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Spins of Neutron Resonances and the Hyper6ne Coupling
Constant in Gadolinium Metal*
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Brookhauee National Laboratory, Upton, Xno York

(Received 2 February 1965)

The spins of several resonances in the neutron cross section of gadolinium have been determined from
measurements with polarized neutrons and polarized neuclei. Use was made of the difference in the statistical
weighting factors to make the spin determinations absolute, i.e., independent of the sign of the nuclear
hyperfine interaction or of any assumed directions.

Isotope Neutron energy (eV) J
155 0.0268 2
157 0.0314 2
155 2.008 1
155 2.568 2
157 2.825 2

Assuming pP'~/p, '~7=+0.750, the magnitude of the nuclear magnetic hyperfine interaction is determined to
be A/k = (8.0+0.8)X10 "Kfor Gd"7 and (6.0&0.6)X10 "K for Gd"~. If we assume the nuclear magnetic
moment of Gd"7 to be —0,33 nm we obtain a hyperfine magnetic field at the nucleus„Hhf= —(3.48+0.34)
X10' Oe.

I. USE OF STATISTICAL WEIGHTING FACTOR FOR
ABSOLUTE DETERMINATION OF THE SPIN OF

THE NUCLEAR COMPOUND STATE

RESONANCE in the slow-neutron cross section
corresponds to formation of the compound nucleus

in an excited state. Such states have a definite total
angular momentum J. At low neutron energies the in-
teractions are of the s-wave type; hence the spin of the
excited state is limited to J= I-Jt=—, where I is the spin of
the target nucleus. In recent years many resonances
have been studied by measuring the transmission of
polarized monochromatic neutrons through polarized
targets. ' ' Such measurements yield, in a rather direct
way, the spin of the compound state provided that the

sign of the nuclear polarisation is hnotvn Often, h. owever,
the sign is subject to some uncertainty, particularly
when the nuclear polarization is the consequence of
nuclear hyperfine interaction. The doubtful cases can
sometimes be of special interest since the uncertainty
stems from peculiarities in the electronic wave functions.
Such an example is the Gd'+ ion which has an 'S7/2

ground-state configuration. For this state, the magnetic
hyperfine interaction arises from distortions of the
atomic core as proposed by Sternheimer. 4 Electro-
static interactions with the outer electrons distort the
wave functions of the core electrons. If the spin density
of the outer electrons is not paired there results a cor-

responding unpaired spin density at the nucleus which
couples with the nuclear magnetic moment. Since
Sternheimer's original contribution, this idea has been
found to have interesting applications to ferromagnetic
substances. '' Although some calculations have been
made' for Gd'+, the details of the wave functions are not
known with sufhcient accuracy to yield reliable theoreti-
cal values of either the sign or the magnitude of the
magnetic hyperhne interaction.

In a recent paper, Postma et a/. ' have shown that spin
determinations with polarized nuclei and neutrons can
be absolute provided that the cross section contains at
least two observable resonances of opposite spin states.
This method takes advantage of the fact that in the
equations for the transmission effect, a statistical
weighting factor' appears which has two different
magnitudes depending on whether I=I+'or I——,'. -
Recent data of Stolovy" and the data to be presented
here" show that the gadolinium resonances satisfy this
condition. In fact, Stolovy made use of Postma's abso-
lute method in making part of his spin assignments.

In this paper we shall present an extension of the
weighting-factor method to the case of overlapping reso-
nances, and derive a set of equations suitable for general
application. In contrast to Stolovy's work, which is
partly based on estimated magnetic 6elds, all our assign-
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ments are based on the internal consistency of our ex-
perimental data.

The neutron cross section of gadolinium contains
many closely spaced resonances occurring mostly in
Gd"' and Gd"~. Many of these have been carefully
analyzed and isotopic identi6cation made. ""We have
used the resonance parameters of I)lier et al.i3 Our cal-
culations differ materially from those of Stolovy since
he did not include the eGect of the resonance at 2.825 eV.

II. THE TRANSMISSION OF POLARIZED NEUTRONS
THROUGH POLARIZED TARGETS

A. De6nition of Transmission EBect

In measurements involving polarized neutrons and
polarized nuclei, a convenient quantity, the transmis-
sion effect 8, may be de6ned'

where 1 is the transmission of the sample, the subscripts
P and 3 refer to the situations in which the neutron
and nuclei are, respectively, parallel or antiparallel, C is
the counting rate of the transmitted beam, and 8 is the
background counting rate.

Let us 6rst consider the simple situation which meets
the following conditions: (1) the target is monoisotopic;

(2) the cross section is entirely due to one level in the
compound nucleus; (3) the neutron beam is perfectly
monoenergetic; and (4) the nuclear polarization of the

target is small. In this situation the transmission effect
is related to the polarization of the neutron beam f„'and
the polarization of the target nuclei f as follows:

8= f„' tanh(1—Vop fi) . (2)

In the equation, E is the density of the target nuclei, 3

the target thickness, and 0 the total cross section. The
statistical weighting factor p arises from the Clebsch-

Gordan coefficients involved in combining the angular
momenta of the target nucleus and the incident neutron.
For s-wave interactions, p has the two possible values

p=I/(I+1) if J=I+~i, or p= —1 if J=I i~. In certain—
cases it may be possible to distinguish J as a result of an
experimental determination of b because of the sub-

stantial difference in the magnitude of p for the two
possibilities. Thus, for the simple case meeting the four
conditions listed above, the sign of the product fp is

immediately determined from the sign of the measured
8. If, in addition, the absolute sign of f is known, the

sign of b determines whether the cross section is due to
a J=I+,'or a J=I ~i int-eraction. How—ever, the work

on terbium' involving well-separated resonances showed

that the choice of I+~i or I——,
' requires no knowledge of

"F.B. Simpson and R. G. Fluharty, Bull. Am. Phys. Soc. 2,
42 (1957).

"H. Bjerrum-M)lier, F. J. Shore, and V. L. Sailor, Nucl. Sci.
Eng. 8, 183 (1960).

the sign of p nor of Bif there are two resonances present
which are of opposite spin 1n the same 1sotope.

3. Several Resonances and Several Isotopes
with Monoenergetic Neutrons

Often more than one isotope is present in the target,
and also two or more resonances may overlap so that
the observed cross section is a mixture of two spin
states of the compound nuclei. In this case the net 8 is
obtained from an algebraic summation over the con-
tributing resonances and isotopes.

To analyze the problem, assume we have isotopes
1, - ~ .o. ~ ~ present in the sample, and that each isotope
can have j. ~ ~ i ~ resonances which contribute ma-
terially to the measured eGect. Let the beam of mono-
energetic neutrons contain, respectively, m+ and m neu-
trons oriented with their spins parallel and antiparallel
to an applied magnetic field. The beam will be depleted
in passing through the sample thickness dt according to
the following simultaneous differential equations:

~d+=L 'N+ P—F Xo;,„(1+p;,'f ) D(w+ —Yo )jd),—

d~—=
L ~—+~ +o'. (1 p ,.f-)+D(~'+ io )]«—(3)-

These and the following equations are straightforward
extensions of the equations for a single resonance. ' The
sample contains E' target nuclei per cm', and of these a
fiactlon F consists of isotope 0, so that E =I' E. The
nuclear cross section cr;, is the appropriate total cross
section for isotope o, due to resonance i; p;, is the weight-
ing factor for the resonance; f is the polarization of
nuclei of type n and D ' is the mean free path for spin
reversal of the neutrons within the sample of non-
nuclear origin.

It is convenient to refer the nuclear polarization for all
the isotopes of one target element to that for one of the
isotopes fp, since the effective magnetic field at the
nuclei of the various isotopes of the element will be
practially identical. Accordingly let f =r f~. For a
saturated ferromagnetic sample the factor r is the
ratio of the Briliouin functions for the nuclei n and P. In
the case of very small nuclear polarizations in a non-
saturated ferromagnetic sample,

where M is the magnetization of the sample, 3f„ the
saturation magnetization, BI is the Brillouin function,

is the nuclear magnetic moment of isotope o., H, is
the effective magnetic 6eld at the nucleus, k is Qoltz-
mann's constant, and T is the absolute temperature.
In the present case all isotopes of the same element are
assumed to have the same II, and T', and M is uniform
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——,'(1+ (p) f„'r sinh»t

cosh»r —(-,'(1—ip) rf ' v) s—inh»t
(6)

where f„ is the polarization of the incident neutron
beam,

»=[(Nfp Q F r p;, o;, )2+D'.]'f',

r=(Nfpg F.r p;, )/», v=D/»,

and p is the efhciency for reversing the sense of the
neutron spin.

throughout. Therefore,

f tf I +1 Ip
~a—

fp t pIp+1I-
The solution of Eq. (3) when substituted into Eq. (1)

gives, for the transmission effect,

C. Other Experimental Factors

Before comparison is made with measured values, the
transmission effect 8, as derived in Eq. (6), must be
modified to take account of several experimental fac-
tors. Among these are (1) the neutron energy spread in
the spectrometer beam, (2) corrections for second-order
contamination of the neutron beam, (3) Doppler
broadening of resonances, (4) depolarization of the
neutron beam, (3) Doppler broadening of resonances,
(4) depolarization of the neutron beam by non-nuclear
processes, and (5) changes in the temperature of the
sample during a counting period. Some of these effects
have been discussed previously, ' ' and need only a few

special comments here.
The observed transmission effect (8) is a consequence

of convoluting the spectrometer resolution function,
g(E—E'), with the solutions of Eq. (3) which lead to
Eq. (6). This operation gives the following result:

(&)= 2(1+v—)f-'

g(F. F.') r exp(——lit) sinh»tdF'

If (E E&) exp( —f'ft) (cosh»t —p-', (1—y) rf„'—v] sinh»t) dE'

(7)

where the symbol (8) is to be identified with a measffred

value of the transmission effect, and 5=N P, , F o;,
The correction for second-order contamination does

not appear explicitly, but is well understood and is

made routinely on the raw data. '
Wherever o appears in Eq. (7) it is understood to be

an energy-dependent cross section given by an appro-
priate Doppler-broadened, single-level formula. "The
treatment of Doppler broadening at low temperatures
requires the use of an effective rather than actual tem-

perature to correct for the effects of crystalline binding.
The effective temperature, T,ff pOgj where O'D is the
characteristic Debye temperature. "More complicated
corrections for crystal binding do not appear necessary
in this application. "

A polarized neutron beam passing through a magnetic
medium will be partially depolarized. This depolariza-
tion results primarily from misoriented magnetic do-
mains in the target, and disappears as the samplebe-
comes magnetically saturated. Equations to account for
this type of depolarization have been presented pre-

'4 A. Bernabei, L. B. Borst, and V. L. Sailor, Nucl. Sci. Eng.
12, 63 (1962)."J. E. Lynn, and E. R. Rae, J. Nucl. Energy 4, 418 (1957).

'6 A. Bernabei, Brookhaven National Laboratory No. BAL860
(T344), 1964 (unpublished).

viously, "and it is accounted for in Eq. (3) by the terms
including D. In order to make this correction, the
polarization of the transmitted beam must be meas-
ured as a function of neutron energy.

In the case of the gadolinium samples, a new type of
beam depolarization has been noted which is energy-
independent. Ke attribute this to magnetic field gradi-
ents at the front and back surfaces of the target. The
target is in the form of a slab held between the pole
pieces of the target polarizing magnet. Since the target
is supported inside the cryostat which fits through the
magnet gap, several mm of air gap exist in the magnetic
circuit, producing indeterminate gradients io the vicinity
of the sample. If the sample is symmetrically positioned,
half of the depolarization caused by external field gradi-
ents occurs before the neutrons enter the target and
half after they emerge. Only the first half a6ects the
measured transmission effect by reducing the polariza-
tion of the neutron beam incident on the target. Thus
the polarization of the incident beam is (f„'/f„)'f'f„
where f„' is the measured beam polarization after pass-

age through the target, while f„'is the beam polarization
with no target present.

In order to show how (8) depends upon the tempera-
ture of the sample, we consider the case where, in Eq.
(7), fp((1, for which the approximation sinh»t=»t is

"See Ref. 3, Sec. IVB.



valid, and assuming D=o. Then,

Calling

R(E—E')F r„p;, 0;, exp( —Q)dE'

&@)= 2(—1+v)f'fs&'~ 2
v, rx

R(E—E') exp( —
8&&) {cosh«—P(1—

&p) rf„' sj—sinhKt}dE'

R(E—E&')o;, exp( —Q)dE'

R(E—E') exp( —m) {cosh«—L-,'(1—&).f.o—1~ sinh«}dE&

From (4) and (10),

XMQ P„r.p;„(a;, ). (11)

'tA'hcn the external magnetic 6eld at the sample is
heM constant, at a given setting of the spectrometer
energy, then it is seen that (8&T~constant. This fact
is utilized in treating the raw data, since data obtained
with diGerent, but known, temperatures can be grouped
together to enhance the over-RH statistical accuracy.

. Computation of (8) versus Neutron Energy

No practical method exists for unfolding the Doppler
broadening and the resolution smearing. The only
reasonable method for comparing experiment with
theory is to insert the various parameters into the con-
voluted formulas and to generate families of computed
curves which can then be compared with observed data.
A computer program has been written to cover the
general case of several isotopes, several overlapping
Doppler-broadened rcsoDances, corrcctioQ for domain
dcpolarlzatlonq and coDvolutlon of thc spcctl OIHeter

resolution function. The program computes (b& as a
function of neutron energy using Eq. (8).The input data
include sample thickness, isotopic abundances, param-
eters of resonances, beam polarization, spectrom. eter
resolution function, nuclear polarization f, and the

p;, . In the usual situation all quantities are accurately
known except for f and the p;, .These latter are treated
as variables, and. families of curves are generated for
comparison with the experimental curves. H f ++1, the
computed (8& is linear with f„Since each reson.ance has
two possible values of p;, , there will be 2~ combinations
of the p;, where E is the number of resonances involved.
Actually the number of cases which must be computed

is considerably less, because at any energy the result is
sensitive only to nearby resonances. If a unique set of
p;, can be selected from comparison of the computed
and mcRsurcd curves) thc spGl asslgnmcnt of each I'cso-
Dancc ls Unique RQd absolUtc, as ls Rlso the assignment
of the absolute sign of f .

When the proper set of p, , has been selected, the
normalization of the computed curve to the measured
curve gives the absolute magnitLlde of the nuclear
polarization f . This in turn yields the magnitude of the
magnetic hyper6ne interaction. From the magnitude
and sign of the hypcrhnc interaction and the nuclear
magnetic moment, the magnitude and sign of the hyper-
6ne field may be obtained.

III. EXPEMMENTAL RESULTS

A. Transmission

In addltlon to measuring and calculating the trans-
mission effect &8&, it is also usefuP to measure and
compute the transmission (9 ).This serves as a sensitive
check to demonstrate that proper values have been
used for the resonance parameters, resolution function,
etc. The calculated transmission is included in the com-
puter program described above.

The experimental setup has been described earlier. '
The total cross section of gadolinium from 1.5 to 3.0 CV
ls showD in Flg. i. Sho%'D 1D thc Qppcl curve ls thc
computed transmission 9", using the Co(111) reflection
with I5-min angular resolution, and also the measured
transmission. The small deviations in the region ~i,7
to 2.4 cV have Dot been accounted for, but they intro-
duce minor uncertainties in the computed transmission
effects (below). The high point at 1.6 eV was caused by
a trace of indium in the solder used in the sample
assembly. It is high because of a slight excess of solder
at the "open beam" position of the target unit. Cal-
culated and measured transmissions at lower energies
are in good. agreement. In addition to the data of Fig. 1,
transmission measurements were made between 0.3 and
1.5 CV. Several thinner samples of various isotopic cn-
richmcnts werc also measured Rt 0,0778 cV.
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C. Comparison with Computed Curves

I'amilies of curves were generated giving (8)T versus
E using various combinations of the p;, for the three
resonances in the 1.5- to 3.3-eV region. Input data in
the computer program included the resonance param-
eters, spectrometer resolution, Debye temperature,
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B. Observed Transmission Effects

The transmission effect (h) was measured at many
neutron energies as a function of temperature over the
range from approximately 0.05 to 0.20'K. Because of the
small magnitude of (8) (0 to 2'%%uo) it was necessary to
take several data runs at each energy. The individual
points for each run were averaged and the standard
deviation of the neutron count was used as an indication
of the statistical uncertainty of the average value.

Data were also taken at 0.95 and 4.2'K to determine
the magnitude of the eRect of the spi.n-dependent mag-
netic scattering (neutron scattering from the magnetic
moments of the atoms). Such scattering is temperature-
independent" and at such high temperatures the eRect
due to nuclear polarization was negligibly small. Mag-
netic scattering is appreciable only at the lowest
energies ((0.2 eV).

Data obtained between 1.5 and 3.0 eV are shown in
I'ig. 2. This region involves the three resonances shown
in the cross-section plot of I'ig. 1.
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etc. Because of the diRerence between the magnetic
moments of Gd'" and Gd'" it was necessary to use an
appropriate value of r in the contributing term of each
resonance. Examination of Table I, which lists values
from the literature for the nuclear magnetic moments

Thsx.z I. Summary of nuclear magnetic moments of Gd"' and
Gd"'. values are in nuclear magnetons.

F&G. 2. Experimental and calculated values of (8)T as a function
of neutron energy. Each curve corresponds to one possible set of
p;, .The absolute sign of these curves is arbitrary; i.e., a reQection
of the curves about the abscissa would be equally possible de-
pending on the absolute sign of f .The amplitude is the only other
adjustable constant. The points are the experimental values and
the error bars reflect the uncertainty due to counting statistics.
The curves as shown have already been normalized to "p-set 1"
which can be seen to be the best choice. In making the normaliza-

. tion only one parameter, the amplitude, can be adjusted. This
parameter yields f T. A weighted average of all experimental
points was used in making the normalization.

l000
O
I-
O
LIJ
V)

(0
O
CL 500—

O

.027 eV

.03 I

2.008
RESONANCF$ AT - 2568

2.825
6.302

—0.25 —0.34

—0.32~0.04 —0.40+0.04

157

—0.19+0.05 —0.33+0.06—0.24b —0.32b—0.30&0.04 —0.37+0.04

@155/9157

0.58a
0.75 &0.07
0.80 &0.02
0.744 &0.007
0.73 ~0.03
0.7495+0.0045
0.79 ~0.02
0.763 &0.006

Method

Opt. spect.
Par. res.
Opt. spect.
Par. res.
Par. res.
Par. res.
Opt. spect.
Par. res.

Ref-
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"R. I. Schermer, Phys. Rev, 130, 1909 (1963).
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FIG. 1. neutron cross section of gadolinium between I.5 and
3.0 eV. The lower curve is calculated with parameters taken from
Ref. 13. The upper curve shows the computed and observed
transmission curves for the same energy region using the polariza-
tion spectrometer.

& Moments incorrectly calculated on basis of I =7/2 instead of I =k.
b Depends on p, for Eu'+ being 3.6 nm.
o K. Murakawa, Phys. Rev. 96, 1543 (1954).
d W. Low, Phys. Rev. 103, 1309 (1956).
e R. D. Speck, Phys. Rev. 101, 1725 (1956).
f W. Low and D. Shaltiel, J. Phys. Chem. Solids 6, 315 (1958).
& Mansenkov and Prokhorov, Zh. Eksperim. i Teor. Fiz. 33, 1116 (1957)

/English transl. :Soviet Phys. —JETP 6, 860 (1958)g.
h W. Low and D. Shaltiel, Phys. Rev. 115,424 (1959).
1N. I. Kaliteevskii, M. P. Chaika, I. Pacheva, and E. E. Fradkin, Zh.

Eksperim. i Teor. Fiz. 37, 882 (1959) /English transl. :Soviet Phys. —JETP
10, 629 (1960)g.

& C. F. Hempstead and K. D. Bowers, Phys. Rev. 118, 131 (1960).
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Tsar.z II. Spin assignments of gadolinium resonances.

Resonance
energy(eV)

0.0268
0.0314
2.008
2.568
2.825

Isotope

155
i57
155
i55
157

shows consistently higher values for the ratio p'"/p, "r
obtained by optical spectroscopy which measures the
free-atom value compared to paramagnetic resonance
methods which employ bound atoms. We choose 0.750
for the ratio since we use a metal. This is also the value
of r, selecting Gd"7 as the standard isotope, since the
spins of both Gd"' and Gd"~ are ~3. Account was also
taken of the isotopic abundances Il as required in
Eq. (3). Implicit is the assumption that the magnetic
field ls the same Rt both nuclei and thRt 3f=Sf Rt the
applied field of 16 koe."

The computed curves are also shown in I ig. 2. Since
the absolute sign and magnitude of II, is initially un. -
certain, the curves as computed, could be reRected about
the abscissa in I'ig. 2 and the normalization varied.
Comparison with the experimental data (plotted points
in Fig. 2) permits a unique choice of the proper set of

p;,„and hence uniquely determines the sign. The ampli-
tude is obtained by normalizing the curve to the ex-
perimental points. As can be seen from I'ig. 2 the fitted
curve is quite satisfactory. It can be seen that the other
p;, sets are all dednitely excluded since they do not
have the proper shape. The other four possible p;,
combinations (not shown in Fig. 2), which would place
the 2.0i- and 2.57-eV resonances in the same spin state,
are in much poorer agreement with the data.

D. Spin Assignments

The choice of the proper p;, set in Fig. 2 immediately
gives the spin assignments for the 2.008-, 2.568-, and
2.825-eV resonances (Table II). This choice of p;„
establishes the absolute sign of f; i.e., the p-set 1 shown
in Fig. 2 is the correct curve rather than its reaction
about the abscissa.

The spin assignment for the two thermal resonances"
at 0.0268 eV (Gd"') and 0.0314 eV (Gd'") is less
straightforward because of their almost complete over-
lap. In eGect, it is necessary to use the absolute results
obtained in the 1.5-3.0-eV region for normalization of
data on the thermal resonances. Several factors con-
spire to reduce the accuracy of the normalization:
(1)Account must be taken of the variation with neutron

energy of spectrometer characteristics such as second-
order contamination, neutron polarization, beam de-
polarization, and resolution. Although these factors are
known with adequate precision for most purposes, the
spectacular variation of the low-energy gadolinium cross
section enters in such a way as to amplify the uncer-
tainties. (2) Normalization in the 1.5—3.0-eV region re-
quires a moderately thick sample which in turn makes
it necessary to study the thermal resonances on their
high-energy tail in the region between 0.2 and 0.4 eV.
This taxes the precision of the resonance parameters, "
which are called upon to reproduce faithfully the cross-
section variation in the tail. (3) In addition, the spin-
dependent magnetic scattering is strongly energy-
dependent" and must be removed from the observed
(8)T.

The two thermal resonances differ markedly in
strength, the Gd"~ resonance being some four times the
stronger. As R result the cross section in the region from

0.1 to 0.5 eV is dominated ( 80%) by the 0.0314-eV
resonance, as is also the transmission e8ect. It follows
that a measurement of the sign of (h) at any energy in
this region is sufhcient to determine the spin of the
stronger resonance. Measurements at 0.22 and 0.357 eV
gave negative (h) which requires that I=I+'sfor the
0.0314-eV resonance. This is an unambiguous result.

To determine the spin of the weaker 0.0268-eV Gd'"
resonance, the mageiiude of (b) must be compared with
calculated values based on the two alternative choices,
i.e., I=I+sr, or I=I ,'. For this Pur—Po—se, measure-
ments were made at 0.357 eV, an energy at which the
second-order contamination can be removed by means
of an indium filter. The calculated values require as
input the resonance parameters, "as well as the various
experimental constants discussed in preceding sections.
Also the calculations are effectively normalized to the
2.0-3.0-eV data, by making use of the absolute value
of the nuclear polarization f„yielded by those data.
Results are shown in Table III. As can be seen, the ex-
perimental value falls between the two choices, slightly
favoring the choice I=I+ra. Although this conclusion
agrees with that of Stolovy, "the agreement is probably
fortuitous since his calculation suGered from the same
limitation listed above, and, in addition, he was forced
to use independent measurements of the hyperfine con-
stant and make estimates of the internal 6eM.

The indecisiveness of the spin assignment of the

TABLE III. Attempt to determine J for the Gd"' resonance at
0.0268 eV. The (8)T values are for a neutron energy of 0.357 eV.
Because of the much stronger resonance in GdI5~ at 0.0314eV, the
two choices oi J yield only small difference in (S)T. The j=I+q
is slightly favored.

'9%'. K. Henry, J.Appl. Phys. 29, 524 (1958).
'0 It should be noted that a de6nite, unambiguous assignment

for these two resonances is of considerable practical importance
to nuclear-engineering calculations and for analysis of capture
gamma-ray spectra. Therefore, we have expended much effort in
obtaining unambiguous results.

Measured
percent

—2.90~0.58

(s)T Calculated
J=I'+-,' J=I——,

'
—3.44
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0.0268-eV resonance led us to make a series of special
measurements with separated isotopes. "For this pur-
pose three Gd203 samples were studied, the Grst com-
posed of the normal isotopic abundances, the second
almost pure Gd'" and the third almost pure Gd'".
Because of unknown magnetic ordering of the Gd203
at very low temperatures, the mechanism producing the
nuclear polarization was not completely understood";
however, it was assumed that all three samples exhibited
the same magnetic behavior. Internal consistency of the
data on the three samples strongly support this assump-
tion. Measurements at an energy of 0.0778 eV showed
that the transmission effect (8) had the same sign for all

three samples. We conclude, therefore, that the 0.0268-
and 0.0314-eV resonances have the same J value which
is in fact J=I+,' based —on our prior unambiguous
assignment of the 0.0314-eV resonance. Thus, the J
value of the 0.0268-eV resonance is unambiguously
J=I+2 ~

E. The Hyperfine Constant for Gadolinium Metal

The magnitude of the transmission effect (8) can be
used to determine the nuclear magnetic hyperfine inter-
action. This is possible because the magnitude of (8)
depends on the nuclear polarization which in turn de-

pends on the hyperfine interaction. The normalizing
factor between the measured and computed curves
(see Fig. 2) yields AT where fs is the nuclear polariza-
tion of isotope P at temperature T. Although the in-
dividual data points show considerable scatter, the
value of AT has good precision since it is the only free
parameter in the normalization, and hence all data
points contribute to a weighted average. The experi-
mental value of AT can be inserted in Eq. (4) to ob-
tain ppH, . Note that this quantity is not exactly the
hyperhne interaction because the effective Geld at the
nucleus 8, includes the eGect of the externally applied
field.

We must now correct for the effects of the external
Geld. From the J-value assignments in Table II and
from the observed negative sign of (h), we conclude
that the product ppH, is positive. Since pp is negative, "
H, must be negative, i.e., opposite to the applied field.
I.et us assume that the effective field at the nucleus,
H, =Hi+Hhi, where Hi is the local field resulting from
the external held and Hh& is the true hyperfine field re-

"The enriched isotopes were obtained on loan from the Nuclear
Cross Sections Stable Isotopes Pool of the U. S.Atomic Energy
Commission."The nuclear polarization in Gd203 is now undergoing further
investigation and results will be described in a future paper."See references listed in Table I.

TABLE IV. Hyperfine coupling constant for Gd'57.

a/S(10~ 'K)

8.0~0.8
7.0~1.6
7.64
7.19
7.67
7.86

Sample

Metal
Metal

ThO2
BiMgs(Nos)ig 24H20
LaClg. 7D2O
Ca%04

Reference

Present work
a
b

0

d

a A. Stolovy, Phys. Rev. 134, B68 (1964).
b W. Low and D. Shaltiel, J. Phys. Chem. Solids 6, 315 (1958).
& W. Low, Phys. Rev. 103, 1309 (1956).
d C, F. Hempstead and K. D. Bowers, Phys. Rev. 118, 131 (1960).

suiting from the coupling of the conduction and atomic
electrons with the nucleus. To a good approximation the
local field is given by

Hi=H. g X)M+-', irM—, (12)

where H, t, is the external held of 16 kOe, S is the de-
magnetization factor, and M is the saturation mag-
netization which is taken to be 1990 G. From Osborne's
graphs'4 S is taken to be 1.167 for our 1.10X0.68-in.
sample dimension. This gives H»= 22)&10' Oe.

Our data yield the following results: from nor-
malization for an external field H, t, 16 kOe, ——AT= (2.19&0.20)X10 "K, where P refers to Gd"' which
was selected as the "standard" isotope for computing
purposes. Using Eq. (4) and the value p,

'"=—0.33 nm,
we obtain H, = —(3.26+0.33)X 10' Oe. Thus, the
hyperfine field Hh& —(3.48+0.34)——X10' Oe. This can
be expressed in terms of the hyperGne coupling constant
which is conventionally taken as A/k=(pHhf)/(JIk)
where J= ~~ for the Gd'+ ion. Substitution yields
A/k = (8.02&0.80) X 10 4'K.

It is interesting to compare the present value for a
metal sample with those obtained by other workers,
chiefly with salts. This is done in Table IV in which the
coupling constant for Gd'" is tabulated. We see that
the present value agrees within a few percent of those
given for ions in diferent salts. From this it would
appear that if the main difference between metallic and
nonmetallic samples is due to conduction electrons, their
contribution must be a few percent at most.
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