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The integrals in Eqs. (A10) and (A12) were per-
formed on an IBM-709 computer. The geometry dis-
cussed in Sec. III D with both 5' and 10' separation
was used, and 0 was calculated as a function of E8.
The result is shown in Fig. 2.

An approximation based on Eq. (2) can be used to
check the computer calculation for the case of very
small detectors near the cone center. One introduces an
effective cone solid angle 0,' as if the breakup were

and
0,'= 1/P(0) = 2n./(1+/') (A14)

n =no'(&s+&)/(4~&) . (A15)

Equation (A15) was found to agree with the more exact
computer calculation under the conditions described
above.

uniform over a cone of size 0, with breakup probability

P(n=0) = (1+P')/2n . (A13)
Thus
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Low-energy E -d elastic-scattering cross sections are calculated using a Fadeev type of multiple-scattering
formalism. The two-body interactions are taken to be S-wave nonlocal separable potentials of the Yama-
guchi form. Coulomb forces, and the X+-X' and n-p mass differences are neglected. The elastic angular
distribution and cross section, as well as the total cross section, are calculated for incident kaon laboratory
momenta in the range 110-230 MeV jc. In tPis momentum range it is found that for the elastic scattering
cross sections the impulse-approximation result is within 10—25% and the double-scattering-approximation
result is within 10% of the correct value. It is also found that in order for the optical theorem to give a good
result for the total cross section, triple-scattering terms must be included. A detailed examination of the
multiple-scattering series is made in order to illuminate these results.

I. INTRODUCTION

' 'N a previous paper' a multiple-scattering formalism
~ - of the Fadeev type' ' for scattering from deuterons
was derived and applied to low-energy E -d scattering. 4

That particular application was chosen because the
low-energy K-E interactions were 5-wave interactions
and because some data on K -d scattering was available.
In fact the model for the E-Ã interactions used in A
did not completely justify using the results of the calcu-
lation to draw hard conclusions concerning experiment.
As an investigation of the contribution of the single-
scattering and the double-scattering terms to the exact
solution of the multiple-scattering equations, however,
these results were of interest. Even from this point of
view the particular process studied was rather a special

* Work supported by the U. S. Atomic Energy Commission.' J. H. Hetherington and L. H. Schick, Phys. Rev. 137, 8935
(1965); hereafter referred to as A.

2L. D. Fadeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
I English transl. : Soviet Phys. —JETP 12, 1014 (1961)j; Dokl.
Akad. Nauk 138, 561 (1961); 145, 301 (1962) [En lish transls. :
Soviet Phys. —Doklady 6, 384 (1961);7, 600 (1963) .

'See also C. Lovelace, in Strong Interactions in High Energy
Physics, edited by R. G. Moorhouse (Plenum Press, New York,
1964), p. 437; Phys. Rev. 136, 81225 (1964).

4 For similar developments of the n-d problem see A. N. Mitra
and V. S. Bhasin, Phys. Rev. 131, 1265 (1963);R. Aaron, R. D.
Amado, and Y. Yam, ibid. 136, 8650 (1964); Phys. Rev. Letters
13, 579 (1964).

case in that the E-E interactions are absorptive. The
role played by unitarity was obscured by this absorption
so that the scope of the interpretations which couM be
placed on the results was not clear.

In the present work we have applied the formalism
developed in A to low-energy K+-d scattering, a process
in which the two-particle interactions are real. Partly be-
cause of our crude models for the two-particle interac-
tions and partly because of the lack of data, our primary
aim is not a comparison of our calculated results with
experiment. Instead we shall concentrate on investigat-
ing the contributions of the low-order terms of the
multiple-scattering series to the exact solution. Our aim
is to see if there exist convenient approximations which
may then be used in conjunction with more realistic
two-particle interactions.

The model used here incorporates the same broad
features as that used in A. Calculations are carried out
for incident kaon laboratory momenta in the range
110—230 MeV/c. (For momenta )300 MeV/c rela-
tivistic effects are large, while for momenta (100MeV/c
effects due to the lt+-K' and e-P mass differences be-
come large. Neither relativistic nor mass-splitting ef-
fects are taken into account, although some calcula-
tions are done using relativistic kinematics. ) Only S-
wave interactions between pairs of particles are in-
cluded. Each of the three interactions (E 1V isospin-
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singlet; E-N isospin triplet; and A'-X isospin singlet,
spin triplet) that enters the calculation is represented
by a nonlocal separable potential of the Yamaguchi
form. ' Coulomb forces are neglected throughout, but
the identity of the nucleons and intermediate charge-
exchange scatterings are included.

In the next section we give the equations upon which
the present calculations are based. In Sec. III we discuss
the two-particle amplitudes which are used as input
data. The results of the calculations of the elastic
angular distribution, the elastic cross section, and the
total cross section are given in Sec. IV. These cross sec-
tions are calculated in the impulse approximation, ' the
double-scattering approximation, and exactly for vari-
ous values of the input parameters. ~ Since many features
of the cross section can be related to the 1=0 amplitude,
which dominates the multiple-scattering corrections,
Sec. V is devoted to a detailed examination of that
amplitude and various approximations to it.

II. MULTIPLE-SCATTERING FORMALISM

The Schrodinger equation for the 3-body system is
taken to be

3 1 3

VP+Q V; %=M,
'=i 2m;

e, (k, ,I)= dr, qe, (r,q, I) exp[ik, 'r;q), (2 6)

(2 &)

dk e,2(k, ,I)
v'(q, I)=

(2x)'[R—(OR/2m, OR,)q' —(kP/2p;)+itt)
(2.g)

OR=mt+mm+m3, p, =OR, 'm, m~, rt ~ 0+. (2.9)

The potential shapes are taken to be

e, (k, ,I)= [k,e+P,2(I)) '. (2.10)

The potential strengths X;(I) and range parameters
P; '(I) are to be determined from two-body experiments.

The elastic angular distribution, elastic cross section,
and total cross section may be written in the form

It follows from Eq. (2.2) that the (in general, off-energy-
shell) matrix element of this operator for the scattering
of particles j and k from a state of relative momentum
k, ' to a state of relative momentum k; is given by

(k; I
t, (q,I) I k,')=e;(k;,I)r, (q,I)e;(k,',I), (2.5)

where

(do EL/dQ) = (prig/2n)'I Q(2t+1)tt(P((q. qg) I', (2.11)

(2.12)E =( 'i )Z(2t+1)l~ I',

o ToT= —(2wrr~/qa)Z(2t+1) Im(rti) (2.13)

Here q and qb are the relative E+-d momenta in the
final and initial states, respectively, q =q Iq I

',
q~=q~lq~l '

q = lq I= lq~l &rr& is the R+-d reduced
mass, P& is the 1th order I egendre polynomial, and g& is
the center-of-mass t-matrix element for elastic E+-d
scattering in the lth relative angular-momentum
channel.

The isospin considerations, as well as the potential
shapes, in this problem are the same as those that were
used in A. Taking over the expression for g~ obtained
there, we have

(r;q, Il V, lr, e', I')=X,(I)v, (r q, I)e,(r;s', I')~rr'', (2.2)

where r;& is the relative position vector of particles j
and k, r,~=

I
r, ~ I, and I=I' is the total isospin of this

pair of particles. We let t, (q,I) be the t-matrix operator
for the scattering of particles j and k in their own
center-of-mass system in a state of total isospin I and
energy

(2.14)7 l 'g l + tl

00

C'i»(q, q )r&(q)4&»(q, q,)(2~)—'q'dq, (2.15)~
IA—

(2 3)E ((2m, ) '+(2OR, ) ')q', —
where

where m, is the mass of the ith particle, V, is the
potential-energy operator between particles j and k

(iW j, iWk, j&k), and E is the total energy of the
system. We let particle 2 be the kaon and particles 1
and 3 be the nucleons. All calculations are performed in
the zero-total-momentum frame of reference.

Each two-body potential is taken to be an S-wave
nonvocal separable potential for each isospin state and
this latter quantum number is assumed to be conserved;
i.e., in terms of isospin and configuration-space matrix
elements

OR, =m,+my. ni"'= Z 2 C'i. (q,q.)r (q)R~-s(q q') '(q')

' Y. Yamaguchi, Phys. Rev. 95, j.628 (1954).
In this paper the impulse approximation is taken to mean the

first term of the multiple-scattering series as given in Eq. (2.15).
This differs from the form used by Chew (see Ref. 16) discussed in
Sec. V.

7 For impulse-approximation treatments of E+-d scattering see
E. M. Ferreira, Phys. Rev. 115, 1727 (1959);M. Gourdin and A.
Martin, Nuovo Cimento 11, 670 (1959); and Ref. 10 below,

&&4 (s2(q', q,) (2s.) 'q'q"dqdq'. (2.16)

Here q~
A is the single-scattering term in the multiple-

scattering series for g~, while g~
8 is the contribution of

all the higher order terms in this series.
The matrix element R&,s(q, q') is given by the integral
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equation

Zl.p(q, q') = K,.p(q, q')+ P «.,(q,q")
0

1/2
[C,)= 0

v3/2
(2.29)

Xr'(q")E»~(q",q')(2~) '(q")'&q", (217)
where

«-~(q q') = Zl(Z-2(q q'),Zl. (q', q),Z.p(E,q,q'))

Ott, 5Kpnz0$' pX, (2.18)
4m mp(qq')2

III. TWO-PARTICLE AMPLITUDE

with The two-particle S-wave scattering amplitude f, (k,I)
is related to the i-matrix element given in Eq. (2.5) by

g (Z Z Z )= [(Z —)(Z —p)(Z —p)) '
f, (k,I)= —(2~) 'p, (&,

~
&, (q,I) ~

&,'), (3.1)

k—= f 2p [E (ORq'/—2mPR;)) )'" (3.2)

XPl(I )dP, ( .1 ) with

ORaPa ORaq mpq
Z,p(q, q') =-

25zpgg 2fspg 2Ott &g

(2.20) and the on-energy-shell condition ~k,
~

—~k,'~ =k. In
terms of the 5-wave phase shift 8;(k,I)

Once the two-particle interactions given by Eqs.
(2.7)—(2.10) are determined Eqs. (2.14)—(2.29) may
be used to evaluate the cross sections given in Eqs.
(2.11), (2.22), and (2.13).We turn then to consider the
two-particle amplitudes.

E+mo Ott;pq OR q'
Z.p(E,q, q') =

g(t 2mag 2mp(t

E+=E+iq, m2 ——OR —m, —ms.

The isospin-space matrix [W s) has the form

(2.21)

(2.22)

f,(k,I)= [k cot8;(k,I) ik) ' — (.3.3)

It follows from these relations and Eqs. (2.7)—(2.10)
that the phase shift corresponding to the two-body
potential of Eq. (2.2) may be written

k cot8, (k,I)= u, '(I)+-2,rp;(I)k2+P, (I)k', (3.4)
—1/2 1/v2 v3/2

[W 2)= 1/v2 0 4 (3/2), (2.23)
v3/2 0 (3/2) 1/2

where the scattering length a, (I), the effective range
r2, (I), and the shape parameter P, (I) are given by

while the "vector" [r&(q)) is given by

rl(q, 0)
[r'(q))= r2(q, 0)

r, (q, 1)
(2 24)

2 42rp, 2(I)- '
1+

2 '~'(I)—

1 - 8~P,2(I)-

~*~'(I)—

(3.5)

(3.6)

where

BRg'Ott', ~Xgc~

8m2m, '(qq, )'

Z2&= Z2., Wl'tll p2 ~ n2,

(2.25)

(2.26)

The r, (q,I) in this last expression are given in Eq. (2.7)
where the subscript i= 2 refers to the nucleon-nucleon
interaction and the subscript i=1 refers to the E-E
interaction. Expressions for the double-scattering,
triple-scattering, and higher order multiple-scattering
terms may be obtained by iteration of Eq. (2.17) and
substitution of the result into Eq. (2.16).

Each factor Cl»(q, q ) appearing in Eqs. (2.15) and
(2.16) is a component of the vector [C~) times the 1th
partial-wave part of the product of the deuteron mo-
mentum-space wave function g ( ~

q+ (m~
~
OR2) q ~ ) and

the potential shape 2~(~ q,+ (m2~OR„)q ~):

q'l72(qqqa) Ql(Zp2(qqqa)yZ2y(qayq), Z2y(qaqq))

P;(I)= —22r [p,lw„(I))
—'. (3 7)

&2=4(0)= —82rp2(n2+p2) ml (3.9)

The determination of the kaon-nucleon potential param-
eters is not so straightforward.

We consider first the E-3J isospin triplet interaction.
The analysis of Goldhaber et aI,.' showed that for kaon
lab momenta up to 640 MeV/c, K+-p scattering is pure
S-wave scattering. The data could be fit by both a purely
repulsive hard-core potential with a radius of 0.31 F
and an effective-range model,

For the nucleon-nucleon interaction (i= 2, I=0) only
the 'Si potential enters the calculation. We have taken
the values of the parameters for this potential that ht
the low-energy data directly from Ref. 5. These values
are

n2
——45.706 MeV/c, p2=—p2(0) = 6 255n2 .(3.8)

n, = (2 Bill)2' 2l2B2 2.225 MeV, (2.2——7)
k cot82 ——a +-2, rolk2, (3.10)

1V2= 8&n2p2 (n2+ p2) (2.28) 8 S. Goldhaber et al. , Phys. Rev. Letters 9, 135 (1962).
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(r»/I ail) & (9/16) (3.14)

This inequality is not satisfied by the values of ro& and
ai given in Eq. (3.11).

The failure of our model to reproduce the experimental
scattering length and effective. range is not particular
to the shape of p, (k, 1) used here. The difficulty lies in
the fact that the negative scattering length and rela-
tively large effective range require a local potential
which changes sign; i.e., a potential which if strongly
repulsive at small distances is weakly attracitve at
larger distances. It is well known that a slm of nonlocal
separable potentials is required to duplicate the physical
properties of such a local potential. Since our model
can be made a very good fit to the experimental data at
lower energies, we did not feel it was worthwhile to in-
clude such sums of separable potentials at this time. We
have therefore continued to use the single separable
potential with the shape pi(k, i) as given above.

Fortunately, for the momentum region of interest
we may adjust the parameters of our E-E potential in
such a manner as to obtain good agreement with the
E+ pexperimental resu-lts while at the same time insur-

ing that the discrepancy between these values of the
parameters and those given in Eq. (3.11) does not
distort the results of the present calculation. We see
from Eqs. (3.4) and (3.7) that we may make our model
independent of the shape parameter by choosing X&

suitably large. By choosing a&
———0.29 F we have, for

values of k=0, agreement with the E+ pexperimental-
result. Further, we maintain this agreement for values
of k&300 MeV/c so long as we choose an rpi&0 5F;.
i.e., so long as our ro~ is small enough that in this mo-
mentum range the first term on the right-hand side of
Eq. (3.10) dominates. Equation (3.14) guarantees that
for a~= —0.29 F this is the case.

To insure a suKciently large value of P & we chose

L2(Pilail) '—1]=00« (3.15)

This relation along with the experimental value for a~

then gave us

Pi
—'——0.145145 F, rpi=0 145 F. (3.16.)

Preliminary calculations of the various K+-d cross sec-
tions showed that A, & could be varied by a factor of 10 from

with

ai= (—0.29&0.015) F roi= (0.5&0.15) F. (3.11)

With our model, on the other hand, Eqs. (3.5) and (3.6)
yield

Pi=Pi(I) = (3/2roi) {1&LI+16roi/9ai]' P}, (3 12)

&i=—&i(1)= —(4irPi'/pi) L2/Piai+1] —'. (3.13)

For a negative scattering length the requirement that
the right-hand side of Eq. (3.12) be real leads to the
inequality

the value determined by Eqs. (3.13), (3.15), and (3.16)
without affecting the results at all.

Finally we note that it is only in the low-energy
range in which our potential model fits experiment that
the E-N t-matrix elements are evaluated in the multiple-
scattering calculation. In Eqs. (2.15) and (2.16) the
t-matrix elements have been decomposed as in Eq. (2.5).
Only the factor r&(q) appears explicitly, the potential
shape factors having been absorbed into the C i~i(q, q,) or
Ri,s(q, q'). For any range parameter Pi ' that is smaller
than Pp ', the range parameter of the 1V 1V po-tential, the
structure of C i»(q, q,) is dominated by the deuteron wave
function; i.e., the singularities of Ci~p(q, q, ) in the q
plane that lie closest to the real axis are the branch
points characterized by the size of the deuteron n2 '
and the range of the N-N potential. The closest singular-
ity, the up ' branch point, causes Ci~p(q, q, ) to peak in
the region q=q, /2; i e , Z. p.~

——&1 implies Re(q) = q,/2.
The Ci„o(q,q,), as can be seen from Eqs. (2.19) and
(2.20), fall off rapidly for both large and small q. Actual
calculational experience shows that only values of
q&500 MeV/c contribute signi6cantly to the integrals
in Eqs. (2.15) and (2.16).For such values of q Eq. (3.2)
yields values for 4' small enough for the E-N isotriplet
amplitude to be dominated by the scattering length. A
similar argument holds for the E-N isosinglet amplitude.

The E-N isosinglet data is quite meager for kaon
lab momenta &300 MeV/c. There is evidence'" that
for momenta &300 MeV/c this interaction includes a
P wave (and possi-bly a D wave) componen-t. We are
concerned with momenta which are on the whole some-
what lower than this. We assume only an 5-wave inter-
action. From E+-d experiments Stenger et al" estimated
the isospin singlet S-wave scattering length to be

ap =—ai(0)= (0.04+0.04) F. (3»)
Again in the momentum region of interest here the

E-X I=O scattering amplitude is dominated by the
contribution from the scattering length and is not
sensitive to the value of the effective range provided this
range is small enough. We have chosen the effective
range by arbitrarily setting

Pp '=—Pi '(0)=0.05 F. (3.18)

Several numerical checks using Pp
—'= 0.1 F and

Pp
'——0.01 F showed our results to be completely in-

sensitive to this parameter.

' M. A. Melkanoff, D. J. Prowse, D. H. Stork, and H. K. Ticbo,
Phys. Rev. Letters 5, 108 (1960).

' V. J. Stenger et al. , Phys. Rev. 134, B1111(1964).

IV. GENERAL RESULTS

Calculations were done for five different values of pp,
the incident kaon lab momenta: 110, 140, 170, 200, and
230 MeV/c. In each of these the 1V-1V potential param-
eters were those given in Eqs. (3.8) and (3.9). After the
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preliminary calculations mentioned above, the E-S
isospin triplet parameters were fixed at the values
a~ ———0.29 F, P~ '=0.145145 F, while the E Xi-sospin
singlet-range parameter was kept at Po '=0.05 F. The
other E-E 1=0 parameter was taken to be ao=0.04 F,
ao——0.08 F, or Xo=—X~(0)=0. The particulars of the
methods of analytic continuation, contour integration
and matrix inversion used to obtain q& from Eqs. (2.14)—
(2.17) may be found in A.

For each set of input parameters g~~A, the impulse-
approximation (IA) value for g~, was calculated from
Eq. (2.15) for 1&9.The double-scattering (DS) correc-
tions to the IA, rlPs, as given by Eq. (2.16) with R~ s
replaced by E& ~ were calculated for /~3. The multiple-
scattering (MS) corrections to the IA, g~Ms. (which
includes rlP ) were calculated for /=0, 1, and (at
po= 230 MeV/c only) 2. In. Table I we show the low l

Po ~o &Ez, (mb)
(MeV/c) (F) IA DS MS

110 0.04 24.06 21.10 18.96

&»T (mb)
IA DS MS

6.27 7.40 20.44

140

170

200

0.00' 21.34 17.99 17.25
0.04 19.51 17.05 16.16
0.08 17.79 16.20 15.11

0.00' 17.37 14.64 14.60
0.04 15.85 13.86 13.63
0.08 14.44 13.08 12.69

0.00' 14.17 12.03 12.34
0.04 12.97 11.37 11.49
0.08 11.80 10.71 10.67

8.68 10.55 20.05
8.72 9.97 19.16
8.92 9.46 18.34

10.32 12.15 18.96
10.40 11.60 18.22
10.59 11.10 17.60

11.45 13.08 18.10
11.52 12.58 17.52
11.76 12.19 17.01

230 0.04 10.63 9.38 9.69 12.30 13.24 16.94

TABLE II. Elastic and total E+-d cross sections from 110 to 230
MeV/c. The cross sections are given for the impulse approxima-
tion (IA) the double-scattering approximation (DS) and the exact
multiple-scattering (MS) calculation.

TABLE I. Values of g~ gpss gpss for uo ——0.04 F at the three
kaon lab momenta 230, 170, and 110 MeV/c. The entries in the
table are in units of 10 ~ MeV 2.

po
(Mev/c)

0
1

230 2
3

5

0
1

170 2
3
4

0
110 1

2
3

$7fIA

2.228 —$0.390
0.390 —i0.073
0.081 —i0.016
0.020 —$0.004
0.005 —i0.001
0.002 —i0.000

2.818 —i0.300
0.332 —$0.039
0.049 —i0.006
0,009 -$0.001
0.002 —$0.000

3.542 —i0.145
0.217 —i0.010
0.018 —$0.001
0.002 —i0.000

,glDS

—0.172 —$0.074
0.0016+i0.0068
0.0003 —i0.0002

—0.202 —i0.066
0.0026 —i0.0046
0.0001 —i0.0002

—0.228 —i0.037
0.0024 —i0.0016—0.0002 —i0.0001

glMS

—0.194 —i0.292
0.0016+$0.0053
0.0003 —i0.0002

—0.284 —i0.355
0.0024 —i0.0034

-0;449 —i0.407
0.0021 +i0.0008

values obtained for g~'", g~, and gP at po= 110, 170,
and 230 MeV/c using ao ——0.04 F. It is clear from this
table that at each value of po the neglect of all gP" with
/) 9 and the neglect of all qI with /&3 are justified.
Also it may be seen that for /& 1 p& may be replaced
by p& . Such features of this table as the dominance of
the S-wave terms, the slower fall off with / in the values
of gP" at the higher values of po, and the relatively larger
MS corrections at lower values of po are not unexpected.
Perhaps the most interesting point in this table is that
although the DS and MS corrections to the real part of
rjo'" are small (&10%), the MS corrections to the
imaginary part of go'" and the differences between the
imaginary parts of goDs and &oMs are very large. This
point will be considered in detail in Sec. V.

Having observed the relative sizes of the various g~

given in Table I, we proceeded to calculate the cross
sections given in Eqs. (2.11)—(2.13) in the following
manner. First, each cross section was calculated in
impulse approximation; i.e., for each /~9 we used

g~ ——g~'". Next, each cross section was calculated in a
double scattering (DS) approximation; i.e., we used
n&= pP +&Ps for /&3 and p&= zP" for 3&i&9. Finally

a The value 0.00 in this column refers to Xo rather than ao.

l.e.$

f
Re(go'") f)& f Im(g, '~)

f

f
Re(rlo'"+no s) f&) f

Im(go'"+go ) f

'

fgof'= fRe(go) f'

and Re(go) is about right in both these approximations.
The dependence of the IA values for the cross sections

the full multiple-scattering (MS) calculation for each
cross section was performed; i.e. we used g~

——gP"+qPs
for l&1, g~=gP"+gPs for 1&i&3, and q~

——g~'~ for
3&/~9.

In Table II we list the values obtained for the elastic
cross section 0-FL and the total cross section 0TpT in
the impulse approximation (IA), the DS approximation,
and the MS calculation at five equally spaced values of

po from 110 to 230 MeV/c. For po ——110 MeV/c and
po= 230 MeV/c the cross sections were calculated using
ao ——0.04 F, while at the other values of po results were
also obtained using uo=0.08 F and using Xo——0.00.

From a perusal of Table III we may extract the follow-

ing information. First, throughout the whole momentum
range the IA values are a fair approximation to the MS
values of o EL. At worst (po

——110 MeV/c) the IA value
for o Ez, is too large by =25%, while at best (po

——230
MeV/c) the IA value for o.EL is too large by =10%%uc.

Moreover, the DS approximation to 0-EL is a good ap-
proximation in this momentum range giving a result
diifering by 3—

10%%u~. This is an important result in that
the DS approximation to 0 FL is much easier to calculate
than the exact answer, there being no integral equation
to solve.

For o-ToT, on the other hand, the IA and DS results
are far too small. This is just a reQection of the large
values obtained for the imaginary part of each poM~ in
Table I. That the IA and DS results for o-EL are almost
correct rejects the fact shown in Table I that
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TABLE III. Values of gp $0D
& $0 8 at p0= 170 MeV/c for various combinations of X2, a0, and u1;

The entries in the table are in units of 10 ' MeV '.

Row number ) 2 u0 (F) a, (F) ~0IA+QOD8 ~ IA+~ M8

1.
2,
3.

0.04
0.008
0.04

row 2+row 3

—0.29—0.29
0.00b

28.178—i2.997
29.503—i2.978—1.325—i0.019
28.178—i2.997

26.156—i3.652
26.838—i3.958—1.313—i0.011
25.525—i3.969

25.340—i6.549
26.174—i6.933-1.313—i0.011
24.861—i6.944

5.
6.
7,
8.
9. Chew

0.0
0.0
0.0

0.04
0.005
0.04

row 6+row 7
approximation to row 1:q0'=27. 127—i4.721

—0.29—0.29
0.00b

28.178—i2.997
29.503—i2.978—1.325—i0.019

26.156—i3.652
26.838—i3.958—1.313—i0.011

26.319—i3.630
27.172—i3.870—1.313—i0,011
25.859—i3.881

a The value 0.00 in this column refers to ) p, not ap.
b The value 0.00 in this column refers to X1, not al.

on the size of the E-g isospin singlet amplitude shown
in Table II is also easily understood. At a given value of

pp we see that o aL decreases while o ToT increases with
increasing size of this amplitude. This is merely the
result of interference between this amplitude and the
triplet amplitude. As ap and u~ have opposite signs and

j ai~))oo the sum of the two scattering amplitudes has
a real part that is slightly smaller than the real part of
the triplet amplitude by itself while the imaginary
part of this sum is slightly larger than that of the triplet
amplitude alone. As the DS and MS corrections to o.EL

are relatively small this pattern of destructive inter-
ference carries over to the DS and MS values for this
cross section. This is not so for o.TpT where the MS and
DS corrections are large.

We have taken the MS values for o.mz, and fTTp T from
Table I, and plotted them in Fig. 1 to show graphically
their energy dependence and their dependence on the
K-3l singlet amplitude. It is clear from this figure that
the differences in both o.gL and o-Tp T due to the variation
in the size of the E-N singlet amplitude are quite small.
We have also indicated in Fig. 1 by x's the values ob-
tained for the cross sections when the relativistic phase

space and the relativistic transformation from labora-
tory to center-of-mass coordinates are used rather than
their nonrelativistic counterparts. These relativistic
"corrections" are rather small, being about the same size
as the variation due to uncertainty in the size of the
E-S singlet amplitude. Although it is not consistent
to do so within the framework of our calculation, these
relativistic "corrections" should probably be taken into
account whenever a direct comparison with experiment
is made.

In Fig. 2 we have plotted the MS values for the angu-
lar distribution at po

——110, 170, and 230 MeV/c, in
which we have used up=0. 04 F. The dashed curves are
the same cross sections including the relativistic "cor-
rections" mentioned above. These corrections only get
to be significant for small-angle scattering at the higher
values of po.

In Fig. 3 we have plotted the IA, DS, and MS values
for the angular distribution at po= 110MeV in which we

have used a0=0.04 F. The same curves at po
——170

MeV/c and po= 230 MeV/c are shown in Figs. 4 and 5,
respectively. Only at p,= 110 MeV/c is the DS result
not an excellent approximation.

X

RO—
X

I I

a X.=0.00
~ ay 0.04
a a;-0.08
x a;-0.04 RELATIVISTIC

0 (mb)

l5—

X
I

FIG. 1. Total and elastic cross
sections as a function of kaon lab
momentum for three different
values of the isosinglet scattering
length. The upper curve of each
pair represents the total cross
section. The points marked x are
for the case e0 ——0.04 F but with
relativistic "corrections. "
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FIG. 2. Differential scattering cross
section at various incident lab mo-
mentum with and without relativistic
"corrections. "
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The rather small variation of the angular distribution
with the size of the E-S singlet amplitude for a typical
case is shown in Fig. 6.

V. S-WAVE DETAILS

In order to obtain a better understanding of the 8-
wave results of Table l some further calculations were
performed at ps=170 MeV/c. The results of these
calculations (along with some relevant results from
Table I) are given in Table III and Fig. 7.

Our 6rst task was to determine which of the higher
order MS terms was responsible for the difference
Im(res —res ). This was accomplished by "turning
off" various combinations of the three interactions.

From row 7 of Table lII it is clear that scatterings
which involve only the K-S I=O interaction are of
negligible importance. From row 3 it follows that even
with the inclusion of intermediate S-S scatterings the

terms containing this interaction contribute a negligible
amount to go. Row 4 gives the contribution to go from
all terms which do not include both E-S isotriplet and
isosinglet scatterings. Row 2 gives the contribution from
all terms which do not contain any K-Ã isosinglet scat-
terings. Comparison of these rows with row 1 indicates
that any term with a E-E isosinglet scattering in it is
small. Rows 5 through 8 indicate that this argument is
unchanged when X2 is set equal to zero. Since ao itself
is so small this is to be expected. The difference
Im(ris rjsMs) —arises therefore either out of the MS
terms that contain only repeated E-S I= 1 scatterings
or out of the MS terms that contain these scatterings and
37-g scatterings as well. A comparison of the last column
of rows 5 and 1 (or rows 6 and 2) shows that it is the
MS terms that contain one or more E-X scatterings that
give the overwhelming contribution to Im(res —ri, s).

To pinpoint further the terms of interest we evaluated

XO 5.0

2.5

I I

p =I70 MeV/c

2.0
1e

Cl

I.5f

Z
btsl

I.O

2.0

I.5
6

blsl

I.O

0.5— 0.5-

I . I I I I I I I I

0 I8 56 54 72 90 108 I 26 l44 I62 l80
SCATTERING ANGLE Ideg)

FIG. 3. Differential scattering cross sections at 110-MeV/c kaon
lab momentum for the case a0 ——0.04 P in impulse approximation
(IA), double-scattering approxitnation (DS) and for the full
multiple-scattering treatment (MS}.

I I I I I I I I I

0 18 56 54 72 90 I08 I26 I44 I62 I80
SCATTERING ANGLE (deg)

FIG. 4. Differential scattering cross sections at 170-MeV/c kaon
lab momentum for the case ao ——0.04 F in impulse approximation
(IA) double-scattering approximation (DS) and for the full
multiple-scattering treatment (MS).
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2.5

2.0
h

Cl

1.5
6

I
lal

l.O

p, a 230 IItleV/C

o,*0.04 F

Gs= Go+Go4Go, (5 2)

correction to Im(ttor"). "Let us denote the t matrices for
K d, K-N(I-= I), K IV(I-=O), and 1V-X scattering by
T, t&, to, and t2, respectively, where the t, are 3-particle
operators with the jth particle free. Let us denote the
free 3-particle Green's function by Go and the Green's
function for a free kaon and two interacting nucleons by
G2. Then ignoring the very small 30, we may with the aid
of the identity

0.5

0 1 I t I I I t I I

0 le 36 54 72 90 l08 l26 l44 l 62 I 80
SCATTERING ANGLE (dell)

resume the MS series

T=tt+ttGott+4Go4Go4+ ' ' ',
into the form

(5 3)

FIG. 5. Differential scattering cross sections at 230-MeV jc kaon
lab momentum for the case u0 ——0.04 F in impulse approximation
(IA) double-scattering approximation (DS) and for the full
multiple-scattering treatment (MS).

rtoMs by iterating Eq. (2.17) 14 times and at each step
using the iterated value of Rp s in Eq. (2.16). The re-
sults of this calculation are given in Fig, 7. The vector
labeled tI, (ts= 1, 2, , 7) represents the contribution of
all eth-order terms in the MS series for po. It is clearly
the triple-scattering terms that contribute the bulk of
the difference Im(ttons —ttoMs). Combining this result
with the conclusions drawn from Table III it is the term

go(121)—= C'082(q, q )r1(q 1)K082(q q )

X o s(q",0)Koss(q", q') r t(q', 1)C'oss(q', q.)

T=4+ t tGst t+ t tGs4Gs4+

Unitarity demands"

Im&nl Tln&= —~ Z&nl 2'l~&&~l 2'I ~»(~ —~-) (5 5)

where la&, l n) are eigenfunctions of the asymptotic
Hamiltonian (i.e., the Hamiltonian with the K Iq-
interactions turned off) Hs. Ignoring the relatively
small Im(tt) (e.g. , see below or Table I), to lowest
order in tt we obtain from Eq. (5.4)

(5 6)

To lowest order in tt, Eq. (5.5) then requires

Im&~l 2'l~&= —~Z&olttl~&&~ltt'In&b(E —E.) (5 7)

But the right-hand side of this last equation may be
X (qq'q")s(2tr) sdqdq'dq", (5.1)

which contributes most to this difference.
Qualitatively this result is quite reasonable: The KX-

I=1 interaction although much larger than the I=o
interaction is in the energy range of interest rather
small itself; e.g. , the phase shift for this interaction at a
kaon lab momenta of 175 MeV/c is about —10'.s
Repeated isotriplet scatterings of the kaon from nucleon
to nucleon are therefore unlikely and contribute only
weakly to po. Qn the other hand, the E-37 interaction in
the 'S& state is large. In particular the imaginary part of
rs(q, 0) contains a 8 function corresponding to the
deuteron bound state. It is reasonable then to expect
tto(121) to be a more important term than tto(111) or
even the DS term tto(11)."

As for the physics of the situation it may be seen that
unitarity indicates Im(tlo(121)) should be a sizeable

» On the same basis, the 5th-order MS terms which include
q0(12121) should contribute about as much to g0 as the 4th-order
terms g0(1211) and g0(1121), both being smaller than the third-
order contribution. The size of the 6th- and 7th-order terms should
also be about the same, both being smaller than the 4th- and 5th-
order terms. These relationships are indeed borne outlin Fig. 7.

3.0

2.5
=0.00

I

p "-l70 MeV/c

2.0

0.5—

"For another approach to unitarity corrections see N. M. Queen,
University of Birmingham (unpublished).

'3 B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

I I I I I I I I

0 18 36 54 72 90 loe l26 l44 l62 . l80
SCATTERING ANGLE (deg)

FIG. 6. DiBerential scattering cross section at kaon lab mo-
mentum of 170 MeV/c for the three values of the isosinglet
scat terIng length.
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approximation for elastic E+-d scattering therefore is
both more accurate and easier to calculate than the IA
and for the range of po considered here it is a good
approximation.

VI. SUMMARY

We have performed a multiple-scattering analysis of
low-energy E+-d elastic scattering. We assumed that
all two-body interactions were separable 5-wave po-
tentials of the Yamaguchi form. The parameters in these
potentials were chosen so as to be in agreement with
available low-energy data. Coulomb forces and the
E+ E' and -e-p mass differences were neglected.

Results were presented for the elastic angular distri-
bution, elastic cross section, and total cross section for
incident kaon lab momenta po of 110, 140, 170, 200, and
230 MeV/c. The meat of these results may be stated as
follows:

(i) The values obtained for the cross sections were
insensitive to the values of the parameters used in the
very small E-E isosinglet interaction.

(ii) Throughout the energy range discussed the elastic
angular distribution and cross section could be well ap-
proximated by the low-order terms in the multiple-

scattering series. The single-scattering terms alone (with
the K-S amplitudes either inside or outside the average
over the deuteron momentum distribution) gave a value
for 0 Ez, that at worst (i.e., at po ——110 MeV/c) was too
large by =25+/o. Inclusion of the double-scattering
terms reduced this difference to 10% or less. These
results could be explained qualitatively on the basis of
the rather small E-g isotriplet interaction and the
dominance of elastic over inelastic scattering in the
energy range being considered.

(iii) With only single- and double-scattering terms a
reasonable (within 25% of the correct value) approxima-
tion to o~o~ was obtained only for po ——230 MeV/c. To
obtain an approximation for 0 goy valid throughout the
range 110~p0~ 230 it was necessary to include at least
the third-order multiple-scattering term that contained
an intermediate nucleon-nucleon scattering, This result
agreed qualitatively with arguments based on unitarity.
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