), IV can be
shown to satisfy the integral equation

1 " qi'($')
V($) = (tl,)ii($)+— d$' — [($ —$p) (tr,) ii($')

7l s

FIG. 6. Curve (j.): one-channel results in the OPE model;
curve (2): one-channel results in our model; curve (3): two-
channel results in the QPK model; curve (4): two-channel results
in our model.

(b) The width of that resonance,

1 ImD(tttlce)
)

etta* (8 ReD/ct$], „„e~

has to be identihed with the physical width of the E*:
1V($')—($—$p) (tr,) ii($)j . (2.4)

s —s s —sp
This leads to the condition

(2.7)

According to (1.9), (1.18), (1.23), and (1.28), (tr.)» is a
polynomial in the coupling constants. If one solves (2.4)
by calculating successive approximations, one gets a
power series. Since the forces have been determined up
to fourth order, we approximate E($) by keeping only
the terms of second and fourth degrees. Those terms
appear in the first two iterations of (2.4) and we get

1 " qis($')
&($)=(t ) ( )+- d ', L($'-$o)g "'($')

s

')t'K

$(nt xe')+ 2 —ReD
-S - e my+2

0 (2.8)

Accordingly one gets two equations. Looking at our ex-
pressions for the forces one sees that, tt priori, six un-
known parameters are involved: m~', m, ', m~*',
f,frc/47r, frr'/4rr, yx~'/4sr. The self-consistent solutions
will be studied in the following case: We give their
physical values to m, ' and mz', and assume that the p
coupling satisfies

(2.9)gii&'&($')—($—$p)gii ' ($)j —,(2.5)
($'—$)($'—$p) This relation can be deduced either from exact SU3

symmetry or from Sakurai's universality. ' Though fz.
is not known experimentally, this last hypothesis
is not in disagreement with the present experimental
situation. 9

Equation (2.9) enables us to eliminate f '/4tr which
appears in g»t according to (1.18), so that only twz",
f fir/4tr, and pre*'/4sr remain to be determined. Further-

D($) will be deduced from $($) according to (2.3). By
doing so we preserve elastic unitarity on the physical
cut.

Let us look now at the self-consistency conditions.
They can be stated as follows:
(a) tii($) given by (2.1), (2.3), and (2.5) must have a
pole which corresponds to the E* intermediate sta
the direct channel, i.e.,

ReD(rNtros) =0.

te in
e J. J. Sakurai, Ann. Phys. (N.Y.) ll, 1 (1960).' Some time ago, that question was discussed by J. J.

Sakurai, Procetstings of the 1962 Internutional Conference on High
(2.6) Energy Physics ut CERN (CERN, Geneva, 1962), p. 176.
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ReD(s,mz")

PK+z + ~ z~z" (2 10)
4x

f-fz Vz" f.fz
1+ Gll + Gll Gu

4~ 4m-

PK* PK+—RP + Gnz" ' (211)

The functions M~~ are calculated from the results of Sec.
1 by adding the contribution of the second iteration
given by (2.5) and extracting the coupling-constant
factors. The G~j's are deduced from the M~~'s according
to (2.3) by letting

s—so " qg'(s') Mn(s', mze')
Gii(s, mz*') = I' ds' —— . (2.12)

7l &1 S $ S $ SP

We put the subtraction point sp at the same place as in
the OPE model by setting

so ——2(mz'+ 1)—mze'. (2.13)

This can be justified by the same qualitative arguments
as in Ref. 3, since the TPE cuts which we consider en-
close the cuts due to p and E* exchange forces.

According to (2.10) and (2.11) the self-consistency re-
lations (2.6) and (2.8) lead, for a given value of mz*',
to two equations of second degree in f fz/4n, the co-
efficients of those equations being polynomials in
faze'/4s.

For a Axed value of m~*', the functions M~g, G~~,
BGn/Bs which are involved in (2.6) and (2.8) were com-
puted on a UNIVAC 1107.Then we determined the re-
lationship between the two coupling constants by solv-
ing the two second-order equations for several values of
pz "/4s. No ambiguity appeared since each of them had
only one negative solution. The intersection of the two
curves so obtained gave the self-consistent solution.

On Fig. 6, curve (2) shows the relation between

f fz/4' and mz*' which follows from our model; for

more we must take into account only the solutions for
which f fz&0; otherwise, we get an inconsistency,
since (2.9) would lead to f '&0.

From the self-consistency conditions we shall get a
one-parameter family of solutions. We choose this
parameter to be m~*' as in the OPE approximation
studied in Ref. 3.

In order to discuss the numerical results of the model,
it is convenient to write X and D in the form of poly-
nomials in the coupling constants:

$(s,mz*')

f fz Vz" f fz
3111 + ~11 ~11

4m 4m 4x

comparison we have also reproduced on that figure the
results of the OPE model given in Ref. 3 Lcurve (1)j.
Similarly, on Fig. 7, curves (1) and (2) represent
yz*'/47r as function of mz~' in both cases.

The OPE equations discussed in Ref. 3 can be de-
termined from (2.6), (2.8), (2.10), and (2.11) by keep-
ing only the second-order terms in S and D.

All the parameters which appear in our equations can
be deduced from experiment if one assumes that (2.9)
holds

m~*' 41,
7ze'/4z 0.9,

f, '/4m= f~f—z/47r 2 to 2.5.
(2.14)

As pointed out in Ref. 3, the OPE model leads to values
of the coupling constants which are much too large.
For instance, one sees from Figs. 6 and 7 that, taking
the physical value of the E* mass, one gets, in that
model,

f.fz/4z- 12, 7-z"/4+-4.5. (2.15)

"This is also true in the OPE model; see Ref. 4.

This, clearly, rejects the fact that the OPE forces are
not strong enough to generate the E*pole in the direct
channel.

On the contrary, our model leads to much lower
values; for instance, setting mz~'=41, one has (see
Figs. 6 and 7):

f fz/47r —2.2, yz'/4n2 2 . (2..1.6)

As a matter of fact, comparing (2.16) with (2.14), we
see that one obtains a much better agreement with ex-
periment in our model. In particular the product
f fz/47r given by (2.16) is equal to the physical value
indicated in (2.14). Consequently, one is led to believe
that the left-hand-cut approximation is really improved
when our model of TPE forces is included.

It is interesting to compare the signs of the OPE
forces and of the TPE forces. Looking at (1.18), we see
that g~~& is given by a positive integral since the func-
tions F ' are positive, This shows that the ~~-exchange
forces are attractive and have, therefore, the same sign
as the p-exchange forces.

The sign of the Kx-exchange forces is not obvious,
since gu (/) contains contributions of both signs. To de-
termine that sign we have also solved the E* problem
neglecting the E~-exchange forces, i.e., keeping only
in S and D the OPE contributions and the term coming
from g~g~. It appears that the absolute magnitude of

f fz/4s is reduced when the E~-exchange forces are
discarded. "This shows that these forces are repulsive,
since the attraction due to mm and to p exchanges needs
to be larger when they are taken into account; they
have, thus, the same sign as the E*-exchange forces.

The OPE model predicts that no Em resonance should
appear with isospin ~ and spin 1, since it leads to repul-
sive forces in that channel. The situation is not so clear
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cut in our model since, projecting our TPE forces on
l= 1, I= 2, one gets contributions of both signs. How-
ever, we have determined the 3=1, I= 23 amplitude by
the same method as for /=1, I=-,', assuming that the
same forces dominate. In that problem, 222Kp2, f fK/42r,
and yKp'/42r appear as unknown parameters. We have
found that, if we take the physical value of mK" and
assume that the coupling constants are given by (2.16),
no resonance appears, since we have verified (at least
in the region where the model can be trusted, i.e., for
s& 150) that ReD does not vanish. "

A last point is worth emphasizing. Using the same
method as in Ref. 5 one can show that, in our model,
the cuts associated with the E~ intermediate states in
the s channel and in the I channel satisfy the crossing
symmetry to fourth order in the coupling constant if
one takes into account only the S and I' waves in those
channels. This was not of course true in the OPE model,
since no cut appeared in the I channel, while the cut due
to the Ex intermediate state was considered in the s
channel. Consequently, our solution appears to be more
crossing symmetric.

t=SD ', (3.1)

the matrices S and D are to be determined according to

3. TWO-CHANNEL SOLUTION

In this section, we improve the unitarity approxima-
tion by taking into account also the Eg channel assum-
ing that the jumps across the unphysical cuts are given
by (1.28). As shown by Bjorken12 the N//D method can
still be used if one introduces 2)&2 matrices.

If we write

PK+
V11 N+ —— 3E11K&

4x 4m

PK+Py PK*
QT ~ K ~ KK

4x 4x

f-fK
Kp+ ~ K2

4x 4m

PK*P~ PK*
+21 ~12 ~21

(3.5)

f fK V2
~21 + ~21

4~ 4x

79' Ve'
~22 + ~22 + ~22

4x 4m. 4m

PK* Pq
811=-ReD ———G11 &,

4~ 4x

~12 G12
PK*

G KK

4m.

f~fK 72=G Kp+ G K2

4x 47t.

which appears in (3.3) and (3.4) in the same place as in
the one-channel model [see formula (2.13)j.

It is convenient to rewrite E;, and ReD@.=E;; show-
ing the dependence upon the coupling constants:

N'p(~) =-
lef t-hand cuts

8(tr );2(S')D2;(S')
ds' P—

(s' —s)
(3.2) VK*V2

~21 G21 G21 K

4m

(3.6)

(s—s,) "q;2(s') N;, (s')ds'
D; (s) = 8,,— — (3 3)

g 8& $ s —s s sp

In the same way as in Sec. 2, X will be approximated by

122 sp

q2'(S')

, [(2'—2o)g' "'(~')
s

g21 "'(S')—(~—~o)g "'(~)], , (3 4)
s s s $0

g,,~'&(s') being given by (1.9).D(s) will be deduced from
N(s) according to (3.3). We put the subtraction point s2

"The same result holds if one takes the physical values of the
coupling constants. This is to be compared to a similar discussion
in the w71- problem (Ref. 4): assuming that the p forces dominate,
we found in Ref. 4 that the l =2, I=0 amplitude had a resonance
behavior which was tentatively identified with the f ."J.D. Bjorken, Phys. Rev. Letters, 4, 473 (1960).

f.fK V22

G21 + G21
4m. 4x

PK*
~22= 1— G22"+ G22 "+—G22""

4' 4x 4m

where E and ReD are given by the one-channel approxi
mation (2.10) and (2.11). The functions G@ are cal-
culated from the M; s according to (3.3).

Owing to the x-p mass difference, a difhculty occurs in
122. In fact, looking at the expression (1.27) of g22~", we
see that it contains F22"'(s,u') integrated over I' for
I'~&s1. According to (1.7) and (1.8), F22"' becomes
complex if

S+I'(2(222K2+212„2) .

The corresponding singularity occurs on the right-hand
cut if this inequality holds for s&$1, i.e., for

u' ~&2(212K2+212 ') —Sr~37.
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(3.7)37&mK*2& s2.

Consequently, the part of the integral corresponding to
s~(u'&37 in g22") leads to singularities on the right-hand
cut. This rejects a general property of the Kp-scattering
amplitude: The cuts due to E~ exchange and the un-
physical part of the right-hand cut overlap for s~ ~&s ~& 37,
so that, strictly speaking, (3.2) and (3.3) do not hold.
However, the integrands of (1.27) vanish for u'= st and
it appears that the undesired jump of g22('& is small com-
pared to Reg22"), since it comes only from the beginning
of the integration in (1.27) where the integrand is close
to zero. Therefore we shall neglect that cut, assuming
that (3.2) and (3.3) hold so that N will have a small
imaginary part for s& &&s ~& 37. However, since the physi-
cal value of the K* mass (ttsrc" 41) is outside that in-
terval, we shall avoid that difficulty by restricting our-
selves to mK*'&37. On the other hand, the K* does not
decay into K+tt. Thus we shall look for solutions
satisfying

2
YK*

5"

1

I

1

2
( ~~t~t~/ l~e~e~t~l~s~e~t~l ~oea
4 77 «xpo

(3)
37 40 2 45 50

(m ,)
K exp.

(2)
(4)

FIG. 7. Curve (1): one-channel results in the OPE model;
curve (2): one-channel results in our model; curve (3): two-
channel results in the OPE model; curve (4): two-channel resultsI our model.

By doing so, we also avoid the difficulties due to the
location of the OPE cuts (see Appendix of Ref. 3).

We consider now the self-consistency equations. The
first condition is that a pole should occur in the three
amplitudes considered corresponding to the E* inter-
mediate state in the s channel. This leads to

Re[detD(mrc~')] =0. (3.8)

Moreover, the residue matrix at that pole has to be
identified with the one obtained from the graphs of I ig.
8 where the E* appears in the s channel:

According to (3.9) and (3.1) this leads to the equations
(we neglect ImD, which is small compared to ReD)!

2(pic '/4s)(Re detD)'+NitRss —NisR, i=0,
(3.11)

3 (r '/4s ) (Re detD)'+ NssRi] NslRgs =0

where
(Re detD)'= [8(Re detD)/ris j, „x.~

Re detD =RggR22 —Rg2R2g.

The conditions (3.8) and (3.11) enable us to determine
the solution. Then we calculate an asymmetry param-
eter (3.12)

(s—mme'+iFmxe)
t'12

2yirey, /47r (Re detD)'

—2--
4m.

PK@Pg

VS 4~

In principle, that condition provides only two more
equations, since the residue matrix should have zero
determinant and should be symmetric. In fact our solu-
tion automatically has zero determinant but is not sym-
metric since we have not exactly solved the N/D equa-
tions (see Refs. 2 and 3).

We look for self-consistent solutions under the same
hypothesis as in the one-channel model, keeping only
four parameters: ttslc~s, f fx/47r, pire'/4s, and y„'/4s.
The method used is the same as in Refs. 2 and 3. We
satisfy exactly the conditions

FiG. 8. The E* pole
in the s channel.

gri

Qic

X fNisRu —Nii&i, }. (3.12)

g would be equal to 1 for an exactly symmetric t
matrix.

The numerical calculations have been performed using
the same method as in the one-channel approximation
(see Sec. 2). For a fixed value of mlc" satisfying (3.7),
Eqs. (3.8) and (3.10) led to three equations of second
degree in f fir/4s. No ambiguity appeared, since each
of them had only one negative solution and we got
three relations expressing f fir/4w as functions of
pre*'/4s and y„s/4s. . That system of equations has been

tqq= V jq,

$22 F22 ~

(3.10)
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2
Yq

4~
20

10

I 2
~o~o~o& ~o~o~o~o~o~o~~ 9 3 ()/ ~ / 4 p)

(2) 4~ K exp.

5037 40
(m, ~)

K exp.
ni2

K

FIG. 9. Curve (1):result of the OPK model;
curve (2): result of our model.

Since Q is close to 1, the matrix t;; is nearly symmetric
and we may believe that our approximation of the X/D
solution is reliable.

In the OPE model, setting m~*'=41 gives the follow-

ing results:

f„fir/47r = —17, piro'/4ir =0.5, y, '/4s = 18. (3.14)

The coupling constant y„'/4n. which appears in the two-

channel model is not known from experiment. How-

ever, arguments based on SU3 lead to

y '/4' =3yxo'/4s. ~2.7. (3.15)

This can be deduced either from exact SUB symmetry or
from the broken SUB symmetry proposed by Muraskin
and Glashow, " combined with Sakurai's universality'
(see Ref. 14).

'3 M. Muraskin and S. L. Glashow, Phys. Rev. 132, 482 (1963).
'48. Diu, H. R. Rubinstein, and J. L. Basdevant, Nuovo

Cimento 35, 460 (1965).

solved numerically by computing f fx/4s for several
values of the two E* coupling constants. For a given
value of y„'/4s. we then have three curves expressing
the relation between f fx/4~ and yxo'/4n. . Self-
consistency is achieved for the value of y„'/4m such that
these curves coincide at a point. For comparison we have
reproduced the calculated values of yxo'/4s and

f fir/47r on the same figure as the one-channel solution;
i.e., on Figs. 6 and 7.

On Fig. 6, curve (3) shows the relation between

f f&/4nand mxo.' given by our model; on that figure,
we have also reproduced the results of the two-channel
OPE model [curve (4)]. Similarly, in Fig. 7, curves (3)
and (4) represent piro'/4s as a function of mxo' in both
cases. Finally, the relation between 7„'/4m and m&o2 is
displayed in Fig. 9.

We see from those figures that, setting m~*' ——4i, one
gets

f fir/4m= —1.8, yx-o'/4n. = 1.9, y„'/4ir = 1.4. (3.13)

For that solution, the asymmetry parameter Q, given

by (3.12) is

Comparing (3.11) with (3.12) and (2.14), we see that,
as pointed out in Ref. 3, adding a second channel does
not improve the numerical results in the OPE model.
Effectively, f fir/4s is increased, and the new coupling
constant y„'/4s. which is introduced comes out much too
large. yxo'/4' is reduced to a more correct value; how-
ever, this is due to the fact that y„'/4s is much larger
than expected.

In the TPE model, on the contrary, y„'/4n. has the
right order of magnitude, so that the values of f fx/4s.
and yxo'/4ir are not much changed when the Kg
channel is added. This raises the possibility that they
do not depend much on the unitarity approximation, so
that the numerical results can be trusted.

As in Sec. 2, we compare the signs of the OPE and of
the TPE forces. In ir+K —+ p+E one can verify
numerically, by putting the calculated values of the
coupling constants into (1.25), that the Err forces are
attractive as are the K* ones. The same result is im-
mediately seen to hold for g+K~ g+E, since g»&'&

is given by a positive integral [see formula (1.25)].
In our calculations, we considered only the longest

range forces among the TPE contributions. The lightest
intermediate states which we neglected were EX, Eg,
and neo. They all have a rest mass of the order of 1 BeV.
Consequently, in order to get an insight into the validity
of our approximations, we study the effect of one of
those forces, hoping that the other ones will give con-
tributions of the same order. The Eg forces are easier
to consider since they can be taken into account to
fourth order in the coupling constant without introduc-
ing any new parameter. The corresponding self-
consistency problem has been solved in the same way
as the one we studied previously. It appears that the
numerical results are almost unchanged when the Eg
forces are added, so that these forces seem to be un-
important. Thus the TPE forces we neglected are likely
to give small contributions. This justifies our approxi-
mation a posteriori

The model including Eg exchange forces has an inter-
esting property. Using the same method as in Ref. 5
one can show that, in that model, the two cuts of the s
channel and of the I channel due to Ex and Lg inter-
mediate states satisfy the crossing symmetry to fourth
order if one takes into account only the S and I' waves
in those channels.

4. CONCLUSION

The method of approximately including TPE forces,
already studied in Ref. 5 for the p bootstrap, has been
shown to work also in the K*problem where the external
particles have unequal masses.

By adding fourth-order terms, one restores approxi-
mately the crossing symmetry between the cuts of the s
channel and of the I channel which correspond to the
lowest lying two-particle intermediate states.
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The TPE forces which one is led to consider in our
model have the same sign as the corresponding OPE
forces:

(A) In rr+E —+ w+E for I=-,', the forces due to p
exchange and to mm exchange both are attractive for

f fz&0, while, on the contrary, the E* forces and the
Kx forces are repulsive. In our model, as in the OPE
model, the total forces are attractive so that a pole can
appear in the s channel.

(8) In rr+E —+ w+E for I= z, the total forces are
repulsive in the two approximations and we predict
that no Ex resonance should exist with /= 1, I= 2. That
prediction is, till now, in agreement with experiment. "

(C) In rr+E ~ r)+E and in rj+E -+ rf+E, the Err
exchange forces are attractive, as are the EC* exchange
forces.

In both models, one has to assume that f f~&0 in
order to generate the E*.Though it is not yet known
from experiment, that negative sign is also predicted
by SU3 symmetry or by Sakurai's universality. '

For a given value of m~*', our model, like the OPE
model, leads to a well-dedned self-consistent solution in
the one-channel approximation as well as in the two-
channel approximation. Moreover, these solutions are
not pathological; i.e., pre*'/4rr and y„s/4s. come out posi-
tive. This was not at all obvious a priori, since our sys-
tem of equations is rather involved.

Assuming that

f,s/err = f frr/4rr, —
three coupling constants have been determined:

f f~/4rr™—1.8,
Vrr "/4w~1. 9,

y,s/4rr~1. 4.
The calculated value of f frr/4rr is in agreement with
experiment, while for pre~'/4rr and y„s/4rr, the results
have the right order of magnitude.

When TPE forces are considered, the numerical re-
sults show a much better agreement with experiment
than in the OPE model. Moreover, the inhuence of the

"This has been observed in particular, by S. G. %'ojcicki et al.
(see Ref. 7).

Eg channel becomes much more reasonable. Therefore
one really improves the approximation of the forces by
adding TPE forces in the way we studied in Ref. 5 and
in this paper. (This was also our conclusion in Ref. 5.)

As a matter of fact, as pointed out previously, ' the
bootstrap mechanism is by no means connected with
the OPE approximation. On the one hand, one uses self-
consistency requirements which have to hold anyway
since they express crossing symmetry properties; on
the other hand, one introduces a very simplified dy-
namical model to express those conditions. We have
shown that, by improving this dynamical model, one
really gets better answers from the self-consistency
equations. On the other hand, since the qualitative
features of the OPE model have been shown to be main-
tained when TPE forces are added, we may believe that
they do not depend on the model, so that they have some
deep connection with the self-consistency of the exact
5 matrix. If that result holds in general, we will under-
stand why the bootstrap theory in its simplified version,
as it has been developed till now, has been qualitatively
successful despite the failure of the OPE approximation
on which it is based. "

Ãote added ie proof Since .this article was submitted
for publication, the author has studied the generation
of the p in a two-channel xx and EEproblem, including
xw and Ex forces, by the same method. The results ob-
tained, which will be described in a forthcoming paper,
also tend to show the reliability of our approximation
scheme.
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"The qualitative success of the OPE bootstrap model may not
be complete, since some evidences of a E+E+ resonance have been
reported LM. Ferro-Luzzi, R. George, Y. Goldsnudt-Clerrnont,
V. P. Henri, 3. Jongejans, D. W. G. Leith, G. R. Lynch, F.
Muller, and J. M. Perreau, Dubna International Conference,
1964 (unpublished) g. As we pointed out in Ref. 4 with B.Diu and
H. R. Rubinstein, the OPE bootstrap model predicts that no EE
resonance should exist with I=1 since all the OPE forces are re-
pulsive in that channel. I am indebted to Dr. H. R. Rubinstein
who pointed out this discrepancy to me.


