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Previous calculations of the K* parameters by Diu, Gervais, and Rubinstein, based on the approximation
of Zachariasen and Zemach, are improved by taking into account two-particle exchange forces using a
method already proposed by the author for the p bootstrap. The forces due to K and wr exchange are added
to the p and K* forces considered by Diu, Gervais, and Rubinstein. Self-consistent solutions are obtained
both in the one-channel problem (K scattering with elastic unitarity) and in a two-channel proble m in-
volving the K and Kn states. In contrast to the one-particle exchange forces, the forces obtained are r eally
strong enough to generate the K*. Consequently, the numerical results show a much better agreement with
experiment. Assuming that Sakurai’s universality holds for the p coupling, a one-parameter family of solu-
tions is obtained. The coupling constants (K*Kr), (K*K7), and (orr) are calculated for several values of
mx*?. The first two have the right order of magnitude while the third one comes out in agreement with ex-
periment. The qualitative features of the one-particle exchange model are shown to be maintained when
two-particle exchange forces are added. This raises the possibility that they are not linked to the approxi-
mation of the forces. Thus one might understand why they are in agreement with experiment even though
the one-particle exchange forces do not really give a good approximation of the unphysical jumps considered
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in the problem.

INTRODUCTION

ECENTLY, the equations obtained by expressing
self-consistency conditions in very simplified
models have been shown to possess many qualitative
features in agreement with experiment, particularly
when combined with SUs symmetry.—*

However, attempts to derive numerical results from
those models have mot yet been very successful. In
particular, Diu, Rubinstein, and I tried to calculate the
K* vector meson parameters from one-particle ex-
change (OPE) forces.? p and K* forces were taken into
account. A one-channel model was considered where
the K* pole was generated in the K= scattering ampli-
tude satisfying elastic unitarity. In a two-channel
model, we improved the unitarity approximation by
adding the K7 channel to the K= one. We used a method
already proposed by Zachariasen and Zemach for the
p bootstrap.? The conclusion of that paper was that no
quantitative agreement could be reached, though the
qualitative features of the model appeared to be very
interesting. Moreover, this seems to be also true for
other mesonic amplitudes.*

1 See, for instance: R. H. Capps, Phys. Rev. Letters 10, 312
(1963) ; Nuovo Cimento 30, 341 (1963); 27, 1268 (1963); Phys.
Rev. 131, 1307 (1963); 134, B461 (1964); H. M. Chan, P. C. De
Celles, and J. E. Paton, Phys. Rev. Letters 11, 521 (1963);
R. E. Cutkosky, Phys. Rev. 131, 1888 (1963); Ann. Phys. (N. Y.)
23, 415 (1963); R. E. Cutkosky, J. Kalckar, and P. Tarjanne,
Phys. Letters 1, 93 (1962); R. E. Cutkosky and M. Leon (un-
published) ; R. E. Cutkosky and K. Y. Lin (unpublished); A. W.
Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963); Nuovo
Cimento 31, 1324 (1964); R. E. Cutkosky, M. Leon, and K. Y.
Lin (unpublished) ; B. Diu, H. R. Rubinstein, and J. L. Basdevant,
Preprint. Orsay Report No. Th. 62 1964 (unpublished); R. E.
Cutkosky and P. Tarjanne, Phys. Rev. 133, B1292 (1964).

2 F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962).

3B. Diu, J. L. Gervais, and H. R. Rubinstein, Nuovo Cimento
31, 27 (1964).

4B. Diu, J. L. Gervais, and H. R. Rubinstein, Nuovo Cimento
31, 341 (1964).

As we pointed out in Ref. 5, that failure casts a doubt
on the validity of the whole approximation scheme,
since one is led to believe that the forces considered are
not sufficient to generate bound states or resonances.
In particular, the qualitative success of the bootstrap
in its simplified version, as it has been developed till
now, becomes questionable since, clearly, the terms
which one neglects do in fact give important contribu-
tions. Consequently one is faced with the problem of im-
proving the dynamical models which are used to express
the self-consistency requirements.

In Ref. 5 we studied that question in =7 scattering
with elastic unitarity. We tried to improve the left-
hand cut approximation by adding the ww-exchange
forces to the p forces on which Refs. 2 and 4 were based.
It seems natural to consider the forces due to the ex-
change of more than one particle since the deficiency of
the OPE model shows that they are important. The
difficulty in doing this is that one gets infinite con-
tributions, the corresponding diagrams being divergent.
However, the absorptive parts of the fourth-order
square diagrams are finite. In Ref. 5 we used that fact
to get finite answers from a model including rr-exchange
forces by considering only the exchange of two pions
with an angular momentum equal to O or to 1 in the
crossed channels. Results were encouraging; in par-
ticular the 7w forces considered are attractive for /=1,
I=1 in the direct channel so that they facilitate the
generation of the p. In fact the forces considered in Ref.
5 seemed to be really strong enough to produce a
resonance.

Our aim in this work is to see whether the K* genera-
tion studied in Ref. 3 is improved when two-particle
exchange (TPE) forces are added approximately in the

8 J. L. Gervais, Nuovo Cimento 34, 1347 (1964).
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same way as in Ref. 5. Among the TPE contributions
we take into account only the K forces and the =w
forces. In fact it will appear that, for the other TPE
forces, the rest mass of the two particles which are ex-
changed is at least of the order of 1 BeV, and we shall
show that those forces are likely to give small contribu-
tions by considering explicitly the influence of the K79
exchange.

Section 1 is devoted to the calculation of the TPE
forces. The method used is the same as in Ref. 5. How-
ever, it has been modified because the mass differences
among the external particles introduce some new
difficulties. In that section we also try to justify the
approximation made to include the TPE forces using a
qualitative argument based on the nearby singularity
approximation.

In Sec. 2, the K* generation with TPE forces is
studied in K scattering with elastic unitarity. Numeri-
cal results are discussed. Similarly, the two-channel
model including TPE forces is studied in Sec. 3. Finally,
the main results of the TPE model are presented in the
conclusion.

The qualitative features of our model are studied
very carefully in this paper. In fact it is very important
to see whether the qualitative features of the OPE
models are preserved when TPE forces are considered.
Effectively, if this is true, the qualitative results
of the OPE approximation will appear to be model-
independent. Then we will understand why they seem
to agree with experiment despite the failure of the
OPE forces on which they are based. In the conclusion
it will appear that this is indeed the case in our problem
and that one really improves the numerical results by
including TPE forces.

1. CALCULATION OF THE FORCES

As in Ref. 3, we shall study the K* generation both
with elastic unitarity in the K= scattering amplitude
(one-channel problem) and with the unitarity improved
by adding the K7 channel to the Kw one (two-channel
problem).

We then consider the reactions

7(p0)+K(p2) > w(ps)+K(ps),
m(p1)+K(p2) = n(ps)+K(ps),
1(p1)+ K (p2) — m(ps)+K(ps),
1(p1)+K(p2) = n(ps)+K(ps),

where p1, P, ps, ps are the four-momenta of the reacting
particles. The usual Mandelstam variables are

s=—(p1tp2)?, t=—(prtps)?, u=—(prtpsd)%

and the 7 matrix is defined, in the s channel, according
to

(ps,pa| Sii| pr,pa)=8:i(ps, pa| p1,p2)

+(2i/ (wiwawsws) VD) os(prt+ pat pstp0)Tii,  (1.1)
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the K and the K# channels being labeled by subscripts
1 and 2, respectively.

We shall use a matrix V/D method to calculate the
partial-wave amplitude #;;(s) corresponding to the K*
quantum numbers in the s channel (=1, I=%). It is
deduced from 7'; in such a way that the two-channel
unitarity takes the form®:

Imtii=>"1(g3/A/5)tarti;*O(s—s1)

where @(x) is the unit step function, and s, and ¢
are, respectively, the threshold and the center-of-mass
momentum of channel %:

(1.2)

s1=(mp+1)2~21.3, so=(myx+m,)?~57.5,
g1*(s) = (1/4s)[s— (mr+1)*][s— (mr—1)],
)= (1/45)Cs— (mck-m) Tl — (g —mp)?].

In (1.3), as in the following, we take m,2 to be 1. The
properties of the OPE diagrams have been discussed in
Ref. 3. In 7+ K — 7+ K, the p and the K* can both be
exchanged. For /=1, I=% in the s channel, the K* force
is repulsive and no self-generation is possible. In that
channel, the sign of the p forces depends upon the rela-
tive sign of the p-rm and p-KK coupling constants. In
the OPE model, one is led to assume that the p forces
are attractive (frfx<0) and stronger than the K*
forces. In 74K — 94K and in 94K — 94K, only
the K* exchange is allowed. The corresponding diagrams
are shown in Fig. 1.

The following Hamiltonian indicates our coupling-
constant definition:

Je={frmX dym+ifel (9,K")5eK—K'(3%)3.K J}ou
-f-'yK*[:iK,.*Tc(Ka,‘ﬂ—ﬂa,‘K)-i-h.C.]
+7.[iK,*(Kdm—n9,K)+h.c.].

(1.3)

(1.4)

We calculate the graphs of Fig. 1, and project them
on the angular momentum / and on the isospin 7 in the

. 84;;is deduced from T%; by projecting on the partial wave l=1,
I=4% and dividing the result by g;(s)¢;(s). This division does not
introduce any new singularity, since the partial-wave projection
of T; vanishes at thresholds; moreover, by performing it, one
avoids the kinematical singularities which otherwise would appear
in 22 and f5;, and one obtains convergent integrals into the N/D
equations.
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s channel, writing the result in the convenient form:

By (symp?) = — (frfr/4m)Csll 'F 1P (s,m,?)

BnK*”(S,mK*Z) = (__ 1)l+1(’)’K*2/47l')
X3Cw”F11K*“(S,'mK*2) 5

Biol(s,mrs?) = (— 1) (y gwy,/4)
X\/EF12“(S,MK*2) )

Baol(s,mpx?) = (— 1) (v,2/4m) Foot (s,m k%) .

(1.5)

(In By, a superscript p or K* indicates what particle is
exchanged.) In (1.5) CTI' represents the isospin crossing
matrix elements of the K scattering, the subscripts
being such that, for instance, C,!I" describes the cross-
ing from the ¢ channel to the s channel. Explicitly,

(1.6)

Since the 7 is an isoscalar particle, only one value of the
isospin is allowed in 7+ K — 9+K and 9+K — 9+K;
therefore, Bys and Bss have no isospin indices.

We want to introduce the TPE forces in the same way
as in Ref. 5, so we need the functions F¥(x,y) which
appear in (1.5) for /I’ equal to zero or to one. They can
be written in the form

i d¢j+v
Fi#(x,y) =1 / Py(v)——dv,

-1 GV
1.7
1
Fio () =— / Pi()—ads,
4/, i
where
y
bur=1+ ’
2q:*(x)
1 B (mK2— 1)2—
a1P=1+ xX— ’
2¢:%(x)L x
(1.8)
r (mg*—1)*]
buX =14 Y=,
2¢:%(x)L x
1 I" (mKQ-— 1)2'
anf'=1 X— )
202(x)L y A
=———| ¢*(¥)+q*(x)
2411(96)92(90)[

1
—4—(2"11{2—%12* 1)2+y] )
X
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F1e. 2(a). Two-pion
exchange in 7+K—
7+K. (b) Two-pion ex-
change in the fourth
order. T p

K K
ot tastt
=—— :3(%)+q22(x)+x
2q1(x)ga(x)L. 1 :
(my2—1)? (sz—l)(sz_mﬂz)]
4x y ’
~ (mg®—m,?)?
bos=1+ y————————],
2¢2%(x)L %
1 (mg*—m,)?
=1+ x——————:l.
2g22(x)L y

In the OPE model, we introduce the functions

1
gu®(s)= )[311”1%(3;7”02)‘*'B11K*1%(5,m1<*2):|,

q1*(s

g1V () =gau®(s)= Bio!(s,mi?) (1.9)

q1(5)ga(s)
822V (5) = (1/92*(5)) Bas'(s,mx+?) ,

and assume that the unphysical jump of ¢;(s) is equal
to the jump of g;V(s):

26lij(s) = 26g,,(s) .

As explained in the introduction, we add to the OPE
forces given by (1.9) the TPE forces due to the ex-
change of the lightest two-particle states.

A. Two-Pion Exchange in =4+ K — x+K

The ¢ channel corresponds to the reaction w-4r—
K+K and the first intermediate state is 7= [Fig. 2(a)].
The diagram which provides the forces involves the 7
scattering and again the r+r — K-+K reaction. In the
same way as in Ref. 5, we take those forces into account
in fourth order by replacing the black boxes of Fig. 2(a)
by the one-particle exchange terms. Thus, in the graph
2(a), the mr scattering will be approximated by the p
exchange amplitude, and the 7 — KK reaction by the
K* exchange contribution. This leads to the graphs of
Fig. 2(b).
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In order to compute the corresponding jump of #;
one has to evaluate the absorptive part Ay of the
graphs 2(b) for :>4. This can be done by writing the
unitarity in the ¢ channel. According to (1.1) one gets

—4\1/2 w 2041
Alull(l,s):(—t——) @(l—4)z

=0 4r

X B3V (t,;m,2) Bad' ' (¢, mg?) Py (cosf’).  (1.10)

In this formula, ! and I’ are, respectively, the angular
momentum and the total isospin in the ¢ channel; ¢, the
scattering angle in that channel, is defined by

cost’=2/((t—4)(t—Amg®))2(3t—mx?—1+s). (1.11)

Only even or odd values of ! appear within the ex-
pansion (1.10) according to whether I’ is even or odd.
The = state has been labeled by 3 and the KK state by
4. Therefore, in (1.10), Bss'?'(t,m,?) and B!’V (t,mx+?)
are associated, respectively, with m+r — w+= and to
rm+m— K+K. They are the partial-wave projections
in the ¢ channel of the exchange of one particle in the s
channel. ,

Those Born terms are calculated according to (1.4).
The result can be written in the form

By T'(t,;m,2) = (f2/4m) 24T FysV(t,m,?) ,
BT (tym i) = (vr#/4m)3C T F 3 (t,mics?) .

ATl is the isospin crossing matrix of the == problem

(1.12)

13 1 5/3
A”’=[l/3 1/2 —-5/6],
1/3 —1/2  1/6

and Ci,I'T is easily deduced from (1.6). The functions
Fg3 and Fy, are also given by (1.7) if one defines the
a;;’s and the b;;’s according to
bss=14m,*/2¢5%(1)

a33= 1+¢/2932(15) )
bsa=(1/2¢5(t)qa(O)) 51— mx>— 1+mxs*],
ass=(1/2g5()qs()) [t —mx>— 14 (mx—1)*/mg+*].

(1.13)

[ vest 2
g (s)=—

6 is the scattering angle in the s channel,
cosf=1+1/2¢:%(s) . (1.17)

In (1.16) the integration over cosf has to be performed
after expressing cosf’ and ¢ as functions of s and cosf.
The integrals over ¢ are convergent, since the functions
F;behave like In(#') as # goes to infinity. Equation (1.16)
is obtained by writing dispersion relations for the two
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The center-of-mass momenta ¢; and ¢, may be written

gs()=30—H?, quO)=3(—4mg)'?. (1.14)
The half-jump (8¢11): of ¢11 associated with A1, can be
calculated from (1.10) by projecting on /=1, I=%. In
the same way as in Ref. 5, we approximate the TPE
forces by keeping only the first two terms of (1.10), i.e.,
I'=0and /'=1. By doing so we avoid the difficulties due
to the divergence of the square diagrams considered.
In fact, the terms corresponding to /2> 2 would lead to
divergent integrals in the NV/D equations.

In Ref. 5 we studied an expansion similar to (1.10) in
the =r problem; we showed that it converges on a fairly
large part of the left-hand cut.

Moreover one deduces from (1.7), (1.11), and (1.17)
that, for fixed s,

Bss(t,mp2)B34(If,mK*2)Py(COSO,)

=0[(t—4)"], as t—4.
From this it follows that, in (1.10), the terms which we
neglect do not contribute much to the longest range
TPE forces, since they are very small at the beginning
of the ¢ cut. We believe, on physical grounds, that the
longest range forces dominate. Thus one would expect
that, in a more satisfactory theory where no divergence
would appear, those terms would in fact lead to really
small contributions. This makes it plausible that useful
results will be obtained if the divergences are removed
by discarding the terms corresponding to > 2 as we do
here.

It is convenient, in order to solve the N/D equations
approximately, to introduce a function g;1,(®(s) analytic
everywhere in the s complex plane except on the left-
hand cuts associated with Ay, its half-jump being
given by

5g1u(2)(8)=(5t11)t(8). (115)

We shall show that g11:®(s) can be calculated from

gs(t') 1

+1 0
/ cosf d(cosf) l(l——tl) / at’
47 4w 1rq12(s) —~1 4

X Fss (1 1,2 Fa (¢ e+ 3q5()qa(0) cost! /
4

Vi =) —t)

’

(WY (E—1)

Fas 1 (' ym,2) F 3 1 ( ymg?) (1.16)

values of // separately:

For I’=0, one has to perform a subtraction at an arbi-
trary point #. However, since we project on I=1,
£11:2(s) does not depend on #;.

For =1, we have obtained a convergent integral by
writing a dispersion relation for the partial-wave ampli-
tude divided by the product ¢3(¢)¢4(¢). This does not in-



CALCULATION OF K* VECTOR MESON PARAMETERS

(a)
L%
F16. 3(a). Kr exchange 7__P K 7 K K
diagram in K+nr — K+. .
(b) K= exchange in the 7 K K n
fourth order.
K K* # K p =
7 K s K* K
I Sg K l\g g Fd
K P m K K* w
(r)

troduce any new singularity, since the P-wave amplitude
in the ¢ channel has to vanish both at the == and at the
KK thresholds. Besides, in that way, one gets rid of the
kinematical singularities, since for 4<#<4mg?, the
quantity Fg,''(¢'mg+?)/qs(!’) remains real, though Fa,!!
and ¢4 become complex according to (1.14) and (1.7).

© g(t)
e
qi’(s) Jo At

g1 (s)=—

f,,-2 7K*2 2 { 2
dr 4r 7qi3(s)

XF34°1(t’,mK*2)F11"’°(S,l')+3f
4

In this calculation, we have not taken into account the
other two-particle exchange forces. In fact the first
intermediate state neglected is 7w, which has a rest mass
much larger than the 7r rest mass (m,+m.~920 MeV).
This will be discussed again in Sec. 3.

B. K= Exchange Forces in =K — =+ K

The % channel corresponds again to the K= scattering
and the first intermediate state is 74K [see Fig. 3(a)].
These forces will be taken into account in fourth order
of the coupling constants by replacing the black boxes
of Fig. 4(a) by the p and K™ exchange contributions.
This leads to the graphs of Fig. 3(b).

Writing the unitarity in the # channel gives the cor-
responding absorptive part 41,7 (%,5):

A (u,s) =g}\%®(u—sl)

o 2041
X 2

=0 A4g

+ BuK*V'I”(u,mx*2)]2pyl(COSG”) ,

[Bu?" T (u,m,?)

(1.19)

Fy0(t'ym,?)

Fic. 4(a). Kr ex-
change in 7+K — 9+ K.
(b) Kr exchange in the
fourth order.

We immediately see from (1.11) and (1.14) that the
product ¢3(£)g4(?) cosf’ is a polynomial in s and ¢. There-
fore the singularities of g11,” come only from the de-
nominators (/’—1), so that the right-hand side of (1.12)
has only the two-pion exchange cuts. Moreover, by re-
placing 1/(¥—¢) by iwé(t'—1), we can verify that its
half-jump is given by (1.15) and by (1.10) restricted to
its first two terms. We see then that the g11:®(s) de-
fined by (1.16) do have the desired properties. Integrat-
ing over cosf by means of (1.7), we get finally

7

Fggu(t’,m,,2)F34“(t’,mK*“’)Fu"”(s,t') .

1.18
g 19

where [, I, and 0" are respectively the angular mo-
mentum, the total isospin and the scattering angle in
the # channel:

cosf”’ =141/2g:%(u) . (1.20)

The half-jump of /1; corresponding to the graphs 3(b)
is obtained by projecting (1.19) on /=1, I=1. As in
Subsec. A, we keep only the first two terms of (1.19) and
introduce an analytic function g11,%(s). However, since
the external masses are not equal, the method of Subsec.
A has to be modified. For I"/=1, the partial-wave ampli-
tude vanishes at the K= threshold, so that one’s first
idea is to write a dispersion relation for the partial-wave
amplitude /=1 divided by ¢:2(#). This does not work
because, according to (1.3) and (1.20), the product
¢1%(u) cos8”” which would appear in gu1,@(s) is

q12(w) cost’ =4[i—s+(mx2—1)%/u], (1.21)

so that a kinematical pole at #=0 would be introduced.



B 1462 J. L. GERVAIS

To avoid that difficulty, we define g11.?(s) by

g1 (s)=

+1 © 91(’”,) 1 ,-YK*2 2
d(cos8) cosb(u—uy) | du’ {5( ) [F X" mg?) J?
2wqi*(s) J 1 a AU (W —u)( —u) m

fver YK*

+1

® du’
F11"°1(u',mp2)FnK*°1(“’:mK*2)} + d(cosb) cosd 3/

2mqi®(s) J s o @)=/

1 (mx?—1)* Yi+®
X;l:lf—s-{-—l’—:HS( : )[FnK*”(u mK*2)]2+2f—£1f—If—7—I—<—F11"ll(u m,,‘“’)FnK “(u mK*) . (122)

u 74 T 4r

47r T

g11.® (s) does not contain any term in (frfx/4n)? since the isospin factor vanishes.

In (1.22) the singularities of the right-hand side come only from the denominators (#'—u) since, for I’=1, we
have replaced the term (mx*—1)%/u which would appear according to (1.21) by (mx®—1)2/4'.

Consequently, gi1.®(s) is analytic except on the K= exchange cuts. Moreover, its half-jump, calculated by re-
placing 1/(«#'—u) by iwd(s'—u), is equal to the projection of the first two terms of (1.19) on I=1, I=1, as it
should be.

Integrating over cosf by means of (1.7), we get finally

) ol v

[FnK*ol(u',mK*2)]2FnK* 1°(s,u')

puio~(

3 du v+® frfx 2 (')
__|__/ ———[F11K*u(u',mx*2])2F11K*11(S,u’)]+ _I / anol(u mp2)
o ((uN/U dr  Ar 7 lga(s)

® ’

o VA

In the # channel, the first intermediate state which we neglect is K7. It leads to forces of shorter range than the K
exchange since mg-+m,~1040 MeV while mx-+m,~630 MeV. In fact we shall show, in Sec. 3 that the K7 forces
are negligible.

3
Frak*0l (o o ges®) FyyK*10(s, u’)+

Fn"”(u',mp2)FnK*”(%’,mK*2)F11K*"(5,”') . (1.23)

C. Two-Particle Exchange in =+K —9+K

In the ¢ channel the reaction is n+r — K+K. Among the two nonstrange-particle intermediate states only
w+n, 7+p, and w-+p are allowed. Moreover one can see easily that in 7+ — w7 and m+5 — 74p, there exist
no OPE terms. Thus the correspondlng forces in w-+K — 5+ K vanish in fourth order; and in that approximation
the longest TPE forces are given by the KK exchange. We shall neglect those forces since they have a shorter range
than the K« and m forces which we take into account (2mx~1 BeV). This will be discussed again in Sec. 3.

In the # channel, the reaction is also 74K — 4K and the lowest intermediate state is 74K (as in Subsec. B,
the next intermediate state is 9+ K). The Kr-exchange diagram is shown on Fig. 4(a). It involves the K scattering
and the 7+K — #+K reaction, which we approximate by their OPE terms [see Fig. 4(b)].

The corresponding absorptive part 412(,s) is

q1() 21"+1
Aas(u, 5)"7@(” s _Z*[Bu"""”(% s1,2)+ BuE V2 (u,mgs?) | Bre® (w,m+®) Py (cosf”’) . (1.24)

1

Accordingly, gi2® (s) is defined by
_—'1 YE*Yy I 1 ® q( 3 ® du,
£ ] fK\/Sl du’ e F11°° (' 1m0 ,2) F 1291 (' ym ex2) F 1210 (5,0 )+
q1(s)ge(s) 4m 4r lg()ge(s) S AW o qz(u W
1 yeeyy 7K*2vgl 1 / i (')
q1(s)ga(s) dm Ar 1gu(s)ga(s) '

omet)Fosty— [
XF1201 u ,mK*2 F12 0(s,u _—/ ——
’ o QU )N/u

812(2)(s)=

XFllpl1(u,ymP2)F1211(u,7mK*2)F1211(3)”’,)} + FllK*Ol(u/7mK*2)

F IK*‘l(u’,mK*Q)Fu“(u’,mK*z)-Flgu(s,u')} . (125)
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In that relation, the kinematical singularities have been removed using the same method as in (1.16), i.e., by divid-
ing the /=1 contribution by the product ¢;(#)ge(#). This introduces the factor

q1(u)ga(u) cost” =

ilt—s+ (mx*—1) (mg*—ms)/u],

which has a pole at #=0. Consequently, in the same way as in Subsec. B, we have replaced (mg?—1) (mg>—m,?)/u

by (mg*—1)(mg?—m,?)/4' in the definition of g12® (s).

D. Two-Particle Exchange inn+K —n+K

Here also we shall not consider the exchange of two particles in the ¢ channel since, in the same way
as in 7+ K — n+K, the lowest intermediate state in that channel which gives a nonvanishing contribution in the

fourth order is K+ K.

In the # channel, the reaction is again n+K — 9+K and the first intermediate state is 7+ XK [Fig. 5(a)]. We
approximate those forces by the square diagram of Fig. 5(b) which leads to the absorptive part.

Azz(u S) —2\5—2(’9(% 51)2

1

"

[ B1a" (uymgs2) PPy (cosd”’). (1.26)

A reasoning similar to the previous ones shows that gee® (s) is

-1 © 4
/’ i 41( )
@2 Sy AU

Y2y 3 l

gn?()=—"—
4 4m w3(s)

E. Conclusion

We are now ready to introduce our new approxima-
tion of the forces into the N/D equations, namely, we
shall assume that #;;(s) has the same left-hand cut as the
function (¢1):;(s) defined by

t)n=gu®P(s)+211:P(s)+211.?(s),

(t2)12=(tL)21= 12V (s) +£12®(s) , (1.28)
(tL)22=gzz(l)(5)+g22<2)(s) s
and that its unphysical jump is given by
26t;5=26(t1)s;, fori, j=1,2. (1.29)

A last point is worth emphasizing about the question
of forces: There exists another 7K resonance called «
which has /=0 and I=1.7 As in Ref. 3 we do not con-
sider the k-exchange forces. That approximation can be
justified as follows:

We define the kK interaction by the Hamiltonian

Je=gx'eKr+h.c. (1.30)
so that g is deduced from the full width I'; according to

I'=3(q1(m.2)/m2)(g?/4r) .

Taking” T,~10 MeV this gives g?>/4w~0.3m,2 The

7 Evidences of the existence of the x meson have been reported
by G. Alexander, G. R. Kalbfleisch, D. H. Miller, and G. A. Smith,
Phys. Rev. Letters 8, 447 (1962) D. H. Mxller G. Alexander,
0. L. Dahl, L. Jacobs, G. R. Kalbﬂelsch and G. A. Smith, Phys.
Letters 5, 279 (1963) ; S. G. Wojcicki, G. R. Kalbfleisch, and M. H.
Alston, sbid. 5, 283 (1962) M. Ferro-Luzzi, R. George Y.
Goldschmidt- C]ermont V. P. Henri, B. Jonge;ans, D. W. G.

[F 12" (ot mcs?) J2F 221(s,00")

3 r° du' qu)
o VU g (W)

[F 1o (2 ymgs?) 12F o1 1(s,0t”) (1.27)

k-exchange diagram in K= scattering is calculated from
(1.30). If By*!! is its partial-wave projection on /=1,
I=1%, it is easy to deduce from (1.5) that

Byt g? 1
BuK*”_—"}’K*2 ZQ12(011K*+IJ11K*) .
Evaluating (1.31) at the K= threshold, one gets
Byt 1 g2 1

BuK 11

(1.31)

50 'YK* mﬂ»

since yg+?/4r~0.9, Eq. (1.31) is very small at thresh-
old. On the other hand, at high-energy Eq. (1.31) goes

K K g
(b)

Fic. 5(a). Kr exchange in K-+5— K+, (b) K= exchange in
the fourth order.

Leith, G. R. Lynch, F. Muller, and J. M. Perreau, Dubna Inter-
national Conference 1964 (unpublished).

The spin-parity of the « meson is not yet definitely known ; how-
ever, as pointed out by Wojciki et al., if it were 0%, the decay
K* — g+ via strong interactions would be forbidden. Ferro-
Luzzi et al. have observed that the ratio

K*— k+n
K*— K4
which strongly favors the 0+ assignment.

<0.01,



B 1464 J.

to zero. Thus the k-exchange forces are really negligible
compared to the K*-exchange contribution.

2. ONE-CHANNEL SOLUTION

In this section, we shall determine the K= scattering
amplitude assuming that this elastic unitarity holds
everywhere on the right-hand cut. Consequently, we
write

tu(s)=N/D. (2.1)
According to (1.28), N and D satisfy the coupled integral
equations

1 8(tL)u(s)
N(s)=— ds'—————D(s’ , 2.2
(S) ™ /;eft-hand cuts (3,_5) (S ) ( )
D(s)= l_s— © gi3(s’)  N(s')ds 23

7w Joy A (5—9)(s'—s0)

One has to perform at least one subtraction in the dis-
persion relation of D(s) since ImD(s) does not go to
zero at infinity.

By eliminating D between (2.2) and (2.3), N can be
shown to satisfy the integral equation

()
N(s)= UQHG%F./ 12 =) ()

—u—na)@n—fﬁﬁ—— (2.4)
0 L)11 (5’_5)(3’._80) . .

According to (1.9), (1.18), (1.23), and (1.28), ({z)n1is a
polynomial in the coupling constants. If one solves (2.4)
by calculating successive approximations, one gets a
power series. Since the forces have been determined up
to fourth order, we approximate N(s) by keeping only
the terms of second and fourth degrees. Those terms
appear in the first two iterations of (2.4) and we get

N(s)=(tL)uls)+- / ds" [(S —$0)gu™®(s’)

(")
no—&

D(s) will be deduced from N(s) according to (2.3). By
doing so we preserve elastic unitarity on the physical
cut.

Let us look now at the self-consistency conditions.
They can be stated as follows:
(a) tu(s) given by (2.1), (2.3), and (2.5) must have a
pole which corresponds to the K* intermediate state in
the direct channel, i.e.,

—(s—s0)gu® (S)] (2.5)

ReD(mK*z) =0. (26)

L. GERVAIS

= ( i fK)
4 \
\\
~\,
~.
N
.
S~
15 \\\
~~
- =~ (3)
\\-.~ -
1o Tee——— (1
5
Er exp.
37 45 50
( 2 2
K*)exp g

F1e. 6. Curve (1): one-channel results in the OPE model;
curve (2): one-channel results in our model; curve (3): two-
channel results in the OPE model; curve (4): two-channel results
in our model.

(b) The width of that resonance,
1 ImD(mg=)
MK * [6 ReD/as:l3=mk*2 ’

has to be identified with the physical width of the K*:

Texp=(2q1*(mxs?) /mxs?) (yx+?/4r) . (2.7)
This leads to the condition
'YK*2 6
47 Lo, smmpx?

Accordingly one gets two equations. Looking at our ex-
pressions for the forces one sees that, a priori, six un-
known parameters are involved: mg?, m,?, mgs?,
frfr/4m, fr?/4n, vx+*/4w. The self-consistent solutions
will be studied in the following case: We give their
physical values to m,? and mg?, and assume that the p
coupling satisfies

fo¥/dr=— fofx/4m. (2.9)

This relation can be deduced either from exact SU;
symmetry or from Sakurai’s universality.® Though fx
is not known experimentally, this last hypothesis
is not in disagreement with the present experimental
situation.?

Equation (2.9) enables us to eliminate f,2/4w which
appears in gi1; according to (1.18), so that only mgs?,
frfx/4m, and yg»?/4m remain to be determined. Further-

8 J. J. Sakurai, Ann. Phys. (N.Y.) 11, 1 (1960).

?Some time ago, that question was discussed by J. J.
Sakurai, Proceedings of the 1962 International Conference on High-
Energy Physics at CERN (CERN, Geneva, 1962), p. 176.
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more we must take into account only the solutions for
which frfx<0; otherwise, we get an inconsistency,
since (2.9) would lead to f,2<0.

From the self-consistency conditions we shall get a
one-parameter family of solutions. We choose this
parameter to be mg+? as in the OPE approximation
studied in Ref. 3.

In order to discuss the numerical results of the model,
it is convenient to write NV and D in the form of poly-
nomials in the coupling constants:

N(s,mKJ)
fer 'YK"‘2 fwa
=— [Mu"-l- My PE — Mu""]
47 47 4
‘YK*2 7K*2 * gk
+—[—M11K*+ M KK :} , (2.10)
4 T
ReD(s,mg+?)
f"ffK ’YK*2 fwa
= 1+—‘——|:Gu”+ G — Gn"":l
4 T T
Y&+ YEs? .
- [—GuK*-I-——GuK*K ] . (211)
47 4

The functions My, are calculated from the results of Sec.
1 by adding the contribution of the second iteration
given by (2.5) and extracting the coupling-constant
factors. The Gyy’s are deduced from the M1’s according
to (2.3) by letting

S—38o
G11(S,mK*2) =—
T 51

® i 0*(s) Mu(s'ymes?)
)
A5 (s'—s)(s'—s0)

We put the subtraction point s, at the same place as in
the OPE model by setting

So= Z(mKZ—f—l)—mK*Z. (213)

This can be justified by the same qualitative arguments
as in Ref. 3, since the TPE cuts which we consider en-
close the cuts due to p and K* exchange forces.

According to (2.10) and (2.11) the self-consistency re-
lations (2.6) and (2.8) lead, for a given value of mxg»?,
to two equations of second degree in f.fx/4w, the co-
efficients of those equations being polynomials in
Y K*2/ 471'.

For a fixed value of mx+? the functions M1, Gu,
9G11/ds which are involved in (2.6) and (2.8) were com-
puted on a UNIVAC 1107. Then we determined the re-
lationship between the two coupling constants by solv-
ing the two second-order equations for several values of
v+*/4mw. No ambiguity appeared since each of them had
only one negative solution. The intersection of the two
curves so obtained gave the self-consistent solution.

On Fig. 6, curve (2) shows the relation between
fxfr/4m and mg«® which follows from our model; for

. (2.12)
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comparison we have also reproduced on that figure the
results of the OPE model given in Ref. 3 [curve (1)].
Similarly, on Fig. 7, curves (1) and (2) represent
vx+*/4m as function of mx+2 in both cases.

The OPE equations discussed in Ref. 3 can be de-
termined from (2.6), (2.8), (2.10), and (2.11) by keep-
ing only the second-order terms in N and D.

All the parameters which appear in our equations can
be deduced from experiment if one assumes that (2.9)
holds:

m K*2N 41 )
’)’K*2/47I"\‘ 0.9 y

fr¥/dn=— fafx/4m~2 to 2.5.

As pointed out in Ref. 3, the OPE model leads to values
of the coupling constants which are much too large.
For instance, one sees from Figs. 6 and 7 that, taking
the physical value of the K* mass, one gets, in that
model,

(2.14)

fofx/dn~—12, ygt/dm~45.  (2.15)

This, clearly, reflects the fact that the OPE forces are
not strong enough to generate the K* pole in the direct
channel.

On the contrary, our model leads to much lower
values; for instance, setting mg+*=41, one has (see
Figs. 6 and 7):

fofx/dm~—2.2, (2.16)

As a matter of fact, comparing (2.16) with (2.14), we
see that one obtains a much better agreement with ex-
periment in our model. In particular the product
f=fx/4r given by (2.16) is equal to the physical value
indicated in (2.14). Consequently, one is led to believe
that the left-hand-cut approximation is really improved
when our model of TPE forces is included.

It is interesting to compare the signs of the OPE
forces and of the TPE forces. Looking at (1.18), we see
that gi1 is given by a positive integral since the func-
tions F4' are positive. This shows that the rr-exchange
forces are attractive and have, therefore, the same sign
as the p-exchange forces.

The sign of the Km-exchange forces is not obvious,
since gi1.(f) contains contributions of both signs. To de-
termine that sign we have also solved the K* problem
neglecting the Kw-exchange forces, i.e., keeping only
in N and D the OPE contributions and the term coming
from gi1;. It appears that the absolute magnitude of
fxfx/4m is reduced when the Km-exchange forces are
discarded.!® This shows that these forces are repulsive,
since the attraction due to =7 and to p exchanges needs
to be larger when they are taken into account; they
have, thus, the same sign as the K*-exchange forces.

The OPE model predicts that no K resonance should
appear with isospin % and spin 1, since it leads to repul-
sive forces in that channel. The situation is not so clear

v/ dr~2.2.

10 This is also true in the OPE model; see Ref. 4.



B 1466 I.

cut in our model since, projecting our TPE forces on
l=1, I=3%, one gets contributions of both signs. How-
ever, we have determined the /=1, I=% amplitude by
the same method as for /=1, I=3%, assuming that the
same forces dominate. In that problem, mgx2, ffx/4,
and yx+?/4m appear as unknown parameters. We have
found that, if we take the physical value of mg+? and
assume that the coupling constants are given by (2.16),
no resonance appears, since we have verified (at least
in the region where the model can be trusted, i.e., for
$§<150) that ReD does not vanish.!

A last point is worth emphasizing. Using the same
method as in Ref. 5 one can show that, in our model,
the cuts associated with the Kx intermediate states in
the s channel and in the # channel satisfy the crossing
symmetry to fourth order in the coupling constant if
one takes into account only the .S and P waves in those
channels. This was not of course true in the OPE model,
since no cut appeared in the % channel, while the cut due
to the Km intermediate state was considered in the s
channel. Consequently, our solution appears to be more
crossing symmetric.

3. TWO-CHANNEL SOLUTION

In this section, we improve the unitarity approxima-
tion by taking into account also the K7 channel assum-
ing that the jumps across the unphysical cuts are given
by (1.28). As shown by Bjorken!? the N/D method can
still be used if one introduces 2X2 matrices.

If we write

[: ZVD"'I N (3.1)
the matrices V and D are to be determined according to
1 3(tz)ar(s") Dii(s")
]\,Tﬁ(s)z— / ds’ Z _’_‘——i'_" ) (3'2)
7 J left-hand cuts k (s'—s)
(s=s0) [*g(s') Ni(s)ds'
Dij(s)=06s— - (33

T a A8 (s'—s5)(s"—s0)
In the same way as in Sec. 2, V will be approximated by

Nii(s)=(t)i(s)

® 3’)

1
+- 2 L(s"—=s0)gax " (s")

T k=1,2 sk S

&)
—(s—s0)gar X (s) f——m"m—, (3.
(=g 64

2:;(s") being given by (1.9). D(s) will be deduced from
N(s) according to (3.3). We put the subtraction point s,

1t The same result holds if one takes the physical values of the
coupling constants. This is to be compared to a similar discussion
in the == problem (Ref. 4): assuming that the p forces dominate,
we found in Ref. 4 that the /=2, I=0 amplitude had a resonance
behavior which was tentatively identified with the f°.

12 J. D. Bjorken, Phys. Rev. Letters, 4, 473 (1960).
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which appears in (3.3) and (3.4) in the same place as in
the one-channel model [see formula (2.13)].

It is convenient to rewrite N;; and ReD;;= R;; show-
ing the dependence upon the coupling constants:

Yr*? 'Yn
Nu=N+ —M 7,
47 4Axw
YE*Yq Yrs?
Nyp=—— [M12K_——M12KK
47 47
f‘ler
M12KP+—M12K"} ,
T 47 3.5)
3.5
YK*Yq Yx*?
No= [MmK— Mo KK
47 47
f1rf K
———leK"'i——leK”} ,
T 47
Vo Yr** Vo
Nog=—1 Mo+ K —M ooy
T T T
YK+ Y
Riz=ReD—— — Gk,
4 47
YE*Yq Vi
Ryy=— 15— G1*K
T T
f‘II'fK 2
———GKP +—G12K"} ,
47 47 3.6)
3.6
YE*Yn Yrs? i
R21= - G21K—' G21KA
47 4
VENES Vo
- Gle”‘f"—"GmK”} ’
47 T

v Yr+® Vi
Roy=1——{Ga™+ GooK14+—Goo™;
47 4 47

where NV and ReD are given by the one-channel approxi
mation (2.10) and (2.11). The functions G;; are cal-
culated from the M,s according to (3.3).

Owing to the m-n mass difference, a difficulty occurs in
f22. In fact, looking at the expression (1.27) of gs2®, we
see that it contains Fa2!'(s,u’) integrated over #’ for
' 2 s1. According to (1.7) and (1.8), Fz'' becomes
complex if

s+u'2(mg2+m,?).

The corresponding singularity occurs on the right-hand
cut if this inequality holds for s> sy, i.e., for

w' L 2(mr2+m,2)—s1~37.



CALCULATION OF K*

Consequently, the part of the integral corresponding to
51<2/ <37 in goo® leads to singularities on the right-hand
cut. This reflects a general property of the Ky-scattering
amplitude: The cuts due to K« exchange and the un-
physical part of the right-hand cut overlap for s; < s< 37,
so that, strictly speaking, (3.2) and (3.3) do not hold.
However, the integrands of (1.27) vanish for #'=s; and
it appears that the undesired jump of gss® is small com-
pared to Regss®, since it comes only from the beginning
of the integration in (1.27) where the integrand is close
to zero. Therefore we shall neglect that cut, assuming
that (3.2) and (3.3) hold so that N will have a small
imaginary part for s; < s< 37. However, since the physi-
cal value of the K* mass (mg+2~41) is outside that in-
terval, we shall avoid that difficulty by restricting our-
selves to mg+*>37. On the other hand, the K* does not
decay into K4%. Thus we shall look for solutions
satisfying

3T <mgx*< ss. 3.7
By doing so, we also avoid the difficulties due to the
location of the OPE cuts (see Appendix of Ref. 3).

We consider now the self-consistency equations. The
first condition is that a pole should occur in the three
amplitudes considered corresponding to the K* inter-
mediate state in the s channel. This leads to

Re[detD(mg+*)]=0. (3.8)
Moreover, the residue matrix at that pole has to be
identified with the one obtained from the graphs of Fig.
8 where the K* appears in the s channel:

1
T:
(s—mK*2+iI‘mK*)
2'}’1{*2 2 YE*Yqy
47 V3 4x
X . (39

2 Yr¥Yy 2,2
V3 4r 3 4r

In principle, that condition provides only two more
equations, since the residue matrix should have zero
determinant and should be symmetric. In fact our solu-
tion automatically has zero determinant but is not sym-
metric since we have not exactly solved the N/D equa-
tions (see Refs. 2 and 3).

We look for self-consistent solutions under the same
hypothesis as in the one-channel model, keeping only
four parameters: mgs?, frfx/4m, v+®/4w, and v,2/4r.
The method used is the same as in Refs. 2 and 3. We
satisfy exactly the conditions

tn="7Tu,

3.10
loa= Tas. ( )
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Fie. 7. Curve (1): one-channel results in the OPE model;
curve (2): one-channel results in our model; curve (3): two-
channel results in the OPE model; curve (4): two-channel results
in our model.

According to (3.9) and (3.1) this leads to the equations
(we neglect ImD, which is small compared to ReD)!

2(vx+*/4w)(Re detD)'+ N11Ros— N12Ro1 =0,

3.11
2(vs%/47)(Re detD)'+NpR1y— No1R12=0, (3.11)

where
(Re detD)’=[d(Re detD)/ds Jommps?
and
RedetD= R11R22—— R12R21 .

The conditions (3.8) and (3.11) enable us to determine
the solution. Then we calculate an asymmetry param-
eter (3.12)

t1o -3 1

Tia 2viey,/dn (Re detD)’
X{N12R11— N1u1Rs} .

(3.12)

2 would be equal to 1 for an exactly symmetric ¢
matrix.

The numerical calculations have been performed using
the same method as in the one-channel approximation
(see Sec. 2). For a fixed value of mx? satisfying (3.7),
Eqs. (3.8) and (3.10) led to three equations of second
degree in f,fx/4w. No ambiguity appeared, since each
of them had only one negative solution and we got
three relations expressing f.fx/4r as functions of
vr+*/4m and v,%/4r. That system of equations has been

Fic. 8. The K* pole
in the s channel.
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Fic. 9. Curve (1): result of the OPE model;
curve (2): result of our model.

solved numerically by computing frfx/4mr for several
values of the two K* coupling constants. For a given
value of v,%/4r we then have three curves expressing
the relation between frfx/4w and vyg+2/4w. Seli-
consistency is achieved for the value of v,?/4r such that
these curves coincide at a point. For comparison we have
reproduced the calculated values of yg:2/4r and
f«fx/4m on the same figure as the one-channel solution;
i.e., on Figs. 6 and 7.

On Fig. 6, curve (3) shows the relation between
frfr/4m and mg+* given by our model; on that figure,
we have also reproduced the results of the two-channel
OPE model [curve (4)]. Similarly, in Fig. 7, curves (3)
and (4) represent yx+2/4r as a function of mx+® in both
cases. Finally, the relation between v,%/4r and mg+? is
displayed in Fig. 9.

We see from those figures that, setting mx+2=41, one
gets

fofx/dm=—18, yx?/dn=19, v2/dr=14. (3.13)

For that solution, the as&mmetry parameter 9, given
by (3.12) is 9~1.15.

Since 9 is close to 1, the matrix #; is nearly symmetric
and we may believe that our approximation of the N/D
solution is reliable.

In the OPE model, setting mg+2=41 gives the follow-
ing results:

fufi/tm=—17, vx?/dr=05, ~2/4r=18. (3.14)

The coupling constant vy,/4w which appears in the two-
channel model is not known from experiment. How-
ever, arguments based on SUjs lead to

2/ A= 3y g+ dw=2.7. (3.15)

This can be deduced either from exact SU; symmetry or
from the broken SU; symmetry proposed by Muraskin
and Glashow,!3 combined with Sakurai’s universality®
(see Ref. 14).

18 M. Muraskin and S. L. Glashow, Phys. Rev. 132, 482 (1963).

4B, Diu, H. R. Rubinstein, and J. L. Basdevant, Nuovo
Cimento 35, 460 (1965).
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Comparing (3.11) with (3.12) and (2.14), we see that,
as pointed out in Ref. 3, adding a second channel does
not improve the numerical results in the OPE model.
Effectively, frfx/4m is increased, and the new coupling
constant v,%/4r which is introduced comes out much too
large. yx+?/4m is reduced to a more correct value; how-
ever, this is due to the fact that v,?/4r is much larger
than expected.

In the TPE model, on the contrary, v,2/4m has the
right order of magnitude, so that the values of f.fx/4m
and yg+*/4r are not much changed when the K9y
channel is added. This raises the possibility that they
do not depend much on the unitarity approximation, so
that the numerical results can be trusted.

As in Sec. 2, we compare the signs of the OPE and of
the TPE forces. In #+K —9+K one can verify
numerically, by putting the calculated values of the
coupling constants into (1.25), that the K= forces are
attractive as are the K* ones. The same result is im-
mediately seen to hold for 4-K — n+4-K, since goo®
is given by a positive integral [see formula (1.25)7].

In our calculations, we considered only the longest
range forces among the TPE contributions. The lightest
intermediate states which we neglected were KK, Kn,
and mw. They all have a rest mass of the order of 1 BeV.
Consequently, in order to get an insight into the validity
of our approximations, we study the effect of one of
those forces, hoping that the other ones will give con-
tributions of the same order. The K7 forces are easier
to consider since they can be taken into account to
fourth order in the coupling constant without introduc-
ing any new parameter. The corresponding self-
consistency problem has been solved in the same way
as the one we studied previously. It appears that the
numerical results are almost unchanged when the K7
forces are added, so that these forces seem to be un-
important. Thus the TPE forces we neglected are likely
to give small contributions. This justifies our approxi-
mation @ posteriors.

The model including K7 exchange forces has an inter-
esting property. Using the same method as in Ref. 5
one can show that, in that model, the two cuts of the s
channel and of the # channel due to K7 and K7 inter-
mediate states satisfy the crossing symmetry to fourth
order if one takes into account only the S and P waves
in those channels.

4. CONCLUSION

The method of approximately including TPE forces,
already studied in Ref. 5 for the p bootstrap, has been
shown to work also in the K* problem where the external
particles have unequal masses.

By adding fourth-order terms, one restores approxi-
mately the crossing symmetry between the cuts of the s
channel and of the # channel which correspond to the
lowest lying two-particle intermediate states.



CALCULATION OF K*

The TPE forces which one is led to consider in our
model have the same sign as the corresponding OPE
forces:

(A) In 7+K — 7+K for I=%, the forces due to p
exchange and to =w exchange both are attractive for
f=fx<0, while, on the contrary, the K* forces and the
K forces are repulsive. In our model, as in the OPE
model, the total forces are attractive so that a pole can
appear in the s channel.

(B) In 7+K — 7+K for I=%, the total forces are
repulsive in the two approximations and we predict
that no K= resonance should exist with /=1, =3, That
prediction is, till now, in agreement with experiment.!®

(C) In 7+K — 9+K and in 9+ K — 9+K, the K=
exchange forces are attractive, as are the K* exchange
forces.

In both models, one has to assume that f.fx<0 in
order to generate the K*. Though it is not yet known
from experiment, that negative sign is also predicted
by SU; symmetry or by Sakurai’s universality.?

For a given value of mg»?, our model, like the OPE
model, leads to a well-defined self-consistent solution in
the one-channel approximation as well as in the two-
channel approximation. Moreover, these solutions are
not pathological; i.e., yx+?/4w and v,2/4r come out posi-
tive. This was not at all obvious @ priori, since our sys-
tem of equations is rather involved.

Assuming that

Jo/4m=— fufu/4,
three coupling constants have been determined:

f,,-fz{/m— 1.8 ,
’YK*2/4:7I'C¥1.9 5
v /Am1 4,

The calculated value of frfx/4w is in agreement with
experiment, while for ygs2/4n and v,2/4r, the results
have the right order of magnitude.

When TPE forces are considered, the numerical re-
sults show a much better agreement with experiment
than in the OPE model. Moreover, the influence of the

18 This has been observed in particular, by S. G. Wojcicki et al.
(see Ref. 7).
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K% channel becomes much more reasonable. Therefore
one really improves the approximation of the forces by
adding TPE forces in the way we studied in Ref. 5 and
in this paper. (This was also our conclusion in Ref. 5.)

As a matter of fact, as pointed out previously,® the
bootstrap mechanism is by no means connected with
the OPE approximation. On the one hand, one uses self-
consistency requirements which have to hold anyway
since they express crossing symmetry properties; on
the other hand, one introduces a very simplified dy-
namical model to express those conditions. We have
shown that, by improving this dynamical model, one
really gets better answers from the self-consistency
equations. On the other hand, since the qualitative
features of the OPE model have been shown to be main-
tained when TPE forces are added, we may believe that
they do not depend on the model, so that they have some
deep connection with the self-consistency of the exact
S matrix. If that result holds in general, we will under-
stand why the bootstrap theory in its simplified version,
as it has been developed till now, has been qualitatively
successful despite the failure of the OPE approximation
on which it is based.

Note added in proof. Since this article was submitted
for publication, the author has studied the generation
of the p in a two-channel 7= and KK problem, including
ww and K forces, by the same method. The results ob-
tained, which will be described in a forthcoming paper,
also tend to show the reliability of our approximation
scheme.
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