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Relativistic partial-wave dispersion relations are formulated for elastic nucleon-nucleon scattering. These
dispersion relations are integral equations with an inhomogeneous term taken from single-particle exchange
contributions. The particles under consideration are 7I(I= j., pseudoscalar), g(I =0, pseudoscalar), p(I=1,
vector), co(f =0, vector), v (1=0, vector), and o (1=0, scalar). The existence of a o meson is not well estab-
lished. Two possibilities are considered: (i) The o meson exists, in which case the mass and coupling constants
are taken to be two parameters of the present problem. (ii) The o meson does not exist but the I=0, 1=0
two-pion continuum is taken into account. This two-pion continuum can be treated as a superposition of
scalar particles with a mass spectrum determined by pion-nucleon and pion-pion interactions. Information
on the 71-$ interaction is obtained from ~37 scattering data, while the S-wave 71-7i- interaction is represented
with a relativistic scattering-length approximation. In addition to the 21-7I- scattering length, a cutoff on the
two-pion spectrum is introduced. Thus two parameters are introduced in either (i) or (ii). Aside from the
masses and coupling constants of the particles mentioned, a cutoR parameter is needed for each of the vector
mesons p, co, and y. These are taken to be coe%cients in an exponentially decreasing factor suggested by
the Regge-pole behavior of composite particles. A total of twelve adjustable parameters is used and a search
program is formulated to 6t 560 pp and np data collected by the Livermore group ranging from 9.68 to
388 MeV. In both cases (i) and (ii), a fit is obtained with a "goodness to 6t" value of approximately 8%,
meaning that the x' is ~348 if the uncertainty inherent in the theory is assumed to be 8%%uq.

I. INTRODUCTION

~~NE of the longstanding problems in the meson
theory of nucleon-nucleon interaction is the treat-

ment of multimeson exchange processes in nucleon-
nucleon scattering. It is not until the discovery of the
multimeson resonances that this problem becomes com-
putationally feasible. Essentially, the existence of multi-
meson resonances makes it plausible that some of these
systems can be treated as single-particle states, with
masses and quantum numbers determined by production
experiments. ' The following well-established resonances
(mesons) have quantum numbers which allow strong
coupling to the nucleon-antinucleon system: (1) the
I=O, J=O rt meson with mass m„=548 MeV; (2) the
I=1, 1=1 p meson with mass nt,~750 MeV; (3) the
I=O, I=-1 co meson with mass m = 780 MeV; (4) the
I=0, J=1 q meson with mass m„=1020 MeV. All of
these mesons as well as the pion have negative parity.
Therefore, they couple to the IVX system in the 5 state
(and partly in the D state for the vector mesons). In
addition, there may exist a 0 resonance of I=O, J=O
parity plus coupled strongly to the two-pion system in
the S state and to the EX system in the 'Po state. As
we shall see later, whether this resonance exists or not,
the 5-wave mw pair gives a signi6cant contribution to the
medium-range attractive force between two nucleons.

*Work supported in part by the U. S. Atomic Energy Com-
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f Alfred P. Sloan Foundation Fellow.
' See, for exam le, Proceedings of the 1964 Conference on High

Energy Physics to be published).

If the resonance exists, one can use the single-particle
approximation. Otherwise, the J=0 xm system will have
to be treated as a continuous spectrum. Both possi-
bilities are considered in the text. In view of the fact
that the new mesons have masses comparable to that
of the nucleon, it is desirable that the scattering problem
be formulated in a covariant manner in order to take
proper account of the rather short-range forces. In the
present work, we use relativistic partial-wave dispersion
relations for the calculation of phase shifts and sub-

sequently the calculation of direct experimental ob-
servables. Our procedure is as follows.

First, we calculate the pole terms (renormalized Born
approximation) corresponding to the exchange of single
mesons x, y, p, co, and q. For all the masses except m,
we use the experimental values given above. Since the
width of the p resonance is rather broad (between 75 and
130MeV), ' the effective mass that enters into the calcu-
lation of the nucleon-nucleon scattering amplitudes may
be shifted substantially from the peak of =750 MeV
observed in production processes. Therefore we take m,
as an adjustable parameter. A sizeable shifting of the
effective p mass is in fact consistent with measurements
of the isovector form factors of the nucleon. ' ' As for
the coupling constants, we take g '=14 and g,', g,1',

g pQ y g„', and g„' as free parameters of the problem.
There are two coupling constants for the p meson, g„1
and g,2, proportional to the two-pion contribution to

~XNcleon Structure, edited by R. Hofstadter and L. I. Schi8
(Stanford University Press, Stanford, California, 1964), Chap. II,' J. S. Ball and D. Y. Wong, Phys. Rev. 130, 2112 (~1963),
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the isovector charge and anomalous magnetic. moment
of the nucleon. We introduce only one coupling constant
for each of the or and y mesons on the ground that the
isoscalar anomalous magnetic moment of the nucleon
is very small. In addition to the pole terms, we calculate
the exchange of a pair of x mesons in the S state
(I=O, J=O). In the case where the existence of the 0 is
is assumed, we simply use the single-particle approxi-
mation for a scalar particle of mass m, and coupling
constant g, '. In the case where we assume that the 0- is
absent, we calculate the xx spectrum in terms of the
EX—+ z~ amplitude. For this calculation, the familiar
"pair suppression" is accomplished by making use of the
pion-nucleon forward-scattering dispersion relation to
normalize the EN —+ mm amplitude at zero total energy.
A cuto6 parameter t, and a ~-m scattering length a are
introduced in this calculation of the pair contribution.

Next, we formulate the dispersion relations in the
form of a Fredholm integral equation of the second kind
whose solution gives directly the partial-wave ampli-
tudes. Both the inhomogeneous term and the kernel of
the integral equation are constructed in terms of the
pole terms together with the pair contribution. Our
procedure is very similar to the formulation of the
Bethe-Salpeter equation in that both start with the
single-particle (and two-particle) terms and impose the
elastic unitarity condition by solving an integral equa-
tion and that both neglect inelastic eRects. The diRer-
ence lies in the treatment of singularities in the un-

physical region. It is not clear which method will yield
more reliable results. On the other hand, the dispersion
theory is certainly somewhat simpler. In the formulation
of our integral equations, we introduce a cutoR param-
eter for each of the vector mesons p, co, and y. We choose
an exponential cutoff as suggested by the Regge-pole
description of composite particles. The parameters are
denoted by c„c„,and c„.For the two S-wave amplitudes
(I=O, 'Sr and I=1, 'So), we introduce the scattering
lengths as subtraction constants. This normalization of
the S-wave amplitude at threshold presumably absorbs
the over-all contribution of extreme short-range forces
which has not been taken into account explicitly.
Finally, one additional parameter so is introduced in the
formulation of the equations for /&2 partial-wave
amplitudes. Essentially, this parameter is introduced to
compensate for the approximate treatment of the cen-
trifugal barrier in the partial-wave dispersion relations.
To summarize, we have eight predetermined constants

g '=14, m =135 MeV, nz„=548 MeV, m = 780 MeV,
m„=1020 MeV, aj""———'7.7X10 " cm, as""=—23.74
X10 "cm, a3"~=5.4X10 "cm and twelve adjustable
parameters g„', g,~', g, ', g„', g„', mp cp c cy lpga cz&

and so (or g,', m, ' in the place of t. and a ). For any
given set of these parameters, all of the ep and pp
partial-wave amplitudes are calculated including the
static Coulomb correction in the pp case. Having ob-
tained the partial-wave amplitudes, the observables o-,

I', D, 8, and 3 are calculated and compared with a set

of 560 pieces of np and pp data collected by the Liver-
more group. A search on the twelve parameters is per-
formed to obtain a good 6t to the data. If one assumes
that our present approximation in the theory is inher-
ently good to only 8%, then our results can be con-
sidered good its in both the case where the 0 is assumed
and the case where we have only a continuous mm spec-
trum. With our calculated phase shifts, an evaluation of
the z' has been performed by the Livermore group. 4

They quoted a value of x' of 822 for our result using
377 pieces of pp data.

In Sec. II, we illustrate the mathematical procedure
by the fictitious example of the scattering of two spinless
nucleons. In Sec. III, we treat the real nucleons and
define scattering amplitudes taken between states of
definite initial and final helicity and their partial-wave
projections. We also express the observables 0., I', D, E,
and A in terms of the helicity amplitudes. The one-
meson (resonance) exchange terms and the pair con-
tribution are given in Sec. IV. In Sec. V, we formulate
partial-wave dispersion relations and corresponding
integral equations. Numerical results are discussed in
Sec. VI. A detailed account of the Coulomb correction
is given in an Appendix. Preliminary results of our work
have been published elsewhere. ' Some references to
earlier works can also be found there.

II. SPINLESS NUCLEONS

We first consider the scattering of two 6ctitious spin-
less nucleons. We introduce kinematical variables,
invariant energy and momentum transfer squared, in
the conventional way

s= —(Pg+P2)'=4(p'+m')
t = —(Pg —P3) = —2p'(1 —s),

u = —(P, P,) = —2p'(1+s), —
with the constra, int s+t+u=4m', where P~, P2 and

P3, I'4 are the incoming and outgoing four momenta of
the nucleons, m is the nucleon mass, p is the magnitude
of the center-of-mass momentum, and s the cosine of
the scattering angle.

If there exists a scalar meson of mass ps that can be
exchanged between the two nucleons, it will correspond
to a pole in the nucleon-antinucleon scattering ampli-

tude, that is to say, in our simple example, a pole in

the nucleon-antinucleon S-wave amplitude. We will

have then the following contribution:

4 Some results of the Livermore phase shift analysis are pub-
lished by M. H. MacGregor, M. J. Moravcsik, and H. P. Stapp,
Ann. Rev. Nucl. Sci. 10, 291 (1960).The data selection we use has
been communicated to us through H. P. Noyes. The g' of. our
calculated phase shifts are evaluated by the Livermore Mmpop nx
program.' A. Scotti and D. Y. Wong, Phys. Rev. Letters 10, 142 (1963),
Proceedings of the Topical Conference on Newly Discovered
Particles„Athens, Ohio, April 1963, Ref. 2, and Proceedings of the
International Congress on Nuclear Physics, Paris, July 1964 (to
be published).
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where the first variable of p denotes the invariant: energy
squared in the system indicated by the subscript and the
second variable is the corresponding momentum transfer
squared. The vertex function ga(t) is independent of
s and gs(t4s') is defined as the coupling constant. The
superscript P. indicates the (single-particle) exchange
contribution.

In addition to the exchange of a scalar meson, let us
consider now the exchange of a J= 1 resonance system.
If we treat the J=1 resonance as a vector meson, then
the only forma, l difference from the scala, r case is that
vie are now considering a P-wave amplitude in the
nucleon-antinucleon channel. Hence

4t'v~ (s; t)= 4t'~g (t; s) =[gs'(t)/(t4s' —t)]
+[Cv'(t)/(t v' t)]P—(z) (2)

where
z—=cos0~ p = 1+[2s/(t —4m') ]

and Pz(z) is the Legendre polynomial of order 1,

Pg(z) =z.

We obtain therefore a contribution which is linea, rly
divergent in s. As we shall see later, the corresponding
integral equations for the partial-wave amplitudes would
not have, in general, any solution.

If we consider instead the J= 1 resonance as a com-
posite system, a natural cutoff is contained in its de-
scription as a Regge pole. ' We will use instead of (2) the
following expression for the J=1 resonance excha, nge
contribution:

q'~~ (s i t) = y~g '(s; t)
= [gs'(t)/(t4s' —t)]+[gv'(t)/(t4v' —t)]P4(z)

Xexp f cv(t —t4v') ln[(s/2m') —1]} (3) h4(s) = [(p'+m')/p'm']' 'e'" sinBt, (4)

it reduces exactly to the vector meson contribution (2)
and for s ~ + 00 it becomes the asymptotic form of the
exact Regge-pole expression. Needless to say, the above
expression reduces to the form of a vector particle
exchange term at I=IJ.y'.

We shall refer to both terms in the representation (3)
a,s one-meson exchange terms. Once p~~ is given (in
the realistic case we will have contributions from x, q,
co, p, and p "mesons" and the 8-wave z.~ pair), we use
dispersion relations to construct scattering a.mplitudes
which satisfy the elastic unitarity condition.

The unitarity condition implies that the partial-wave
amplitudes have a branch point at the physical threshold
of the nucleon-nucleon system. The discontinuity across
the corresponding branch cut is proportional to the
square of the amplitude. Since we are dealing with
strong interactions in the low-energy region, such a
branch cut certainly has a significant inhuence on the
scattering amplitude. However, as we sha, ll see in the
realistic problem, the l=6 and higher partial waves
pha, se shifts are very small in the elastic scattering region
((400 MeV) and the branch cut due to the unitarity
condition can be neglected. For intermediate partia, l
waves, from F to H, the phase shifts are also rather sma, ll
but such branch cuts are not completely negligible. We
take into account the unitarity condition for these
waves in an approximate way by considering the con-
tribution to the imagina, ry part in the physical region
coming only from the first iteration of the one-pion
exchange. For S, E', and D waves we impose the corn-

plete elastic unitarity condition.
I.et us normalize the partial-wave amplitudes a,s

follows:

where cy is a positive real parameter. This particular
form is chosen in such a way that a,t threshold s —+ 4m2

and denote by k&~ the /th partial-wave projection of
y~~a(s; t). Our basic set of equations will then be

S—4m2 +" m2

ho(s) = a+h —(s)0ho '(4m—')+ ds'
4„~ s'(s' —4m')

'" (ho(s') ['
(s' —s)

s—4m2 +
h4(s) = h, a(s)+ ds'

m2

s'(s' —4m')

-4&~ (h, (s') ~2

(s'-s)

(s—4m')' +"
hg(s) =hP(s)+- ds

7l s—Sp 4~2

m' '" s' —so
~

h2(s')
~

'

s'(s' —4m') s' —4m' (s' —s)

s—4m')' 's —4m' +"
h((s) =his(s)+

i
ds'

$—So 4m'

s' —SQ
'—'

~hg& &(s') ~2

2(t&5,
s'(s' —4m') s' —4m' (s' —s)

h((s) =h4a(s); t& 5.

' T. Regge, Nuovo Cimento 18, 947 (1960).
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The 5-wave scattering length is introduced as a sub-
traction constant. Equations (5), (6), and (7) are inte-
gral equations that can be solved by the well-known
iV/D method~' if hp(s) is a known function analytic
and bounded to the right of s=4nz . This is indeed the
case for the partial-wave projection of our representation
for qiviv~(s; t) Fo.r D and higher waves the threshold
behavior (s—4m')' cannot be satisfied if one imposes
the elastic umitarity condition without introducing an
additional singularity to the left of s=4m' aside from
singularities already present in the single-particle ex-
change terms. This is due to the fact that each single-
particle exchange term satisfies the threshold behavior
while the dispersion integral at s=4m' is positive
de6nite. Hence the dispersion integral and the multi-
particle exchange terms must cancel each other (to the
1th order) at threshold.

For /) 2, we represent the effect of all multiparticle
exchange terms by a pole at so and obtain Eqs. (7) and

(8) which satisfy the threshold behavior. Since the
single-particle exchange terms are the dominant terms
for high partial waves, the solutions are not sensitive to
so. For simplicity, we choose a single so for all /& 2 waves.
After solving Eqs. (5), (6), and (7) and evaluating the
integrals in (8), one obtains hi(s). The complete scatter-
ing amplitude &piv~(s; t) can now be evaluated as follows:

p~~(s; t) = q~~ (s; t)+ P (2t+1)hP(s)P, (s) ~ (10)
l=p

where

hia(s) = hi(s) —hi~(s) .

This completes the evaluation of piviv(s; t).
Before turning to the realistic nucleon-nucleon prob-

lem, we return brieRy to the partial-wave projection of
the one-meson exchange term corresponding to a J= 1
resonance.

1 +I
hi (s)=-

2

gv'(t) s
ds Pi(s) Ei(z) exp cv(t trav') ln ———1

~

pv2 —t 2m' )

(s—4m') (s—4m )

2t gv'(t) 2s S
dt P~ 1 1 — —exp cv t—pv2 ln — —1 . 12

s—4m~ pv- —
&

—4m2 2m2

It is clear first of all that hP(s) is not bounded for large
s if one takes the usual Born approximation for vector
particle exchange: cv ——0 and gv'(t)=gv'X(t —4m'),
where g v' is a constant. We shall retain this approxima-
tion for the vertex function but introduce the cutoff
parameter cv& 0. As regards the crude approximation
to the Regge-pole expression we remark that, as long
as cv) 0, only small negative values of t are relevant in
the integration in (12): this is obvious when (s—4m')
small; however, even when (s—4m') is large the
dominant contribution to the integral still comes from
small negative values of t since the exponential factor
is rapidly decreasing as t becomes large negative.

III. SCATTERING AMPLITUDES AND
THE "OBSERVABLES"

If one assumes invariance under space reRections, time
reversal, and charge independence, it is well known'
that the scattering of two nucleons can be described by
five amplitudes for each isotopic-spin state I=0 or I= 1.
One of the five amplitudes corresponds to transitions in
a singlet-spin state and the other four to transitions in
a triplet-spin state. The choice of the scattering ampli-
tudes is, of course, not unique. We shall use the helicity

' 6, P. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).' J. L. Uretsky, Phys. Rev. 123, 1459 (1961).
'See, for example, H. P. Stapp, T. J. Ypsilantis, and N.

Metropolis, Phys. Rev. 105, 302 {1958).

amplitudes p„&1); v=1 . 5 I=O, 1, defined in
GGMW. "The relation between helicity amplitudes and
the scattering amplitudes of Stapp, Ypsilantis, and
Metropolis' is given in Appendix A.

To avoid all possible confusion about normalization,
we give here an explicit formula of the helicity ampli-
tudes in terms of th, e conventional singlet and triplet
phase shifts. Let the partial-wave amplitudes be
defined as

hs=(E 2/i mp)(e"'& 1), —

hss (E/2imp) (e»~~—~—1)— (13a,)

(13b)

"M.L. Goldberger, M. T. Grisaru, S.W. MacDowell, and D. Y.
Wong, Phys. Rev. 120, 2250 (1960}; hereafter referred to as
GGMW. The relativistic nucleon-nucleon problem has also been
investigated by D. Amati, E. Leader, and B. Vitale, Nuovo
Cimento 17, 68 (1960); 18, 409, 458 (1960); Phys. Rev. 130, 750
(1963).

hs , i=s( /E2i pm) [( ocs2 ~)eexp(2i8q i,s) —1], (13c)

hei, s——(E/2imp) [(cos2as) exp(2i8~+i, s) —1j, (13d)

h = (E/2mp) sin2e~ exp[i(8g i,a+8~+i, q)], (13e)

where E=—,'gs.
The first one is the singlet amplitude, the second one

is the uncoupled-triplet amplitude and the last three
are the coupled-triplet amplitudes expressed in the
nuclear-bar phase shifts and coupling parameters. ' The
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partial-wave expansion of the helicity amplitudes is given by'

(g/ggg) ~ (0,1)— Q~ {(2J+1)h~(0,1)+Jh~ 1 ~ o, +(J+1)hJ+1 J +2[j(J+1)]1/2h J(0,1))p (14a)
odd, even

odd, even

(Z/ggg) 022(0, 1)— P~ {(J+1)h~ 1 ~(0,1}+Jh& 1 &(0,1) 2[J(J+1)]1/2hJ(0,1))d ./

odd, even

+ Qg [(2J+1)hJg(0 ')]dig~, (14c)
even, odd

($/ggg) q&
(0, 1) P {(J+1)hJ 1 J(0.1)+Jh ~(0,1) 2[j(J11)]1/2h J(0,1))d

odd, even

[(2J+1)hing('"]d 11~, (14d)
even, odd

[1/(1 sg)1/2]~ (o, l) (ggg/P) Q {[J(J+1)]l/2(h~ 1 ~(0,1) h~ ~(0,1))+hJ(0,1) )d j/(1 sg)1/2

odd, even

P~ is the usual I egendre polynomial and

(14e)

1 (J+1~ t
J

dig = Pz+l lPz 1+l —Pz+1
1+s (2J+1j (2J+1

(15a)

d—11
1—s

p J+1 J—Ps+ I

—P~-1+ ——IP~+1
(2J+1 2J+1/

(15b)

J+1) ' spz Pi+1 [J(J—+1)]'-" Pg+1 P~ 1 '—
~/(1 s2)1/2=—

J j . (1—s') 2J+1 1—s'
(15c)

As shown in GCxMW, the left-ha, nd side of Eqs. (14a) to (14e) has no gs kinematical singularity. The appearance
of the (ggg/E) factor on the right-hand side of (14e) implies that the coupled triplet partial-wave amplitudes must
contain the kinematical singularity at s=o. However, since this singularity is far removed from the physical
region, its e6ect on the unitarity integral should be quite small. In our present work, we keep this kinematical
singularity in the partial-wave projection of the exchange terms and introduce no additional singularity of this
kind in the process of imposing the unitarity condition.

By making use of the orthonormality properties of the I' and d functions, one obtains

+1

h (0, )

4m
«P [~ (0, 1) ~ (0,1)] (16a.)

hz J (0, &)

4m
J~ (0, 1) (E J~ (0, 1)] (16b)

E +'
«{JPZ(q 1""+q 2" ")

2J+1 42)g

+(J+1)(gllJq&2(0, 1)+(f J//& (O, l))+4[j(J+1)]l/2dl J(0 (0, 1)} (16c)

1 E +'
hr 1 z" "= — «{(J+1)PZ(O1""+0 2" ")

2J+1 42)g

+ ( 11'0 ""+ 11'44"")—[ ( + )]'" 10 00"") (16d)

2J+1 4m
—((Ell 0 '""+d 11 p4" ")+{2/[J(J+1)]"2)()'1020 "") (16e)
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Having defined our scattering amplitudes and their
partial-wave projection, let us now turn to the expres-
sion of the experimental "observables": these are well
known" and are quoted here for convenience and
completeness.

We first give the expression of the Wolfenstein param-
eters" in terms of the helicity amplitudes

a= g {Pl &p2+ &p3+ p4+s(%1+ p2+ I'3 p4) cps) )

zc= a {&pl+ 0 2+ p3 —p4)+4s+5),

hatt= ~{—(pi —p2+q 3+v 4)

+s(~i+ v 2+ v 3
—

v 4)
—4yv s), (17)

g =
g {P8+ 0'4 Pl+ P2) )1

h= g{%3 P4 &P1 P2) yi

and then the expression of r, I', D, R, a,nd A in terms of
the Kolfenstein pa, ra, meters

~=
I
a

I
-+

I
~

I
-+2

I
c

I

'+2
I g I

'+2
I
h

I

'

aI'=2 Rel c*(adam)5,

a(1—&)=4lgl'+4lhl',

~&=LIal' —I~I'—4 Re(tg*)7 cos(«2)
+2 Re(ic(a* m*)5 s—in(0/2),

Ref. 10, we obtain

(E/m) pi, &"=0,

(0)

m

3g» Q

7

4m m' —u m' —t

I~: 3g„' —2p'—p3, &"=——(1+s)—
m 4m m„'—u

1' 3g»
(1—s)

m 4m

2p'

I:1/(1—s')'"7&~,-'"=0

3. The q Meson

For the g meson, which differs from the m meson only
for the isospin, we obta, in

(I:/m) pg, ,&'& =0,

E g„'- u t
(0)—

) 17

m 4m m, '
7—u m' —tJrt

The amplitudes for I=1 are obtained from the corre-
sponding amplitudes for I=0 by supplying a factor of
—,
' and cha.nging the sign of the t contributions.

oA = —
I I

al' —I tttl' —4 Re(kg*)7 sin(8/2)

+2 ReLic(a*—m*)7 cos(8/2), —v» "'=——-(1+s)
m 4m

—2p'
(20)

where the isotopic-spin index ha, s been suppressed,
y=sin0, 0. is the differential cross section, and 0 is the
scattering angle. For the definition of P, D, R, 3, and
of the Wolfenstein pa, rameters we again refer the reader
to Ref. 11.

P g
2—

q 4,„"'————(1—s)
m 4m

L1/(1, )in7„, (0) 0

mg

2p2—

IV. ONE-MESON EXCHANGE TERMS

A. The Single Pion

The one-pion excha, nge term is well known. Although
it is easily derivable from conventional Lagrangian field
theory we prefer to derive it, according to what we said
in Sec. II, by considering a, pole in the nucleon-anti-
nucleon scattering amplitude which satisfies all the
selection rules for a transition via the intermediate sta, te
of a pseudoscalar particle with isospin one. We will

derive all the other one-meson exchange terms using
this prescription. By making use of (6.7) and (4.23) of

"M. H. MacGregor, M, J. Moravcsik, and H. P. Stapp, Ann.
Rev. Nucl. Sci. 10, 291 (1960).

And the I= 1 a.mplitudes a,re obta. ined by cha.nging sign
of the u contributions.

C. The ~ and q Mesons

1 +" g'(t')
V'(t) =— dt'

t' —t
(21)

In principle g'(t') is related to the NN~ 3m. and
lV3f —+ XE amplitudes. However, since the widths of
the or a,nd q resonances are rather narrow, we use the

Taking into account the quantum numbers involved
in the exchange of a co or p meson we can write the corre-
sponding spectral representation for the i' —+iVE
amplitude in the following way. '



MULTI MESON RESONANCES AN 0 NUCLEON —NUCLEON INTERACTION 8151

much simpler approximate representation

gv
V'(t) =- —+-

m' —t m„'—t
(22)

E g~ 2 2 2
~ ' -'s ——'m' ——'m's

(0)—
m m mop Q

-'s —-'m'+-'m's2 2 2

where now g„' and g„' are constants. Neglecting the
coupling to the anomalous magnetic moment of the
nucleon, as mentioned in the introduction, and following
our prescription, we obtain for the ~-meson exchange
terms

3
V,z'(t) =-

8m

+" (-,'t' —m. ')"q 4mrs(t')
i
'

dt' —--—
21Szr

2 (-'t ) '"(t —t)
(24b)

3 +" (-,'t' —m.') 'i Smr, (t')r, (t')
i

U, &, z(t) =— dt' , (24c)
SVr 4 „~ (-.'t')"'(t' —t)

where I'~ snd I'2 are the Frazer-Fulco'-' amplitudes
linearly related to the isovector form factors. Note that
a factor of 4 has been introduced here in changing from
the isospin (—) convention of Frazer and Fulco to the
isospin j. amplitudes.

From Eqs. (24a), (24b), a,nd (24c) we see that in

approximating the right-hand side by a simple pole,

g
' ——2'm' ——2'm'S

(0)—
m m — m~ —Q

mo2 —t

-'m-' —-'m2s

m„—t

(23)

V i,z'(t)=g pr'/(m, ' t), —

V„z'(t)=g,z'/(m, '—t),

U, z,z'=g erg, z/(m p' t) . —

(24b')

(24c')

g„"-(1+a) —-', m'
(0)—

m m -'/8 co
—Q

—4s+-,' m'

m 2—t

1; g.'(1—s) —-', s+-', m' ——,'m'
~4 (0)— +-

m m — m„'—u m~' —t

g
' -'m' -'m'

I,'01=- +
(1—s')'" m m„'—zz m„' t—
The I= 1 amplitudes are obtained by changing sign to
the I contributions. Obviously the p-meson contribu-
tions are simply obtained from (23) by substituting g~
for g„' and m„' for ns„'. As explained in Sec. Il the fact
that we are dealing here with 7= 1 resonances requires
the introduction of a cutoff which we take to be a simple
factor for each of the t contributions exp[c (t—m ')
)&In(—1+s/2m')7 and. exp[c„(t—m ') ln( —I+s/2mz)7
for the co and p meson, respectively, and similarly for
the I channel.

D. The p Meson

Although the contribution of the anomalous magnetic
moment term is of order (P'/m') smaller than the charge
term, this is not negligible in the case of the p resonance
since the isovector anomalous magnetic moment is
quite large. Consequently, we will take it into account
here. Let us begin, as before, by defining the following
spectral representations

The value m, of the "effective" mass of the p meson is
controlled by the behavior of the functions

i
I';

i (i = 1, 2).
If D„(t) is the zr-zr I' wave deno-minator function,
D (t)1',(t) is reaP and ir;i' can be written in the
following way

I
r.I'= ID-(t) r'(t)/D. (t) I'= (D.(t) r, (t))'i&.(t) I', (»)

where F„(t) is the pion form factor.
From the work of Ball and Wong' on the nucleon form

factors, one sees that D (t) r;(t) are smooth functions of
t, but weigh heavily the spectral function below the
resonance. Together with the fact that the p resonance
is rather broad, we see then that a substantial lowering
of the "effective" mass m, from the experimental value
found in production processes is not surprising. Experi-
mental analysis of the form factors indeed gives strong
support to such shifting. Consequently m, will be con-
sidered as a free parameter. We remark here that if the
p width is substantially below the 130-Mev value taken
by Ball and Wong, then the effective p mass will be only
slightly below the resonance peak. However, in this case,
the p-resonance contribution to the static anomalous
magnetic moment (and probably the charge) will exceed
the experimental value, thus requiring an opposite con-
tribution from the higher energy spectral functions. The
net result could still be represented by an average pole
substantially below the p resonance.

In the approximation corresponding to Eqs. (24a'),
(24b'), and (24c') we obtain now the following expres-
sions for the p-meson exchange terms corresponding to

(t'/4 —m. ')'"
i
2r, (t')

i
'

(-'t')' "(t'—t)
(24a,) "W. R. Frazer and J. R. Fulco, Phys. Rcv. 117, 1603 (1960);

119, |.420 (1960).
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the three types of couplings:

1,pl(0) gp12
m m m —QP m 2—tp

2$+ m+ ms 2$ 2m+2m s

mp2 —t

jV 3 --,'m'+-,'m's ——',m'+-,'m'z-
Ã2. pl gpl +

m m m, '—u

jV 3 —'m' —s—-'m'2 4 2—
2 2,,2&'& =—

gpl'(1+ s) — +-
m m -mp —Q mp —t

3 -'s —-'m' -'m'4 2 2
&4 pl gpl ( S) +

m m -m' —u m' —tp p

1 3
P5, pl gpl

(1—')'"
—-'m2

2 m2

mp

m —Qp mp

3 —,'m p"-(s+3) -'m '(3—s)
2(0) — g ~2

m m

E 3 t' {SluL(s/m') —2j+ lm P
—(7s/4m')+ (ss/4m )+4j}—

q 2,,2"'=—gp2'~
m m mp —Q

{8ltg(s/m') —2j+8lm 'L-(7s/4m') —(ss/4m')+4j} )
7

mp

E 3 t (s2/16m2)+(sm '/32m') ——,'s+-,'m'j —;m '—
v 2.,2"'=—gp2'(1+s) =

m m mp

(27)

3 -'-m ' P(s'/16m')+(sm '/32m') —8s+-2, m'$—
q 4,,2"' =—g,2'(1—s) — +

m m m, '—u mp

(0) —
g

2

(1—s') '" m m, '—u m, ' t—
E 3

+1,plp2 gplgp2
m m

-', (u+m ') —',(t+mp')

m p

P2, pl p2 gpig p2
m m

I us/4m' —m, 's/4m'+-'m, 'j Ps/4m' —m, 's/4m'+ 2mp')

p

P3, plp2 gpig p2(1+s)
m

—-',s+m'

m' —up

m 2—tp

E 3 4$+m—
2 4,.lp2'" =—

gpe p2(1 —s)
m m

3
~5 pl P2 = gpig p»

(1—s')'" m

1—s—m —$—m
+m' —Q m' —tp P
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The I= 1 terms are obtained by multiplying by 3 and
changing the sign of the t contributions. Since the

p meson is a J= 1 resonance like the co and y, in (26),
(27), (28), each t(u) contribution is to be multiplied by a
factor exp[c, (t—m, ') ln( —1+s/2m')](exp[c, (u —m, ')
)& ln( —1+s/2m')]).

Before leaving this section, we mention that our g, »

and g,2 are related to coupling constants in the
Lagrangian formalism by

&=sw'"(g. t+g.s)4(p')~v A(p) A"

~»/2

g.sf(p') ~4(p)A"(p+p')'
2m

'

Similar expressions hold for the co and p coupling con-
stants except for omitting the isospin operator ~ and
setting g„2=g„2=0. In equations which involve g»
[(27) and (28)] there is a difference between our ex-
pressions and those obtained by using the above
Lagrangian in that the m, ' terms in the numerator
should be replaced by I (or t) in the Lagrangian calcula-
tion. This ambiguity is associated with the question of
whether the spectral representation (24a), (24b), and
(24c) requires a subtraction. Since we are only concerned
with the contribution of the spectral function near the
p-resonance region, it seems to us reasonable to use a
no-subtraction form. Note that the difference between
our expression and that of the Lagrangian calculation
affects only the S- and the I'-wave amplitudes for XX
scattering.

E. The I=O S-Wave Pion Pair Exchange Terms

Here again taking into account the appropriate
quantum numbers we may write for the corresponding
spectral representation of the NN amplitude

1 +" gs'(t')
Vs'(t) =— dt' (29)

4m~~

where gz'(t) is proportional to the absolute square of the

S-wave NN ~ m~ amplitude f~&"(t'), defined by Frazer
and Fulco"

3 (t 4m s) 1/s

gs'(t') =-(
) (

f+~'l(t')/(-', t' —m')
(

'
2E t' i

3 t' —4m. '~'"
f
r, ~'&

/

s. (30)
i

Here we consider two alternative approximations of

g, '(t) depending on whther the o resonance exists or not.
(i) Assuming that the o exists and is the dominant con-
tributor to g, ', we write

thus
g, '(t') 2rrg, '3(t' —m.'),

V, '(t) =2g.'/(m. '—t) . (31)

This definition of g, coincides with the conventional
scalar coupling constant in a Lagrangian

~= [g./(«)'"]A 9'
(ii) Assuming that the o does not exist, we construct an
approximate expression for Fo by considering the con-
tributions from the nucleon and the N* (3,3 resonance)
and imposing the unitarity condition that I'0 should
have the same phase as the m-x S-wave amplitude 3
A simple scattering-length approximation is used for
the latter amplitude since this approximation seems to
be able to describe rather well the experimental data. ""
If we put

~-'(t) =N-(t)/D-(t)
we have then

N .(t)= —a,
+" t' —4m'q '" N..(t')

D (t) = 1—— dt'
i

. (32)
w 4 ~ t' i t'(t' —t)

The integral in (32) can be evaluated analytically
and gives

2a ft 4m ')'"— (t 4m s)'~'—
D,(t)=1—

) ) In[s(t —4m ')' '+st' ']—1 +ia~( (; t)4m '.
i ' '

k t i
(33)

Note that the conventional scattering length is [a„/(1+2a /rr)].
Denoting by I'~(t) the contribution to I', (t) from the nucleon and. the (3,3) resonance, "we have

m t—2m. '~ 2q» t'mss'+ p'+ q'
I'Jr(t) =g '—Qr ~+ [ss(Ess+m)'(mss —m)+(mss+m)(m'+m '——,'mss' —t)]Qs~—

4pq i 2pq

mq fmsss+p'+q'~
+[s(Ess+m) '—(m'+m '—sr mss' —t)] Qt~ ~, (34)

p 5 2pq )

"K. M. Crowe, Phys. Rev. Letters 5, 258 (1960); 7, 35 (1961);A. Abashian, N. Booth, K. Crowe, R. Hill, and E. Rogers, Phys.
Rev. 132, 2296 (1963);M. E. Booth, A. Abashian, and K. Crowe, ibid'. 132, 2309, 2314 (1963).

' T. N. Truong, Phys. Rev. Letters 5, 308 (1961)."J.S. Ball and D. Y. Wong, Phys. Rev. 133, B179 (1964).
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where Qp and Qz are I.egendre functions of the second kind, q is the pion c.m. momentum, ypp
——0.06 is the tV zrÃ

coupling, ' mpp ——8.7m is the mass of the (3,3) resonance and E»——(mppp+m' —m ')/(2mpp).
Our expression for I'p(t) is then given by

1
r'z)(t)+

D,(t)

I', (t') —I",(t) ~t' —4m ' ')'
dt'

f

— Ã..(t')
t'(t. '—t)

(3S)

where t, is a cutoff parameter introduced on account of
the bad asymptotic behavior of the nucleon and the E*
contributions. I'a(t) is obtained from I'z)(t) after two
modifications. One consists in subtracting from the Q
functions appearing in (34) a corresponding Q function
evaluated at

V. PARTIAL-WAVE DISPERSION EQUATIONS

Having obtained the exchange terms we follow now
the procedure outlined in Sec. II and use dispersion
relations to construct scattering amplitudes which
satisfy elastic unitarity conditions. These conditions can
be derived from Eqs. (13) and read a,s follows:

(t—2m' —2m '—t,)/4pq Imh, = (mp/E) fh, f, (37a)
so as to introduce a cutoff on the left discontinuity of
I'p(t) corresponding to the one introduced on the right.
The second consists in subtracting the value of the ex-
pression so obtained evaluated at t =0 and adding the
value —0.077 derived from pion-nucleon forward scat-
tering dispersion relations, "so that the whole amplitude
I'p(t) becomes correctly normalized at t=0. This pro-
vides the so-called "pair suppression. " Once I'p(t) is
obtained in this way we get ga'(t) from (30) and evaluate
the integral in (29): This completes the calculation of
the function Vq'(t).

Having obtained V8', we calculate the contribution of
the I=0, I=0 1Vg ~ )VE amplitude to the i71V —+ gcV
amplitude using the crossing relations:

(E/m) p)), a ' = (1/4m) L
—m'(1 —s) Va'(u)

+m (1+.)V, (t)],
(E/m) pop, a(o) (1/4m) {L—~~u+m (1+a)]Vs'(u)

+Pt —m'(1 —a)]Vs'(t) }, (36)

(E/m)(zp, s(') = D1+a)/4m]h's Va( u) +mV a(t)],

(E/m) (()4,a"' = L(1—s)/4m]Lm'Ua'(u)+4s Va'(t)]

L1/(1 —a')"'-](op a'" ——(1/ 4)m(( m'V (ua) m—'V (at)]. —
The I= 1 terms are obtained by changing the sign of the
u contributions.

s& 4m~

Imh„= (mp/E) lh»l',
s) 4m~

Imh. .. = (mp/E){lh l+lh. ..
l ),

s) 4m2

Imhg+z, g = (mp/A){ fh f
+ fhe(. z, J f ),

s& 4m2

(37b)

(37c)

(37d)

andbyhz (s), h» (s), hq ),s (s), hz+), & (s), h (s) the
corresponding partial-wave projections, it is easily seen
that these partial-wave amplitudes are analytic func-
tions regular for s)4m'. To satisfy Eqs. (37), our dis-

persion relations will introduce discontinuities starting
at the physical threshold s=4m'. I.et us denote by
hq"(s), hq~"(s), hq z, q"(s), hs+), ~ (s), h (s) that part
of the amplitudes which contains these discontinuities,
we will then write for the helicity amplitudes the follow-

ing expressions corresponding to Eq. (4) of Sec. II:

Imh~ = ( mp/E){hs 1sh—+, h h j+1J}~ , (37e)
s& 4m~

If we denote by 4p„(z)a(s, t) the sum of the exchange
terms contributing to the helicity amplitudes in the
isospin (I) sta, te

(r))z(s t) —~ (I)+~ (I)+~ (I)+~ (z)+ ~ (z)

(E/m) ppz("=(L~'/'m)q '" +[3h "' +h (""+2hz 4") +2&2k'"'"]Pz

+L7hz("a+3hz, z("a+4k.;,p(o) a+ (2+12)h'")a]Pp,

(E/m) pq ——(E/m)4oz +L—3h) a+ho, ) a+2hz, q( @+2&2h' a]Pq

+L
—7hz(" a+3hz, p(') a+4h4, 4")a+ (2+12)h'("a]Pp,

(E/m) 4po
")= (E/m) pop(') a+ L2ho )(')a+ hp, (")a —2v2h'")

a]diaz'

4h, ,(o) a+3h4, (o)a (2g12)ho(o'a]d„z+Sh„(o) zzd, 4+9h4 (o)ad„4
~

(E/m) pp4") =(E/m)qp4"' + f 2ho, l") +ho, z"' —2V2h'(" ]d )('

+ f 4hz, p"'a+3h4, 4("a (2412)h""'a]d—u' —Shop(")zd —)4'—9h44("')zd —4(4,

"J.S. Ball and D. Y. Wong, Phys. Rev. Letters 6, 29 (1961).
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1 i m
(0) ~ (0) / + [~g(/2 (0) R

/g
(0)R)+/gl(0) Rj

(I s2) 1/2 (1 z2) I/2 g& (] s2) 1/2

/m ((go'

[(g12)(/2 (0&R /, , !o)//)+hg(0)14j
(1 s2)1/2

(p/m) 001(1&= (p'/m) 201(&&R+ [ho(1) R+/zg (1&R]po+ [5/z2() & R+ 2/g12( & R+3/g ((&/4+ (2+6)/gz( & Rjp2

+[9h4"'R+4h "' +5h "&R+(2+20)h4("RjP

(Li'/m) (02 &'& = (E/m) o22
('&+[—/z() &'»+h, !&&'&Rjp +[—5h ('& R+ 2h„('&"+3h„&'»+(2+6)/2'&'& Rjp2

+ [—9/g4&»R+4h &»R/5/g (»R+(2/20)/g4(»R]P

(F/m) (&22'" = (/ /m) yg(&&R+ [3h) 2"'R+ 2hz 2&" —(2+6)h'("R]d '

+[5hz 4"'R+4h4 0(&'R—(2+20)h")&R]d)1'+3h)1(»Rd)1'+7hz "' d11',

(I'1/m) 024'" = (r&/m)//)4"""+ [3h1 2&"R+2ho 2&"R—(2/6)h'"&R]d 11'

+[5hz 4("R+4ho 4
"&R—(2+20)h'"&Rjd 11'—3h11"'Rd 11'—7hog&'&d11'

(39)

~5(&)—
(1 22) 1/2

1 m d10
(1)R+ [(Q6)(h (1)R h (1)R)+h2(1) Rj

(1 22)1/2 P (] z2)1/2

+ [(+20)(/g (1)R
/g

(1)R)+ j'g4(1) Rj
(] s2) 1/2

h(s) = /V(s)/D(s), (40)

where N(s) contains the singularities of the exchange
terms and is regular for s)4m2, D(s) is regular for
s&4m' but has a branch point at s=4m'.

From Eq. (37) it is easily seen that

All the arguments in (39) have been suppressed.
Coming now to the construction of the dispersion

equations we consider first the four uncoupled 5 and I'
waves ho( ) hyo('), fz»(" h&(". They satisfy similar
equations so we use the common symbol h for any one
of them and we write

The dispersion integral simply removes the right-hand
cut of the product hR(s)D(s) while leaving the singu-

larities of the exchange term hR(s) unaffected. Both a1

and hR(4m2) are zero for the P-wave amplitudes. For
the S-wave amplitude ai is the proton-proton scattering
length a10" (the neutron-proton scattering length a)00

when we calculate the I=1 amplitude for neutron-

proton scattering). Expressing D(s) in (43) by means of

(42) we obtain then the integral equation for N(s)

s—4m'
N(s) = hR(s) —hs(4m2) —a1+——

Hence
Im(1/h) = mp/Li. —

ImD(s) = —(mp/P&)N(s),
s) 4m2

(41) +" [h'"(s') —hs(s) 1 mp'
ds' N(s') . (44)

(s' —4m')(s' —s) p'

D(s) = 1—
N(s')

p' (s' —4m')(s' —s)

s—4m' +" mp'
ds

(42)

+" hR(s') ImD(s')—ds'. (43)
, 4„,* (s' —4m')(s' —s)

Since the analytic properties of cV and D remain un-

changed if one multiplies both by a 6xed constant, we

choose to normalize D= j. at s=4m'. The dispersion
rela, tion for N(s) can now be written in the form

s—4m'
.'V(s) = h R(s)D(s) hR(4m 2) a1— —

Since hR(s) and its derivative are bounded in the
physical region s &4m' and converge suKciently rapidly
at high energy, Eq. (44) is a Fredholm integral equation
with a nonsingular kernel and has a unique solution.
After solving Eq. (44) for N(s), one can perform the
integra, tion in (42) to obtain D(s). The amplitude h(s)
can then be evaluated

s—4m-'

+" ds'/1. ":(s') ImD(s')-
(45)

(s' —4m') (s' —s)

1
h(s) =—h R(s)D(s) hR(4m') a)— —

D(s)
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At this point, we should paint out that Eq. (42) is not
the only one that satisfies the unitarity condition (41).
There is the well-known CDD ambiguity which amounts
to the addition of poles in (42) corresponding to a set
of zeros in the amplitude h(s). However, these poles in

D(s) are also associated with a set of zeros in D(s) on
the unphysical sheet which are usually interpreted as
additional elementary particles, in this case, of nucleon

number 2. We will not introduce any such poles because

we believe that there are no elementary particles of

baryon number 2 in this sense. "
I.et us now consider the coupled amplitudes hog( ),

h'&'&, h»& &. It was first shown by Bjorken and Nauen-

berg" that the 1V/D method can be used for the coupled

amplitudes if they are considered as elements of a sym-

metric matrix.

I.et

(hpl h ) t iV11 +12) t D22 D12
x

h' h21& EZV'21 F22) E —D21 Dii J(DJf

where we have suppressed the isospin index. The imaginary part of 3f ' is simply

(46)

224pt 1 0~
ImM —'= —--

/E EO 1)
(47)

for s&4m . From this we can write a set of dispersion relations for the D functions,

(s—4m') +" (222P' V;;(s')
D;;(s)= 6;;— ds'i

4 4 1 E' (s' —4m')(s' —s)

and a set of somewhat more involved dispersion relations for the S functions

(s' —42242) (s' —s)4mR

(s—4222') +" hp, 1 '(s') ImD12(s') ImD22(s')
X12($) hp, l ($)D12(S)+h ($)D22(S) 8$

4~R (s' —44222) (s'—s)

(s—42222) +"
hp, p(s') ImDii(s')+h'~(s') ImD2i(s')

iV»($) =~p.i ($)D11($)+h' ($)D»($)— ds (49)

(s—4' 2)
+21($)= h ($)D»($)+A2, 1 (s)D21($)

(s—42242)

1V22($) h ($)D12($)+h2, 1 ($)D22($)
4~R (s' —F2)(s' —s)

+" h' (s') ImD11(s')+h2, 1 (s') ImD21(s')
ds

mR (s' —4m') (s' —s)

+" h'~(s') ImD12(s')+hp, p(s') ImD22(s')
ds

(51)

(52)

We obtain hp, iE(s) and h2 p(s) from hp 1 (s) and hp, p($) by making the following modification:

hp, P(s) = hp, P(s)+cp, h2, P(s) = h2, P+ Lcp(s —42242)/(s —sp)). (53)

The constants co and c2 are adjusted to give the correct scattering length a3"& and D-wave threshold behavior,
respectively. The additional singularity introduced in the D wave is required, as discussed in Sec. II, by the
threshold condition.

We substitute now the D functions given by Eq. (48) into the dispersion relations for the X functions and
eliminate the constants co and c2 imposing the above mentioned conditions.

The following set of integral equations for the E functions is then obtained:

(s—4m2) +" mp' )
F11(s)= hp, P(s) —ap""—h p, P(4m, 2)+— ds'

4 F.' i

Lhp, P(s') —hp, P (s') )Vii(s') +Lh"'(s') —h'~(s)]%21(s')X--
(s' —4m2) (s' —s)

"The deuteron appears as a bound-state pole in our calculation."J.D. Bjorken, Phys. Rev. Letters 4, 473 (1960}.
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(s—4m') +" /mP'&,
1Vog(s) = h' (s)+ ds'~—

& z'i

I:h"(s')—h "(s)]1Vu(s')+L4, a '(s') —ho, x (s)+(c(s —s) ( sp+4m')/(s' —sp)(s —so))]1V,,(s')
X (55)

(s' —4m') (s' —s)

(s' —4m') (s' —s)

(s-4mo) +- mp )Lho. F(")-1o,P(s)]1V„(s')yLh&-(s')-k&'. (S)]1V„(s')
1V»(s) =14'~(s)+—— ds' z'i (56)

or(s —sp)

(s—4m')' +" (mp')
1Voo(s) =ho, & (s)+ as'I

& z'i

S Sp &t
S—So

——ih"'(s') — h"'(s) 1V»(s')
s' —4m'i s—4m'

(s' —4m') (s' —s)

S So ) $—Sp

Iho, &
'(s') — Iho, ~"'(s) 1Vop(s')

s' —4m i '

s—4mpi

(s' —4m') (s' —s)
, (57)

where

4m' —so +" mp') 1
ds'

~

— Lh'~(s')1V~o(s')+ho P(s')igloo(s')].
~D»so 4m4 E' i (s' —4m')'

(58)

We note that Eqs. (56) and (57) can be solved independently of (54) and (55). Having obtained 1V»(s) and
1Voo(s), one evaluates the integral in (58) and solves (54) and (55) to obtain 1V»(s) and 1Vo~(s).

The remaining 8-wave amplitude is hz, o "&.Here one may neglect the term
~

h'&'&
~

' in the imaginary part given by
Eq. (37c) and obtain h& ..&'& by the X/D method as an uncoupled amplitude because the coupling to the triplet-F
amplitude is very weak. The coupling amplitude h'(') can then be evaluated by a dispersion integral using the
unitarity condition that h'& & has the same phase as hz, o&'& in the physical region (neglecting h»&'&).

(s—4m')' " (s' —so)h'&'&~(s') ImD(s')
14'"&(s)= &4'&"~(s)D(s)— —ds )

D(s) or(s —s,) 4„4 (s' —4m')'(s' —s)
(59)

where D(s) is the denominator functions for ht, o& &. Next we consider the two uncoupled D-wave amplitudes hop&'&

and ho&'&. They can be obtained, as the uncoupled S and I' waves, by the X/D method, the only difference being
the introduction of an additional singularity required by the threshold condition as we have already seen for the
coupled D-wave h2, ~('). The integral equation for the 1V function will then read as follows for these two D waves:

(s—4m')'
1V(s) =h~(s)+

or(s —so) (s' —4m') (s' —s)
ds (60)

where the subscript of h~ and the isotopic spin index
have been suppressed.

Finally, we consider the intermediate partial waves,
which are the remaining partial waves appearing in (39):
hpo&" (s), I4pp&'&(s), P4 "&(s) hp4&»(s), hp4"&(s) g4&'&(s)

hII &(S), hop"&(S), h44"&(S), h'I'&(S), h44&'&(S). FOr theSe
waves we approximate the unitarity condition by con-
sidering only the contributions of the one-pion exchange
term in the evaluation of the imaginary part by Eq.
(37):if we write h& for I4&~& & or hs' &, where I is the orbital

h~(s) —=h(s) —h~(s) (61)

can be substituted into Eq. (39). This completes the
calculation of the helicity amplitudes oo„&r&(s,t).

angular momentum (I=J for the coupling amplitudes),
Eq. (8) of Sec. II shows explicitly the form of the dis-
persion integrals. Thus all the partial-wave amplitudes
corresponding to J&4, /&5 can be calculated and the
right-hand part
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VI. RESULTS

To summarize, we have the following predetermined
parameters:

(1=0) 5 4 I
g„„&1='&= —23.74 F.

u» ———7.7 F.
g '=24.
m„= 135.2. MeV.
m, =548 MeV.
m„= 780 MeV.
m~= 1020 MeV.
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l'xG 4. p-p polarization at 66, 118, and 315 MeV.
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Numerical values for the two cases are

(i) nt. =437 MeV,

gpss
2 I77y

c„=0.0048K ',

g p2'=11 4,

(ii) a = —1.0X,
g4) 2@77'

c„=0.0017K ',

g p22 = 12.2)

g '=3.05,
c„=0.011K ',

m p=591 MeV,

cp=0.0052X -',

t, =25m ',
c„=0.0028K ',

m p= 591 MeV,

cp
——0.0041'A '-,

g '=12.1,

g„'=2.26,

gpss=1 27)

sQ
——168m ';

g,'= 10.4,

g„'=2.65,

g = 1.27)

sp= 171m~
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As we mentioned before, the coupling constants
within the two sets of parameters are not very diferent
except, of course, the 5-wave xw parameters. These
results give an indication that not only is the rela-
tivistic dispersion relation a practical tool for calculating
scattering amplitudes, but some useful parameters such
a,s the coupling constants can be determined this way
reasonably well. Of course, one should not take the
variation between sets (i) and (ii) as an absolute measure
of the uncertainty of the parameters. The physical
picture may be la, cking, for example, in the neglect of
correlated pair contribution with xw relative a,ngular
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dealing, for example, with the nuclear many-body
problem.

In view of the fact that the relativistic single-particle
exchange term h&~(s) plays a dominant role in the dis-
persion theory and that the additional requirement of
unitarity condition is sufFicient to yield partial-wave
amplitudes that fit experimental data, it seems to us a
natural way of constructing potentials is to choose the
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momentum /& 2 (I(l contributions are absorbed in the
resonance parameters). Although such contributions are
partially accounted for by fixing the observed scattering
length and using a parameter s0 for high partial waves,
a certain amount of uncertainty is always present in
such phenomenological fits.

Over-all speaking, our present parameterization does
have considerably closer contact with elementary parti-
cle interactions than using, for instance, static po-
tentials. On the other hand, one may raise the question
of what else one can do with relativistic dispersion rela-
tions in nuclear physics. Unfortunately, the answer is
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FIG. 12. e-p A parameter at 140 MeV.



MULTI MESON RESONAN CES AND NUCLEON —NUCLEON INTERACTION 8161.

one such that the Born approximation in the nonrela-
tivistic Schrodinger theory reproduces the relativistic
hP(s). Since solutions of the Schrodinger equation
automatically satisfy the unitarity condition, the scat-
tering amplitudes would probably be quite similar to
solutions of relativistic dispersion relations, the main
difference being that in the case of the Schrodinger
equation, the solutions contain "genuine" multimeson
branch cuts in the unphysical region. The medium-
range part of these can be absorbed into the 0, p, and
co exchange terms while the short-range part is pre-
sumably shielded by the cv and p repulsion. One can
show, however, that the potentials constructed from the
relativistic Born approximation are necessarily velocity-
dependent. "For example, the vector-meson exchange
contribution to the central potential contains the term

~.= -g'( +12p'/m')(e-""'/r).

One can estimate the (2p'/m') term by replacing the
operator p' by O'. This yields a 33% variation between
zero and 300 MeV.

With the full velocity dependence taken into account,
one probably will find that fitting scattering data over
the entire elastic scattering range (&400 MeV) will

require a potential substantially different from existing
phenomenological potentials. The application of these
velocity dependent potentials to the many-body prob-
lem could give rather different results on saturation
properties and binding energies.

Finally, returning to the connection between nucleon-
nucleon scattering and elementary-particle interactions,
it wouM be of considerable interest to find what values
of the coupling constants are needed with the velocity-
dependent potentials. The comparison between these
values and our present result can give us an independent
estimation of the coupling constants as deduced from
nucleon-nucleon interaction.
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APPENDIX A: RELATIONS BETWEEN HELICITY AM-
PLITUDES AND AMPLITUDES OF STAPP,

YPSILANTIS, AND METROPOLIS

The relation between the helicity amplitudes and the
amplitudes using representation in the s component of
the initial and 6nal spin' are

pr ———',M„+-,'sMpp —(Q-', )yM», (A1)

q s
————',M„+-',sMpp —(Q-,')yM», (A2)

pop= s(1+s)Mop+Mr —r+(v's)(1+s)(s/y)M»
+(V's)(1+s)/yM» (A3)

» D. ~. moog, Nucl. Phys. 55, 212 (1964). For a review of
earlier work with potentials, see M. J.Moravcsik and H. P. Noyes,
Ann. Rev. Nucl. Sci. 11, 95 (1961), R. Cirelli and G. Stabilim,
Suppl. Nuovo Cimento 20, 157 (1961); R. Cirelli and G. M.
Prosperi (to be published).

p, = —',(1—s)Mop+My &+ (g-', ) (1—s) (s/y)M] p

—(g-,') (1—s)/yMpr, (A4)

ps= —syMoo —(V'k)sM» ~

where
s= cose, y = sine.

The inverse of the set of equations above is

M„= yg —p2,

Mpp=s(p r+ps) —2yp p,

Ml—1 s(go+ v'4)+ le(qo4 —
q s)+y~p,

M»= —(Qs)y(vs —
p 4)+%2z pp,

Moi=(gs)y(p s—p 4)+v2sv p.

(AS)

(A6)

(A7)

(A8)

(A9)

(A10)

$ (p&) = g (1+re'-/y') p'~(c'p cot8 ~+Q) (85)

is analytic at p'=0 for the singlet and the un. coupled.
triplet amplitudes. Here,

rf = (me'/2P), (86)
C'= 2s rf/t exp(2s ri) —1], (8/)
Q= me'(-,'lt (ig)+-,'lt (—ig) —

inrun], (88)

y(~i~) = r'(ai~)/1(~i~) . (89)
"D.Y. Wong and H. P. Noyes, Phys. Rev. 126, 1866 (1962).

Note: Mrq ——Mr g+Mpp+v2(s/y)(M»+Mpr).

APPENDIX B: COULOMB CORRECTION
TO THE N/D EQUATIONS

For p-p scattering, the static Coulomb correction to
the 1V/D equations was discussed at great length by
Noyes and Wong. '0 We give here a simplified version of
their result. Firstly, we mention that when we evaluate
the p-p observables o, I', D, R, A in terms of helicity
amplitudes, appropriate Coulomb functions should be
added according to the formula given, for example, by
Stapp, Ypsilantis, and Metropolis. e Secondly, our
partial-wave projections of the helicity amplitudes
should now be expressed in terms of nuclear-bar phase
shifts with Coulomb contributions:

hg ——(E/2imP) t exp(2ibg~) —1]e"e' (81)

h J J ——(E/2imp) t exp(2ib J J")—1]e" &, (82)

4qr, q=(E/2imP)tcos2eg exp(2i5J~r ~~) 1]—
yexp(2ieJ~, ), (83)

h =(E/2imp) sin2eJ expLi(8J+r, g +$g r, g )]
&(exp[i(C g+r+eg r)], (84)

Thirdly, the h's do not satisfy an Ã/D equation, but
we can construct some other functions of the nuclear-
bar phase shifts which do satisfy an X/D equation.

The work of Noyes and Wong starts with the observa-
tion that the function
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The basic problem is the construction of the nuclear-bar
phase shift which contains a given branch cut below
p'= —(zN '/4), satisfies the unitarity condition and has
no other singularity except for the essential singularity
at p'=0 which can be removed according to (85).

Noyes and Kong used these properties to construct
an integral equation for a function Bi(p') and obtain
S~(p') in terms of Et(p'). We will show, however, that
the usual 1V/D equations can be used for the function

As ——(e "~'Izg)/(C'p» II (1+g/X') j (810)
X=1

and slmllarly fol the Uncoupled-trIplet amplItude l2gJ-.

Let us write

(811)

1 " B(s') ImD(s')
N(s) =B(s)D(s) d—s'—— —,(812)

s —s

Imo= (2zzzp—/p)C'p»$ II (1+~'/y-') jN.
X=1

s&4zzz'. (813)

The function D will satisfy the usual dispersion relation

D(s) =1— ImD(s')
ds' —— (814)

(s' —4m') (s' —s)

where B(s) is the integral over the left-hand branch cut
of As from p'= —(zzz, '/4) to —~. It is clear that the
Coulomb modifications causes little complication on
this branch cut since exp( —2i8s), C', and q' are all real
in this region. In fact, the one-pion exchange term for
B(s) was explicitly given by Noyes and Wong. The
essential question lies in the construction of D.

The unitarity condition gives

If

SJ(p') = (—2'D/zzzN)+ p' '(-ic'p+Q)

~L rr(1+"/~)~ (» )

is analytic at p'=0.
From the expression (87), one sees tha, t C' has a pole

at all integral values of iq and hence an essential singu-
larity in p. On the other hand, the function (ic'p+Q)
has an accumulation of poles only on the unphysical
sheet Imp(0 (ig=negative integers). It is clear that
(&D/mN) also does not have an accumulation of poles
on the physical sheet. The remaining question is whether
(L'D/mN) has an accumulation of poles on the unphysi-
cal sheet which precisely cancels the poles in the second
term of (815).This indeed is the case as can be seen by
examining ImD given by Eq. (813).Ea,ch pair of poles
in C' at ig=+integer gives rise to a single pole at
zg= —integer after performing the integral (814). The
residue is just such that the cancellation takes place.
Thus we have completed the Coulomb modification for
the singlet and the uncoupled-triplet amplitudes. As we
mentioned above, B(s)can be evaluated explicitly for the
one-pion exchange term which differs from the zz-p case
by approximately 3%. Corrections for the higher mass
states are correspondingly smaller and will be neglected.

For the triplet-coupled amplitudes, the lowest angular
momentum state which enters into p-p scattering is 'Ez
and 'Il 2 coupled by e2. Since we have already made an
approximation in the unitarity condition for these
amplitudes, it is reasonable to treat the 'E2 amplitude
as uncoupled when we introduce the Coulomb correc-
tion. Coulomb corrections of the iV/D type ca.n be
ignored altogether for the F and higher partial waves.

Finally, we remark that the method outlined above is
used only for the calculation of the energy variation of
the phase shifts (the scattering length being taken from
experiment). The uncertainty of the Coulomb modifica, —

tion on the left-hand branch cut will not cause a large
variation of our results since it is only a nonsingular
effect of the order 3%.


