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Boundary-Condition Constraints for the Shell Model: A Method for
Nuclear Structure and Nuclear Reactions
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It is proposed that the asymptotic boundary conditions be used as constraints for shell-model calcula-
tions. Two formalisms which permit this to be done are presented. In one formalism the boundary con-
ditions are introduced as constraints in a variational principle. In the other formalism Green's theorem is
used to make the dependence on the boundary conditions explicit. The use of boundary-condition con-
straints permits the use of the shell-model method for scattering and reactions as well as for nuclear-structure
calculations. It is suggested that the constrained-shell-model method will improve the representation of the
nuclear surface and will provide the basis for a truly unified treatment of nuclear reactions. In such a uni-
fied treatment compound-nucleus resonances, direct-reaction transitions, and optical-model scattering will
be generated from a single, fairly fundamental model;

I. INTRODUCTION

'PERHAPS the most powerful method presently
available for studying the nuclear many-body

problem is the shell model or individual-particle model.
In this model the wave function is approximated by a
finite linear combination of Slater determinants of
given single-particle wave functions. The coefBcients of
this expansion are determined by diagonalizing the
Hamiltonian in that portion of Hilbert space spanned
by these Slater determinants. This model has been
very successful in describing what might be called
"volume properties" of nuclear bound states. These
properties include excitation energies and electromag-
netic and beta-decay transition rates. Phenomena that
involve primarily the nuclear surface are not so well
described by the shell model. Such phenomena are
alpha decay and direct reactions. This shortcoming of
the shell model is to be expected because the shell-
model wave function does not have the correct asymp-
totic behavior.

In this paper we suggest a modi6cation of the usual
shell-model approach that should provide a better
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description of the nuclear surface. We propose that the
shell-model approximate wave function be used only
for the "inside region" or "compound-nucleus region"
of configuration space where all the nucleons making
up the system are relatively close to each other. In the
"outside region" or "channel region" of configuration
space the wave function is to be approximated by a sum
of terms corresponding to all the various two-body
channels that can be formed by the system. Each such
term describes two noninteracting subnuclei whose
relative-motion wave function is determined by the
asymptotic boundary conditions and the energetics of
the situation. The basic idea is that we force the inside-
region shell-model wave function to have radial loga-
rithmic derivatives at the boundaries separating the
inside and outside regions that will assure smooth con-
nection with the outside-region wave function.

Our objective, then, is to apply the shell model to
calculate the nuclear wave function in the inside region.
This wave function is required to satisfy certain bound-
ary conditions on the boundary of the inside region.
We will present two different formalisms that enable
us to achieve our objective. In the 6rst formalism we
use the boundary conditions as constraints in a varia-
tional principle for the wave function. In the second
formalism we use Green's theorem to relate the wave
function in the inside region to its value and slope at
the boundary.
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Achieving an improved treatment of the nuclear-
bound-state problem is not the only application that
can be found for our method. By using asymptotic
boundary conditions appropriate for scattering instead
of those appropriate for the bound-state problem we get
a shell-model-type treatment for nuclear scattering and
nuclear reactions. It would appear that our method may
provide a practical basis for nuclear-reaction calcula;
tions in which compound-nucleus resonances, direct-
interaction transitions, and optical-potential scattering
can result in a natural way from a single model.

In Sec. II the boundary conditions to be used as con-
straints are formulated. In Sec. III the boundary con-
ditions are used as constraints in a variational principle
for the bound-state problem. An alternative derivation,
based on Green's theorem, is presented in Sec. IV. The
Green's-theorem-method results apply to the scattering
case as well as the bound-state case. In Sec, V the
Green's theorem method results are cast into a more
symmetrical form and shown to be equivalent to the
constrained-variation-method results.

II. THE ASYMPTOTIC BOUNDARY CONBITIONS

Suppose we have a system consisting of A nucleons
in interaction. The ene, rgy is assumed to be low enough
so that there are no three-or-more-body channels open.
Then there exists a length R such that at points more
distant than R from the center of mass of the system,
the wave function of the system is weB approximated
by a sum over channels of the form

+' =Z-C-' ((-,Q-)X-(r-),
where

@5M(t Q)

(S.l.M.m. l m) (Z,.v,.iV,.M,.l Z.M„)
~ama~I. N~BN

y p'i ~a(Q )O@i Aaiiria(ti )@2 Aaiiraa(( ) (2)

C i ~'~~'~($i )= the internal-motion wave function of a
bound state of A~ nucleons having
angular momentum AJ~ with projec-
tion AM~,

A =Xi +Ay ——Aip+Agp=

g is the antisymmetrization operator;

r = (r,Q )= the displacement of the center of mass of
nucleus 1n from that of nucleus 2o,.

The asymptotic boundary conditions satisfied by 4 ~~
are specified by giving the values of the logarithmic
derivatives of the X,

Z = fr (d/dr ) lnr x ]g.,

at the channel radii R &R. For scattering cases the
logarithmic derivative 2„ for the incident channel is
excluded from the boundary condition specification.

I et g be a closed (3A —1)-dimensional hypersurface
in our 3A-dimensional configuration space which en-
closes the origin. This hypersurface will be chosen so
that it is normal to each channel coordinate r and so
that the intersection with r„occurs at r =R . Thus
the boundary conditions we are discussing are boundary
conditions on the surface S. Let R be the hypervolume
enclosed by S.

If f~~ is a given approximation to the true wave
function 4'~~, then the requirement that P~~ satisfy
the correct boundary conditions is the requirement that

where'

~.=E~.(d/«„)»r. (~.' l4' )3,
It is assumed that R is large enough so that on hyper-

surface S the overlap of the different 4 ~~'s is negligible.
For convenience we introduce the quantities

7 = (O'R /2m )"(4'~~~If~~)&
~ (~)

zM —(ORR /2m )1/2@ zM(g Q )0

X(~-+ -(did .))(~(.-R.)/R-'), (6)

&
~~= (O'R /2m )'"C ~~(&„Q )~

X(X.+r (d/dr ))(B(r —R )/R '), (7)

where m is the reduced mass in channel 0, and y„will
be called the reduced width for channel a. The boundary
condition constraint can now be written

0=&i«'"*la' )=v-(~.-l -).
The superscript JM will be dropped henceforth.

For the bound-state case the logarithmic derivatives
are taken to equal those of the tails of two-body

bound-state wave functions in channels 0. with separa-
tion energies e =Bi,+82~—B. Here Ei, is the energy
of nucleus 10.. For the scattering case the logarithmic
derivatives 2 (excepting the one for the incident
channel 2„) are chosen to have values appropriate to
purely outgoing radial wave functions in the individual
channels e with relative kinetic energies —e .

GI. THE VARIATIONAL METHOD FOR
BOUND STATES

%e seek a solution of the Schrodinger equation

(&-&)4=0

which is regular in the inside or compound-nucleus
region of configuration space: r &R for all channels
u. This solution is required to have radial logarithmic
derivatives equal to 2 at the channel entrances
r =R . This set of constraints is made manifest in the
requirement (t' *[/)=0 for all n.

The variational principle appropriate to our problem

' We will use the convention that in matrix elements involving
4„~~ round brackets denote integration over all coordinates
except r; pointed brackets denote integration over all coordinates.
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is
o=r{QIH—alp&+2K D.QI|.&}, (1o)

where we have used the fact that f is real. The D are
Lagrange multipliers associated with our boundary con-
dition constraints. The Euler-Lagrange equation for
our system is

(E H—)4=2-D.i-
The formal solution to this equation is

f=g (8 H) —'f D . (12)

The Lagrange multipliers D are determined by apply-
ing the constraint conditions to this solution:

(13)

o=g(x "—2 ) "( .I(E—H) 'lq )

XP~ "(X -—Z )D (15)

Let us introduce a complete set of real orthonormal
wave functions y for our system. Then Eqs. (12) and
(13) become

0=2 ~»(v. ((~—H) 'I ~-) 2 ~-"(l~-"—~-)D-, (14)

prescription provided by our variational principle if we
ignore the boundary-condition constraints and seek the
best representation of the wave function in terms of the
finite set of Slater determinants. Including the con-
straints leads instead to Eqs. (14) and (15), where n.ow
the y are the given Slater determinants and the sums
over m and e include only members of the given finite
set. If instead of this we let the q„represent the dif-
ferent linear combinations of the Slater determinants
which are eigenfunctions of H in the space spanned by
the finite set of Slater determinants, then we have
Eqs. (20) and (21).

The imposition of boundary condition constraints on
a shell-model calculation is thus seen to be a very
straightforward procedure. First, one does a conven-
tional shell-model calculation to determine a set of
approximate eigenvalues E„and eigenfunctions y„of
the Hamiltonian. From the q„ the reduced widths y "
and logarithmic derivatives P

" are calculated. These
quantities are then substituted into Eqs. (20) and (21)
together with the energies E„and the constraint loga-
rithmic derivatives 2 . From Eq. (22) we find the
bound-state eigenvalue spectrum. Then Eq. (21) is
solved for the D ~», which are substituted into Eq.
(20) to give the wave functions f'&i.

where we have defined

and
(16)

IV. THE GREEN'8-THEOREM METHOD

We seek a solution to the Schrodinger equation

(~—H)4=0 (23)

so that

If the functions y are eigenfunctions of H,

(E —H)q =0,

then Eqs. (14) and (15) simplify to

4=2 v-(E E.) 'v-"0-" &-)D—.=Z v.&. (—2o)

and

o=p (z,.—z,)~,-(z—E„)-i~.-(x.-—z.)D.
n, e

=P mp D . (21)

The bound-state spectrum is found by determining the
roots of

det5K= 0. (22)

Corresponding to each root E&~) of this equation there
is a solution D &'i of Eq. (21). Substituting these D &&'

back into Eq. (20) gives the associated bound-state
wave function PU&.

In the conventional shell-model approach one di-
agonalizes the Hamiltonian H in the space spanned by
a finite number of Slater determinants. This is the

We will formally solve the Schrodinger equation with
the help of the Green's function G.

P' —H(3)3G(*,r) =1(ey), (25)

where I is the identity operator. Combining Eqs. (23)
and (25) we find

0 (~) = (G(*y) IH(y)4 (x)&~

where the subscript (R on the matrix elements indicates
that the configuration space integral is limited to the
inside region (R. The Hamiltonian consists of a kinetic
energy T and an interaction energy V,

H= T+V. (27)

We assume that the interaction energy is Hermitian in
the matrix elements of Eq. (26). Thus,

0(*)= (G(*x) I 2'(y)f(x) &~—(2'(y)G(* y) I4 (x))~ (28)

Now the kinetic energy has the form of a 3A-dimen-

which will be regular everywhere in the inside region (R

and which satishes the boundary conditions

(f'-*l 4&=0.
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sional Laplacian

T=P(—O'/2m;) 7,2= —Q (8'/Bx ') .
n=1

(29)

Application of Green's theorem allows us to replace

the two matrix elements on the right of Eq. (28) by
an integral over the (3A —1)-dimensional hypersurface
S separating the inside region from the outside region.
We assume that P is negligible everywhere on this
hypersurface except at those portions corresponding to
the two-particle channel entrances. Thus

O'E ' 8 l9

(c-I4) (G(~,~') IC-(~'))—(G(*,~') IC-(~')), (c-I4)ar' ar.'

)O'R.~'~' 8

, -'(G(,")IC-("))-)-(G(*,*')I~.(*'))
&2m i ar.'

=—P.y (G(x,x')
I t.(x')).

ra'=Ra

(30)

We have succeeded in expressing the wave function
in the interior of the inside region (R in terms of its
reduced widths y and logarithmic derivatives ) on
the hypersurface S. We now impose the asymptotic
boundary conditions by requiring where

g (2)=gp Z p(()gp

By rearranging the terms, this expression can be re-
written to read

( ) z. (')=p. &
(')

~O'R.Rpi' '

( 4m.mpi

Ya ~aa'Ya +~aaVa

(32)'yal(a ~aaVa ~a +~aaVa )(a

y &'& = (O'Ra/2ma)'"m &'&(Ra)

), ('&= &(r (d/(Ir ) 1nr I (')(r )]~ .

,. (~
y, (') I(C,.IGIC,,)

(harp i
where

(38)
(33) —R~, Rp

(34) For the bound-state case Z"' is set equal to zero.
Equation (37) provides a set of linear equation which

may be solved for the elements of the S matrix. For the
bound-state case there is the additional requirement

(39)detZ&»=O,

which determines the energy spectrum.
For the purpose of constructing more explicit ex-

pressions we introduce a complete set of eigenfunctions
of the Hamiltonian

(R B)y =0. — (40)

I 0& is the unit current outgoing radial wave function
for channel 0. and e ~'& is the unit current incoming
radial wave function. The coeKcients S „will be called
the elements of the S matrix. Subscript I refers to the
incident channel. For the bound-state case u &» becomes
an exponentially decaying function. For the bound-
state case we set y "'=0 and ignore the second sub-

script on the S-matrix elements.
We can now find explicit expressions for the S matrix

elements. Using Eq. (30) to evaluate the reduced width

gives

O'R R '&' -) ()
~p-4 I(C.IGIC p)

4m.mp ( arp i
(35)

These functions are to be defined for a region (R' large
enough to contain our inside region (R. Let these func-
tions satisfy homogeneous boundary conditions on the
boundary S' of this region (R'. Then we can make this
set orthonormal

Substituting Eqs. (31) and (32) into Eq. (35) results in

(g „~ (p&+.g,.~ (&))

/O4R Rp)'~'
(~p-. (')+~ -~ &))

p &4m.mpi

8
x ~p(e. lGlcp—) (sp„~p(»~p(»—+sp„) p(»»( &)

Bpp

(ya*l ym)(R =~.m

and have the following representation for the Green's
function valid inside region (R'

G(*,y) = L&—B(~)1-'1(~a)
=Z-I y-(*))(&—E-) '(y-(x)*l (42)

Substituting this into Eq. (38) gives

x(~.IGl~p) -2-(v "~p"/(~-E-))() p"-) p(')vp( & (43)
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where

y."=(AsR /2m. )'"(C
l y )g. (44)

derivative:

(h4RpR )'~s
vp4=Z l

E 4mpm. i
X."=$rp(d/dr ) lnr. (c l q„)]g.. (45)

With the help of the Z p"' we can evaluate the S
matrix and the bound-state energy spectrum. The
wave function for the inside region is given by

ei ( ei

xy- r pl r- —&- l(c'p I
G 14'-)

arp Ear

Use of Eqs. (31) and (32) then leads to

(s)=Q Pp 0)S
where

—Ba,Bg
(49)

(50)

a, n

=Z(v. (*)v-"/(E —E-))
t
h4R.Rp~'~s

y p(o —$ pyp(~)yp(~)

(46) k 4m.mp&

X (g (g n ) (2))+ (2)+S (g n 7 0))+ 0))
ei $8

Xvp"i r.
l rp —~p"' l(C. IGlcp)

ar. Earp

~ "v "vp"
(4"—4"')vp"'.

E—E„

Combining Eqs. (37), (43), (50), and (51) gives

(g 0)g (&) p' (&))

Zp(—~-0'~-po' I'-p0—')Sp- (52)
Z, p&'i =S.i' p&'& Rpg—p &pi'&)—&p&'&, (47) or

The above expressions represent a generalization of
the R-matrix theory of nuclear reactions. ' If we choose
the region (R' to coincide with the inside region (R,
then all the logarithmic derivatives 3 " will have the
same value, say ), since the p„all satisfy the same
homogeneous boundary conditions on the boundary S'
of R'. Then

where
where

n, „J„+N „=—Qp M pSp, (53)

R-p=Z- v-"(&-&-) 'vp"' (48)

V. MUTUAL CONSISTENCY OF THE
TWO METHODS

An alternative set of equations for the S matrix can
be derived by using Eq. (30) to evaluate the logarithmic

3A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 250
(1958).

4P. L. Kapur and R. K. Peierls, Proc. Roy. Soc. (London)
A166, 277 (1938).' E. P. Wigner and L. Eisenbnd, Phys. Rev. ?2, 29 (1947).

are the elements of the R matrix. In the Kapur-Peierls'
treatment ) is set equal to 'A "&, while in the Wigner-
Eisenbud' treatment the ) are all required to vanish.

The formulas of R-matrix theory are somewhat
simpler in form than those generated by our generaliza-
tion of R-matrix theory. However, there are no con-
venient approximations available for the R-matrix
theory eigenfunctions q . Sy using our generalization
of R-matrix theory, we can use the wave functions re-
sulting from a conventional shell-model calculation to
provide a useful approximation to the y .

g =& 0)(y 0) y (s))& (&) (56)

For the scattering case J„=iA while for the bound-
state case J„=O.

Equations (53), (54), and (55) are remarkable for
the symmetry they display. In addition, they coincide
in form with the result of the constrained variation
calculation. For the bound-state case J„=0 and Ã „=0.
In addition 2 ='A &" for all channels. Then comparison
with Eq. (21) leads to

0=2&~.pSp=gp~. &'&m. & &'&S . (57)

Identifying y &"S with D makes Eqs. (57) and (21)
identical.
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M p=P„y 0&(X "—X 0&)y "(E—E„) '

Xy p" (Xp"—

Aport)y

p&'i (54)

N-p=Z-7-"'(&-" —~-0')7-"(&—&-) '

Xy p" (&p"—&p"')yp"', (55)


