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In the familiar Rayleigh-Ritz method, a finite-dimensional Hamiltonian matrix is constructed using a set of
linearly independent trial functions. The eigenvalues of this matrix, suitably ordered, are guaranteed to lie
above the corresponding true eigenvalues, An analogous situation is shown to hold in scattering theory for
energies low enough so that only two-body channels are open. An effective Hamiltonian, which is a matrix
in the open-channel subspace, is constructed variationally. Since the corresponding Schrodinger equation is
of the two-body type, it may be solved, numerically if necessary. The eigenvalues of the reaction matrix, in a
partial-wave representation, are then guaranteed to lie below the true eigenvalues. The essential point in-
volved is that the error in the effective Hamiltonian can be shown to be a nonpositive operator, provided
the trial function satisfies a certain natural constraint. Effects due to the identity of particles are easily
accounted for. As an application, the three-body problem is considered in some detail, and the required con-
straint on the trial function is explicitly defined for this problem in terms of simple orthogonality conditions.

1. INTRODUCTION
'

N previous discussions, ' ' con6ned to the three-body
problem, we have shown that with the aid of certain

generalized impulse approximations the elastic scatter-
ing amplitude may be determined by a two-body
Lippmann-Schwinger integral equation with a relatively
simple effective (or "optical" ) potential. A more syste-
matic approach to this problem is taken in the present
paper, where it is shown that approximations to the true
effective potential can be constructed with the aid of a
minimum principle of the familiar Rayleigh-Ritz type.
The calculation requires evaluation of matrix elements
of the Hamiltonian with trial functions which must
satisfy certain subsidiary orthogonality constraints
along with the appropriate boundary conditions. The
trial functions may be systematically improved with the
aid of the rigorous validity criterion that the true eigen-
values of the reaction matrix lie above the computed
values, obtained by solving the Lippmann-Schwinger
equation with the approximate effective potential. The
presence of identical particles causes no de.culties.
Indeed, we will see that when all three particles are
identical the problem simplifies considerably.

While the above prescription can be derived directly
by manipulating the three-body integral equations (see
Sec. 33 for the derivation in the case of three identical
particles), it is simpler to make use of the projection-
operator formalism of Feshbach. ' In fact, with the aid of
this abstract technique, the minimum principle can be
established for arbitrarily complicated scattering sys-
tems, provided the energy is low enough so that only
two-body channels are open. It should be stated, how-
ever, that practical applications might prove to be
quite difFicult in general. There are, of course, the usual
complexities associated with the many-body nature of
the problem. In addition, the formalism requires the
construction of trial functions which have no projection
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onto the open-channel subspace. Since the channel wave
functions are not, in general, orthogonal, it is not a
simple matter to construct the projection operator. In
the particular case of three-body scattering, however,
this formal obstacle may be removed. Examination of
the Faddeev' representation of the three-body wave
function immediately reveals the form of the ortho-
gonality constraints to be placed on the trial function.
Since these are quite simple, the variational construction
of the effective Hamiltonian should then be no more
difEcult in practice than an ordinary Rayleigh-Ritz
bound-state calculation.

We have emphasized the desirable practical features
of the formalism, since minimum principles for multi-
channel scattering have already been proposed. Hahn,
O'Malley, and Spruch' have given a generalization and
improvement of an earlier version suggested by Rosen-
berg and Spruch. ' Another formulation has been given
more recently by Sugar and Blankenbecler. 7 In fact, a
long history of the d.evelopment of minimum principles
in scattering theory can be traced (references can be
found in the papers cited above) to the early work of
Spruch and Rosenberg. ' The challenge has always been
of a twofold nature. Of course, a method which works
in principle is sought. In addition, and this is crucial
when the scattering systems are compound, it should be
as simple as possible to use in practice. It is the purpose
of this article to point out a different approach which,
we hope, will add to the power and flexibility of the mini-
mum principle as a calculational tool. For example, it is

'L. D. Faddeev, Zh. Eksperinr. i Teor. Fiz. 39, 1459 (1960l
LEnglish transl. :Soviet Phys. —JETP 12, 1014 (1961)g.

'Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 134,
8911 (1964).

6 L. Rosenberg and L. Spruch, Phys. Rev. 125, 1407 (1962).
7 R. Sugar and R. Blankenbecler, Phys. Rev. 136, 8472 (1964).

See also, M.
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L. Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959).
Even earlier, Kato had shown how to obtain upper and lower
bounds on phase shifts for scattering by static potentials LT. Kato,
Progr. Theoret. Phys. (Kyoto) 6, 394 (1951)j. This method,
however, is not suitable in the more interesting ~g,ny-body
problems.
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now quite feasible to obtain variational lower bounds on
the phase shifts for neutron-deuteron scattering below
the inelastic threshold, and work on this problem is in
progress.

For the case of three identical particles, a second
development of an eftective-potential formalism is
given (see Sec. 3), in which separable potentials are used
rather than projection operators. This generalizes previ-
ous worko'0 in which only the leading term of the ef-
fective potential was retained. Here again, we obtain a
minimum principle for the effective potential.

2. FORMAL DEVELOPMENT

Feshbach' has shown that instead of directly solving
collision problems of the type A+8 —+ C+D, dehned

by the Schrodinger equation

(2.1)

along with the usual boundary conditions, we may
equivalently attempt to construct an eGective Hamil-
tonian K(E). The scattering parameters may then be
deduced from the solution of the two-body Schrodinger
equatIon

A basic relation satlsded by cy is

Q(H E)—&v
=QH—P+ Q(H —E)QG&QHP

(2.7)

We now introduce

(2.9)

where G& is a trial Green's function. Accordingly, the
error h&o =~&—

o& is in "Q space", i.e., Qh&o =h~. From
this property, along with Eq. (2.7), we see that terms
linear in her drop out of Eq. (2.8), which then takes the
desired form

X E=

cog�

—(H E)cv, —(ha )'—(H—E)h(o. (2.10)

The fact that the error operator

6 (3C—E)= —(hru) 1(H—E)hu)

= —(h&u) tQ (H—E)pro (2.11)

which follows from Eq. (2.3) in the form Q(H —E)QGoQ
= —Q. Then, since &ot P=—PHQGoQ, Kq (25)
equivalent to

(2.8)

(5{, E)~—{p(H E)P+PHQGqQHP}~ 0 (2 2) is of second order implies that

Here P and Q are projection operators satisfying
P+Q=1 (so that PQ=O), where P projects onto the
open-channel subspace. The t reer's function G@ is
related to the closed-channel Hamiltonian QHQ by

G'(E) = LQ(E—H)Q7 ', (2.3)

it evidently takes into account intermediate states of
the scattering process in which the colliding systems are
in any of those excited states which make up the closed-
channel subspace. We assume that E lies below the
threshold E, of the continuous spectrum of QHQ. The
usual infinitesimal imaginary addition to E may there-
fore be omitted in Eq. (2.3). Furthermore, since the
functions in Q space vanish asymptotically, we may
treat the Hamiltonian as a Hermitian operator in this

space.
It is our object to obtain an identity of the form

3C,—E=co((H—E)(o, (2.12)

is indeed a variational expression. To elevate this varia-
tional principle to the status of a minimum principle,
we need only observe that the sign of diagonal matrix
elements of the error operator may be determined from

a knowledge of the spectrum of QHQ. In particular, if

QHQ has no discrete eigenvalues below E„ then

Q(H —E)Q is a positive operator (recall E(E,), and

the error operator is negative. If discrete states do exist,
they may be subtracted out, using a technique which

has been described previously. "This technique is based
on a theorem which may be stated in the context of the
present problem as follows: Suppose QHQ has M dis-

crete eigenvalues, and suppose further that we have

been able to construct M linearly independent trial
eigenfunctions q&;, which belong to Q space and which

are accurate enough so that the matrix 9with elements

x(E)—E=K,(E)—E+ALx(E)—E7, (2.4)

where K& is some variational estimate of the effective
Hamiltonian. " We Grst note that Eq. (2.2) may be
written as

D,g= (A(, $H E7 pjt)

is negative. Then

H —E—=H —E—P i(H —E)9;,)

(2.13)

with
5C—E=P(H —E)(o,

P+QG&QHP . —

(2.5)

(2.6)
s L. Rosenberg, Phys. Rev. 134 3937 (1964)."R.D. Anrado, Phys. Rev. 13, 485 (1963)."The following discussion, leading to Eq. (2.15), may be viewed

as an alternative route to the minimum principle of Ref. 7. The
connection is made more apparent by choosing a trial function, in
the present version, in the form of a linear combination of func-
tions with the linear parameters then evaluated variatianally.

X (D-');;(9„(H—E)
~

(2.14)

is non-negative ln Q space. With the aid of Eq. (2.7),
we may write Eq. (2.10) as

3{,(E) E=,t(g—E)~,—(a&)t(8—E)a~, (2.15)

'~ L. Rosenberg, L. Spruch, and T. F. O' Malley, Phys. Rev. 118,
184 (j.960).
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so that even when QHQ does have discrete eigenvalues
the error in the variational estimate of X—E may be
displayed as a negative operator. The requirement of
the minimum principle that we subtract out the discrete
states in Eq. (2.14) has led us at the same time to ex-
plicitly introduce into the variational expression for the
effective Hamiltonian those separable interactions
which account for the resonances' ";Eq. (2.12) is to be
replaced by

Xi E=c—opt(8 E)rug—.
The most direct way to make use of the fact that the

error operator A(X—E) is negative is to couple it with
the monotonicity theorem" for the partial-wave projec-
tions E s of the reaction matrix elements. (For single-
channel scattering, X is just the tangent of the phase
shift. ) If we define K, as the reactionmatri x deduced
from Eq. (2.2) with X replaced by X,, then the theorem
states that

atKa&atK, a, (2 17)

where a is an aribtrary column vector in the space of
open-channel indices. (We have constructed a quadratic
form for K in order to introduce a diagoria/ matrix
element of the error operator, which is then of known
sign. )

In considering variational estimates for cv, the simplest
first guess is &o& I' (corresp——onding to Gio=0). This
choice leads to the method of resonating group structure
introduced by Wheeler" {and often referred to subse-
quently as the static or close-coupling approximation)
for the determination of I&. It was shown by Hahn
eI al. ' and is apparent from the present discussion as
well, that, if no discrete states of QHQ exist below E,
then the inequality

a~Km& at K8a (2.18)

'3 S. Weinberg, Phys. Rev. 130, 776 (1963); 131, 440 (1963);
133, $232 (1964).

"The theorem follows directly from the EC-matrix version of
Eq. (2.35) below; one applies the comparison theorem, Eq. (2.34),
with Gq='G@ and Vg —Vg an infInitesimal matrix of definite sign.
Actually, the bound obtained should be stated in terms of the
eigenphases rather than the reaction matrix since the latter
changes discontinuously as a new resonance ls introduced."J. A. Wheeler, Phys. Rev. 52, 1107 (1937).

&' y. Hahn, T. F.O'Mauey, and L. Spruch, Phys. Rev. 128, 932
(1962)."Y.Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. D4,
3397 (1964).

holds; here Ks is the reaction matrix in the static ap-
proximation. Furthermore, even when such discrete
states do exist, the eigenphase shifts in the static ap-
proximation provide lower bounds on the true eigen-
phases. '~ The utility of this latter result is somewhat
diminished by the fact that when resonances are present
the bound obtained will generally differ from the true
value by more than x. It is clearly desirable to be able to
keep track of the branch of the tangent curve on which
the phase shift lies; it will, in fact, be possible provided
one has some additional information. Speci6cally, we
state, as an extension of the above theorem, that the

atKa&atK8 a. (2.20)

This is subject to the usual conditions on the trial bound-
state functions y, i which appear in 8 Lsee Eq. (2.14)j;
we require, in particular, that E(~&q;&= 0.The inequality
will remain valid if we repeat the calculation with the
same set of functions q;& but with co& chosen a,s E("&,
n) m Now. suppose that" Q'"&q,

&

——0. Then, since the
cp;& are in E'&"& space,

(&;,(H—E)Z&-& (e, =0 (2.21)

so that the distinction between H and II may be ignored
in the solution of the modi6ed static problem. This im-
mediately gives the desired inequality

(2.22)

It is possible, and often convenient, to cast Eq. {2.2)
into the form of a set of coupled Lippmann-Schwinger
integral equations for the T-matrix or E-matrix ele-
ments. For example, the T matrix (in the center-of-mass
system) can be found, once the effective potential is
known, by solving the set of equations

T p(k, kp, E)=V p(k, kp, E)

+Q &~& dk, V,(k,k„;E)

X T,p(k„kp., E). (2.23)
E+ig —(5'k, '/2p, )+e,

Here all channels n, P, and y which appear explicitly
are of the tw'o-body type associated with I' space; the
many-body intermediate states are accounted for in the
structure of the effective potential matrix V. The sum
of the binding energies of the two composite systems

"This generalizes a theorem obtained previously for zero-energy
scattering; it states that the static approximation provides an
upper bound on the scattering length, provided the Hamiltonian in
the static approximation has the same number of negative-energy
bound states as the true Harniltonian. See L. Spruch and L.
Rosenberg, Nucl. Phys. 17, 30 (1960).

'9 Of course, with I' space limited to two-body channels, it may
be impossible in principle to account for all the resonances in the
static approximation merely by enlarging P space sufIIciently. In
such cases, the theorem will not apply.

inequality of Eq. (2.18) will be valid even when reso-
nances are present provided that all the resonances are
accounted for in the static approximation. " To see
this, consider a sequence of projection operators {E" '},
and the related sequence f Q& &}, delned such that the
set of open channels associated with E'& & is contained in
the set associated with I' & +'&. If in the present formula-
tion of the minimum principle we choose co~=E& ', then
the modified static problem, de6ned by

E&"&(8—E)E&"~4's„——0 (2.19)

(this divers from the usual form by the replacement

H —& H), leads to a reaction matrix Ks which satis6es
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which scatter in channel y is denoted by st (s))0),
and p~ is the reduced mass of the two systems. The E-
matrix elements are determined by equations of the
same form, with the principal value prescription used to
Rvol(i 'tile smgulRrltlcs 111 tllc llltcgl'Rllds. Tile mat11x V
is de6ned by

V„p(k,kp, E)= (C, I X(E)—EjCp), (2.24)

where 4 is the unperturbed wave function in channel n,
0

l.e.)
(2.25)C =(2s-)-s~'X exp(ik .r ).

(H—E)C =VC

where V is the interaction potential which acts between
the two composite systems and which vanishes for
r, —+~.According to Eqs. (2.6) and (2.8), we also have

V p(k, kp., E)= (@ Q, fH E)%pQ)—
= (@ Q, PH E$%pQ),— (2.27)

X is the product of the bound-state wave functions of
the two composite systems. The wave equation for C

18
Vt —Vt (g (Q) g (Q)t)V

with (Vt) p= (V)p ". If, in Eq. (234), we set

(2.36)

V~(+) —VB (—) —V(E) ~ g~(+) —gB(—)—g(B}(E) ~

(2.37)
T~(+)=TB(-)='g(E)

we obtain

"g 'rt —~tVt{g(Q) g(Q) t)V~/ Tt(g (&) g(&)t)'g (2 38)

Thc ldentlty

T~(+)= TBt(—)+gBt(—)(V~(+) VBt(—})Q~(+)

+TBt(—) (G~(+) GBt(—))T~(+) (2 34)

then holds. To make use of this relation, we write Eq.
(2.23) in the matrix-operator form

T(E)=V(E)+V(E)g"'(E)T(E) (2 35)

where (V) p and (T) p are given by Eqs. (2.30) and
(232), respectively, and g(B} is a diagonal matrix de-
scribing propagation in intermediate states in I' space.
If we denote the analogous Q-space propagator by g'Q',
then Eq. (2.30) may be shown to imply the "unitarity"
relation

with
+.Q=C.+QGQQHPC . (2.28)

With T=VQ and g= g(B}+g«', we arrive at the correct
form of the unitarity relation, namely,

The replacement of H with 8' in Eq. (2.27) is justified by
Eq. (2.7). It is easy to show that Eq. (2.24) is equiva-
lent to the deinition

V-p(k-, kp' E)= (C'-,V-p(E)C'p), (2.29)

where the effective potential operator V p(E) is given by

V-p(E)=V.+V GQ(E)Vp (230)

For comparison, we recall that

with
T-p(k-, kp' E)= (C', T-p(E)C'p&

T p(E)=V +V G(E)Vp.

(2.31)

(2.32)

It is worthwhile to remark that while we have assumed
that E(E„sothat the channels in Q space are closed,
Eq. (2.23} is still valid at higher energies. We need
only continue Eq. (2.30) in energy by adding to E a
small positive imaginary part which eventually tends
to zero. In this somewhat broader context, independent
of the minimum principle, we wish to emphasize the
utility of Eq. (2.23}as the basis for approximation pro-
cedures. tA'e 6rst show that these coupled integral
equations give rise to unitary scattering amplitudes,
This result follows directly from a very useful compari-
son identity which was derived previously' and will be
used several times in the present paper. Suppose Tg
and Tgg SRtlsfy

~(E)—Tt(E)=T'(E)Lg(E) —g'(E)7T(E) (2 39)

%e note that if the same a,nalysis is applied to the origi-
nal form of the Lippmann-Schwinger equation, "one
6nds that unitarity is not satisfied; in that case, not all
channels are represented in the sum over intermediate
states. Some substitute, such as Eq. (2.23), is therefore
a tMcessity. The derivation of Eq. (239) has an immedi-

ate practical application. Thus, let V&(E) be some
approximation to the true CGcctive potential which
satisfies the correct "unitarity" relation, Eq. (2.36). If
we then use Vt in Eq. (2.35) to determine an approxi-
mate T-matrix T&, it follows that T, is unitary. The
utility of this result derives, of course, from the fact
that the truncated unitarity relation given by Eq. (2.36)
will be easier to sa,tisfy in practice, as opposed to at-
tempting to construct a unitary T matrix directly. This
discussion may be viewed Rs R simple VRrlRtlon of the
usuRI E-matrix, theory which lcRds to thc Hcltlcl
equation. " We note, &&ally, that Eq. (2.35) will be
valid even when I' space contains many-body channels.
Of course, in that case, the solution of the integral
equation will be far from trivial due to the necessity of
summing over many-body intermediate states.

Returning to our formulation of the minimum princi-
ple, we deQne a trial effective potential according to

V-pt(k. kp E)= (C'-1'Q I:&—E3+p1Q) (240)
where

e.,Q=C.+QG,QQaZC. . (2.«)
T~= V~+ V~G~T~—=VA~,
TB=VB+VBGBTB=VBQB ~

(2.33)
10 B.A. Lippmann and J.Sch)Ninger, Phys. Rev. 79, 469 (1950).
~' See, e.g., M. L. Goldberger and K.M. Watson, Col/~sion Theory

(John Wiley 8z Sons, Inc., New York, 1964), Sec. 5.6.
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Pq;)=0,
(2.43)

but are otherwise arbitrary. We note that in the present
version of the minimum principle the projection oper-
ator appears in the constraint conditions, Eqs. (2.43),
but nowhere else.

To illustrate the treatment of identical-particle ef-
fects, suppose we are interested in a problem such as the
scattering of electrons by hydrogen atoms at energies
below the first excitation threshold. To take into ac-
count both direct and exchange eQects, we consider the
2)&2 E matrix

(2.44)

If we choose

(2.45)

for scattering in the triplet (—) or singlet (+) spin states,
we get a siege-channel Lippmann-Schwiiiger integral
equation for the properly symmetrized E-matrix ele-
ment of interest, namely,

E,„=a~~K,a~
=ED~~EEt ~ (2.46)

which represents a lower bound on the true value. The
effective potential in the integral equation is a sum of
direct and exchange potentials, i.e.,

(2.47)

The simplicity of this result stems from the fact that,
since a+ is independent of the matrix elements, it is an
eigenvector of both the E matrix aed the effective
potential matrix, on and o8 the energy shell. Coupled
equations will, of course, be unavoidable when the
particles are distinguishable (in which case EiiWK22,
and the above simplification does not obtain). More

Then the error is given by

hV p(li, kp, E)= —(M' o, PH E)h—@so), (2.42)

withe @=4 io—4 &. Since'+ &is inQspace, 8 E—
maybe regarded as a non-negative operator in Eq. (2.42).
Once the trial effective potential is constructed, the
reaction matrix K& may be determined by a routine
numerical solution of the coupled two-body Lippmann-
Schwinger equations. The variational bound, Eq.
(2.17), is then guaranteed. It is fortunately not neces-
sary to actually construct the trial Green's function.
We need only choose 4'~P=C'~+4 & with 4, in Q
space. There will then exist some operator G~@ such that
4' &=QG&@QHEC; Gio itself need not be explicitly
exhibited. The statement that the trial functions
4', and q;, are in Q space means that they vanish for
large interparticle separations and satisfy

generally, in the elastic scattering of a particle by a
system containing g identical bound particles, the
(X+1)X(X+1)Z matrix (before any spin decomposi-
tion is introduced) will satisfy

Es~—Eg) &

E;;=E;;,
E;;=RE;,;+i for iW j, ~N j+1,

(2.48)

independent of ED and E~. The integral equations
therefore decouple, and the effects due to exchange of
identical particles are accounted for in a simple way.

3. THREE-BODY PROBLEM

A. Distinguishable Particles

In any application of the formalism described above,
there still remains the task of giving an explicit realiza-
tion of the projection operators P and Q. This is possible
in principle' but generally will be quite dificult in prac-
tice. Of course, if the signer-Eisenbud picture is ap-
plicable, " i.e., if configuration space can be separated
into "inside" and "outside" regions, such that the
Schrodinger equation is soluble in the outside region,
one may set P= 1 in the outside region and P= 0 inside.
Bounds on the eigenvalues of the E matrix may be
obtained by performing an ordinary variational calcu-
lation with a trial function 0'~ which satisfies the sub-
sidiary constraint

(3.1)

This is the basis of the minimum principle described
previously. ' The results of Ref. 5 show (in e8ect) that
the constraint Eq. (3.1) leads to a variational bound
for the entire class of projection operators dined by
Feshbach. This is a major improvement, but one still
must construct the operator P.

The above remarks are meant to motivate the fol-
lowing analysis of the three-body problem. As we have
seen, the projection operator P enters our formulation
of the minimum principle only in the constraint condi-
tions Eqs. (2.43). We now show that the Faddeev4
integral equations for the three-body wave function
enable us to give explicit meaning to Eqs. (2.43) in
terms of simple orthogonality conditions.

According to Faddeev, the wave function may be
written as %=%&'i+%'& i+4&'&, with the 4&'& deter-

"E.P. signer and L. Eisenbud, Phys. Rev. 72, 29 (1947).

where we have taken into account the Bose-Einstein
(+) or Fermi-Dirac (—) symmetry of the target wave
function. If we define E»=Ez, it is easy to see that the
eigenvector a+ which has the physically reIevant
eigenvalue E=E~+SE~has the components

a,~= (&V+1)
—'~'(+1)'+' i=1, 2) ~ X+1
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mined by the set of coupled integral equations

0 G»V» &»I»' ~(')
+") = aeCls + G»&» 0 G»l'»

@3412 ~12~12 612t' l2

where for each pair (i,j),

same space (i.e. , Q space) as the true functions q;. It is
the purpose of this discussion to arrive at the explicit
form of these conditions.

We denote the bound-state wave functions of the
(2,3) pair, corresponding to states in I' space, as Xss „,
with I= 1, 2, , Nss(P). Then, according to Eq. (3.5),

(3 6)
G,"(E)= fE+irt E—V—;] ' (3.3)

G, .—G, .()')+G, .(Q) (3.4)

where 6;;(~) consists of those contributions to the
eigenfunction expansion which involve the bound states
of the (ij ) pair associated, with the open channels. Then
the functions 4 Q are obtained by solving Kq. (3.2)
with the G;; replaced by the 6;;(@).The discrete states
are obtained from the solution of the homogeneous
integral equation

(E is the total-kinetic-energy operator) and, e.g. , Css
is an unperturbed wave corresponding to particle 1
incident on a bound (2,3) pair. Since we are ultimately
interested in the eigeevalles of the reaction matrix
Lsee Eq. (2.17)], we have allowed for waves in the
other two entrance channels as well. The signi6cant
feature of the Faddeev equation is that the continuous
spectrum can be obtained by inspection of the kernel.
)WC have indicated in Sec. 2 that the ordinary Lipp-
mann-Schwingcr equation' does not share this feature
and is therefore inadequate. ] In fact, it is the set of
branch cuts in the Green's functions G;, (E) which
dctcrIMIlcs the continuoUs spectrum. As USUal, thcsc
branch cuts run along the real energy axis from the
physical threshold positions to in6nity and may be
exhibited in principle by introducing the eigenfunction
expansions of the G;;. %e now wish to write down the
linear integral equation which determines the continuum
function 4 Q defined in Eq. (2.28). Solutions to the
homogeneous version of this integral equation will give
rise to the eigenfunctions y; of the discrete spectrum.
The basic requirement is that the portion of the continu-
ous spectrum of H associated with the open channels
should be missing from the spectrum of QHQ. According
to the above remarks, we need only introduce the
decomposition

(integration over continuum states is implied), where,
in terms of the position vectors r; and masses es;, we have

Evidently, the orthogonali:y conditions are

()(ss, , [(o(')+(o("])=0, 1=1,2, , Nss(P), (3.9a)

(x»,„,t &()+«])=0, ~=1, 2 " N»(Z) (3.9b)

along with

(X» „,(t (s))=0, st=1, 2, ",N, s(P). (3.9c)

Note that for the electron-hydrogen problem we may
represent (o in the form given in Eq. (3.8), i.e. , with
(t(s)=0. Then Eqs. (3.9) reproduce the prescription
given previously"'4 for this problem. In general, when
all three masses are 6nite, the orthogonality conditions
become

()(" q"))=0 st=1 2 N "(I') (3.10)

for k= 1, 2, and 3, with i&j&k. It is now clear how to
interpret the constraint conditions Kqs. (2.43). We
choose a trial function

3

+ Q=Q +tQ(&) (3.11)

g23= r2—r3,
qt= rl —L(sttsr2+sttsrs)/(stts+ttts)]. (3.7)

Similar expansions may be written down for q(" and

q (3). In deducing the orthogonality conditions, there is
a certain degenerate case which should be discussed
first. Thus, suppose m3= ~, with mi and es2 6nite.
Then gj ~ joi3 and the functions p(" and q(' should be
taken together, i.e.,

V
"'+~")= Z Z f .Xss, -(est)Xls,.(i)ls) (3 8)

e&Ng3(P) e&¹3(P)

.(i) 0 6 (Q) p 6 (Q) V ~.(I),
(o,( ) —G»(Q) P'» 0 Gls(Q) P' ~,( ) (3 5)
@,(3) ~,G„(Q)y G„(Q)V 0 ~ @,(3)

+tQ(t) =(1@.&+fi (t) (3.12)

with ~,= &)o;(')+q;(')+y, ").Alternatively, the discrete
eigenvalues may be characterized by the maximum-
minimum property, " allowing for a Rayleigh-Ritz
variational construction. The trial functions p;,= q;, ( )

+ (o;t(s)+ (o;,(s) would then have to satisfy certain
orthogonality conditions in order that they lie in the

"R.Courant and D. Hilbert, Methods of Maths))tatical Physics
(Interscience Publishers, Inc, , New York, 1953), Vol. 1, Chap. 1.
This property constitutes the mathematical basis of our minimum
prin. ciple.

The functions +~('& must vanish asymptotically and
must satisfy

(x;;,4t("))=0, I=1, 2, , N;, (P), (3.13)

in the finite mass case, or else conditions such as shown
111 Eqs. (3.9) wllell ollc lllass ls lllfillltc. Slllcc thc 'true

function 4@is of the same form, the error M @=0 &@—0'@

~ Ke emphasize that even with the same form for the projection
operators the present approach is quite distinct from the method
of Hahn et an't,
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will belong to Q space and hence will be an allowable
trial function in the Q-space bound-state problem. The
error in the variational estimate of the effective potential
is of the form

I
see Eq. (2.42)j
—(S+Q, L8—Ejw+Q) .

The preceding discussion establishes that 8 E is-
positive in the space of functions of the type M @, so
that the formal developments of Sec. 2 apply. This
establishes the minimum principle for the general
three-body problem.

B. Indistinguishable Particles

The simplifications which arise when the three
particles are identical are significant enough to merit
separate discussion. Faddeev' has shown that when the
three particles are spinless bosons Eqs. (3.2) may be
written as a single, uncoupled, integral equation. It is
more convenient for our purpose to study the corre-
sponding integral equation for the elastic scattering
amplitude 2'= Tr)+2T~. The transformation has been
carried out previously' for the general three-body prob-
lem and for all channels. When applied to the special
case at hand, we found' that the amplitude could be
written as T=2V', with

V'(kt, k;; E)=B(kr,k;; E)+r(kf,k, ; E). (3.14)

Here B(kr,k;; E) is the Born approximation to the
exchange amplitude Lsee Kqs. (3.33) and (3.38) be-

low], and
(3.15)r (kf,k;; E)= ( ,Cr)"()C~)),

with
r(» = 2t;,+2t;,G,I;,r(') . (3.16)

The particle indices (i,j,k) can be any one of the permu-
tations of (1,2,3). In Kq. (3.16), t,; is the two-body
scattering operator which satisfies

tv= Vs+Vs*~V'~ (3.17)

t —t(p)+t(Q) (3.18)

according to Eqs. (3.4) and (3.17).If, for simplicity, we
assume there is only one two-body bound state, then
t( ) is of the separable form

t'"(E)=
I Vx&l 1/(E+e)j&xVI (3»)

Gp is the "free" Green's function, and I;k is an inter-
change operator which guarantees that an interaction
between a pair of particles, described by the operator t,
is always followed by an interaction between a diferent
pair. I We have used the language of multiple scattering
expansions, but the meaning of Eq. (3.16) itself should
be clear. ) We now show how an effective potential may
be directly exhibited, without recourse to the projection
operator formalism of Sec. 2.

The two-body scattering operator t (we omit all
particle indices now for ease of writing) may be repre-
sented as

It is seen from the comparison identity Eq. (2.34) that
the solutions to the two equations

are related by

r= 2t+2tGolr

r(Q) = 2t(Q)+ 2t(Q)GOIr(Q)

(3.16')

(3.20)

X v'(k, k;; E). (3.22)
E ,'k'—+—e

Here the effective potential is given by

'U(kr, k, i E)=B(kf,k;; E)+rQ(kr, k;; E), (3.23)

as might have been anticipated from our general con-
siderations in Sec. 2. In arriving at Eq. (3.22) we have
adopted the prescription that in continuing an ampli-
tude o8 the energy shell we make the replacement
4~ ops. These two forms are equal on the energy
shell, i.e., for E=-,'k' —e, by virtue of the eigenvalue
equation satisfied by the two-body bound-state wave
function. Since the bound-state singularities have been
removed in the construction of the effective potential,
the formalism of Sec. 2, which leads to a minimum
principle for the effective potential and a variational
lower bound on the phase shift, applies directly here.

There has been considerable interest lately in obtain-
ing approximations to three-body scattering amplitudes
by replacing the two-body interactions by separable
potentials. 9""The resulting equations (we continue
to consider the system of three spinless bosons) are of
the two-body type, with a slightly modified propagator
and an effective potential which is just the Born term
B(kf,k;; E). To assess the accuracy of the approxima-
tion, and improve it if possible, it is desirable to obtain
an expression for the exact effective potential. This will

now be done, with a slight modification of the procedure
leading to Eq. (3.22).

We write the two-body potential as V= V&+ V„with

V.= Vlx&&xl V/&xl Vlx&; (3.24)

we again assume that only one two-body bound state
exists. Introducing the operator t~ as

tl= Vl+ V1GOt1

—= Vying, (3.25)

"A. N. Mitra, Nucl. Phys. 32, 529 (1962); C. Lovelace, Phys.
Rev. 135, 81225 (1964).

r = r(Q)+ (1+r (Q)IGO) 2t(~) (1+GOIr) . (3.21)

From Eqs. (3.14) and (3.21), we obtain an integral
equation for 9 (kf,k,", E) of the desired form, namely,
(with k'= 2m= 1)

v'(kr, k, ; E)=U(kf, k, ; E)+2 dk'U(kt, k) E)
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If we de6ne t, by

0=Qy+QgGOV, Q. {3.27)

(3.28)

Eq. (3.27) implies that $,0&= V.Q, so that Zq. (3.26)
may be written as

we may replace Eq. (3.18) by the decomposition

~=&,+Q,t&-&V,Q, {3.26)

where we have used Eq. (2.34). The wave operators 0
and Qj., corresponding to the potentials V and V~,
respectively, are related, according to the Lippmann-
Schwinger equation, by

The prescription for continuing these amplitudes off the
energy shell is now

I C"(E)&
~

I
Go(E)0~" '(E)VC"(E)& (337)

&~i {E)I~ «'r(E) «~'+'(E)G~(E) I.
For example, the Born term is

g (k;+-', kf) g (kg+-,'k;)
B(kf,k;; E)=, (3.38)

E—(kg+kf)' —kp —&f2

for 23k/= —,'k~' ——E+e. When kg is varied with E and
k,~ fixed, we must make the replacement

~= ~,+Q,t&-~~,0,~+&. (3.29)
g(k'+kkf) ~ g' '*(k'+2k', E—Pf')

Since V', is separable, Eq. (3.28) may be solved ex-
plicitly; we obtain

&k'jQgt& &(E)t,(E)Qg&+&(E)
( k)

=Kg"'(k' E)f' '*(k»)/(E+ ~)j~~'+'(E) (3 3o)

Here we have de6ned

g&+&{k,E)= &k~Q,t~+&(E)V[,& {3.31)

~

g&+&(k,2&~) [2

LS '+&(E)] '= — dk (3 32)
2 (2k' —E—iq) (2k'+ e)

We note the on-shell relation

g(k, —~) =g(k)= &kl Vx&, (3 33)

which may be derived using the eigenvalue equation
satisfied by g along with the property V~X=0. In place
of Eq. (3.21), we now have Ponce again we use the com-
parison identity Eq. (2.34)j

&=~,+(1+r,lG,)EQ,t~-»~.0&3(1+Ger), {3.34)

where r~ is obtained from Eq. (3.16') with the replace-
ment of t by Ij.The exact integral equation for the scat-
tering amplitude then becomes

V'(kr, k;; E) ='Ug (kr, k;; E)

g, (+) (E 3P)
+ dk'Ug(kg, k; E) V'(k, k, ; E), (3.35)

E—-', k'+ e

in Eq. (3.38). Similarly, when k; is varied, with E and
kf2 fixed, the replacement

g(kr+2k') ~ g'+'(kf+kk" E—k&')

ls required.
The above approach will be a reasonable one when the

potential V~ is sufIiciently weak so that it cannot form
a two-body bound state. If this is the case, the minimum
principle for the efI'ective potential'U~ can be formulated
in analogy with the procedure described in Sec. 2. In
fact, the situation is somewhat simpler here, since no
orthogonality constraints need be placed on the trial
functions; the continuous spectrum of the Hamiltonian
obtained by the replacement of V with Vi will begin at
the inelastic threshold E=o. As observed above we
may translate the minimum principle for the effective
potential into a minimum principle for the phase shift
using the monotonicity theorem'4; the presence of the
modified propagator in Eq. (3.35) does not alter the
argument. We note, 6nally, that, in addition to varia-
tional estimates of the eftective potential, a Born ex-
pansion should be useful, provided the strength of the
potential V~ has been sufFiciently weakened by the re-
moval of the separable part V,. This is the basic idea
of the quasiparticle technique originally introduced by
steinberg" for two-body scattering and here applied in
the context of a three-body problem.
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