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Eigenvalues of Ferssiion Density Matrices*
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The least upper bound of the eigenvalues of second-order reduced density matrices for a system of fer-
mions is proved to be n for a system of 2e or 2n+1 identical fermions. It is also shown that this limiting state
may be interpreted as a system of identical pairs behaving as quasibosons.

1. INTRODUCTION
' 'T is known that certain features of a system are
' ~ illuminated by the spectrum of its first-order density
matrix. For example, an eigenvalue of this matrix may
be interpreted as the occupation number of the corre-
sponding spin orbital, and if all the eigenvalues are equal
to 1, the state can be described by a single Slater de-
terminant. ' We might expect that the spectrum of a
higher order reduced density matrix would also charac-
terize the structure of the system. However, it seems
that little has been done along this line. ' In this paper,
we discuss the range of the eigenvalues of a many-
particle density matrix in order to approach this
problem.

For this purpose, it is convenient to use a wave func-
tion expanded in terms of the eigenfunctions of density
matrices. ' The expansion is obtained by the use of the
following theorems. '—'

Theorenz 1.If A is a linear and completely continuous
transformation4 of one Hilbert space into another, and

f is an element of the first Hilbert space, A f can be
written in the form

Af=Z I"g'(f',f)

Here {f;) and {g;) are orthonormal sets in the two
Hilbert spaces involved, and {p;) is a nonincreasing
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sequence of positive numbers. The sequence can be
finite or infinite, and in the latter case it tends to
zero.

Corollary 1:
sup

I (Af g) I/L(f f)(g,g)7"=1 i.
Theorem Z. H there exists a normal operator S such

that AS=A, every f; is an eigen-element of S, i.e.,
sf'=f'

A normalized wave function @(x,,xs, xsi) of JV

fermions may be regarded as a kernel of the operator A,
which transforms absolute-square-integrable functions
of M fermions into functions of E—3E fermions:

g(xi, ,xs, sr)

1
dXy ' ' 'ASS~

X%'(xi),xiv sr,xi, ,xsr') f(xi', ~,xsr'),

or, in a brief form

g(*)= +(x,y)fb)6

it corresponds necessarily to a completely continuous
transformation. By the use of theorem 1, we obtain the
following expansio~ of the wave function%':

+(x,y) =2 p*g'(x)f'b),

where

g;*(x)g; (x)A= 6;;,

f'*b)f'b)A =g"

and
p;&p;&0 for i&j.

where x and y denote (xi xiv sr) and (xi' ~ xsr'),
respectively. Since the wave function 4'(x,y) is nor-
malized:
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Since the density matrix of order M of this pure state
is defined by

A'

rM(y, y') = e(»y)e*(»y')dX,

we obtain immediately the diagonal expansion of the
density matrix from (1.1) in the form

it is found for any function o) =o)(a,y) that

((d(OAs —Os)o))= (o)(1—02)OAs(1 —Os)o))
= ((1—02)(00As(1—Os)(0) &0.

Thus we obtain the following inequality

tlV
)(M,x(+)&

I (glflOAsglf1)

I'M(y, y') =
I 2 I "f'(y)f'*(y').
kM

P&
I sup(gfo, sgf),

(Mi r' (2.1)

lV
I'2 M (»x') =

I Ig )2;2g;(x)g,*(x') .
kcvi '

~X
)(M,2(—=sup)(M 2((+)+ I sup(gfoAsgf) . (2.2)

IMIn order to evaluate the symmetry property of f,, it
is convenient to introduce the antisymmetry projec-
tion operator defined with respect to the coordinates
y= (Xi'. XM'):

We shall now prove that the last term of (2.2) is equal
to XM, N. Let (f(2)}and (g(2)}be the sets of normalized
functions which give a solution of the above extremum
problem:

I
OAs, s Q spI ~

3E! ~

Here I' is a permutation operator which permutes only „,,P ')~,

the coordinates y and eP is its parity. It is easy to see ~ ~)(g
that O~g,

„

is self-adjoint and that

Similarly, the density matrix of order f)'f iV is fo—und to fbe
where and g are normalize functions of M and E—
particles, respectively. Since the last term of (2.1) does
not depend on%', it follows that

e(»y)OAs, „f(y)dy

OAs, P(»y)f(y)dy= +(»y)f(y)(Ey.

as k —+~.
Since a set of functions (+(")}defined by the equation

((+ )i)2
+(2)—

I I
)((2)

I OA g()of(2)

Thus by using theorem 2, it follows that OAs, „f=f,
i.e., that if the function 4 is antisymmetric, f, and g; in
the expansion (1.1) should also be antisymmetric.

2. THE LEAST UPPER BOUND

consists of normalized antisymmetric functions, it
follows from corollary 1 that

(@(2))&
I I

(g(k)f(k) y(k)) I2 )((2)
3Ei

The largest eigenvalue of a density matrix of order M
may be regarded as a functional of 4:

)re q
)(M.~(+)=

I

Jim)(M, )2 (W"))& lim)((') .

By comparing (2.3) with (2.2), it is found that

(-'3)

Introducing a projection operator 0+ which projects out
the state 0:

02,——@)(@,

we obtain the following equality from (1.1);

)Xq
Is p(gfo. gf) '

(3Ei r g
(2.4)

' We note that for a system of identical bosons, the whole argu-
ment is valid after replacing the antisymmetry projection opera-
tors by the symmetry projection operators. Thus the least upper
bound of the eigenvalues for bosons is given by the equation

)Ãq
~M, Ã8')=I I(glf)O+glfl).

sup(g fOsg f)f g
(2.5)

Introducing the total antisymmetry projection operator

OAs= —Q spP,
gf

under the condition (f,f) = (g,g)=1. Here the total symmetry
projection operator Os is given by the equation

Os= (1')) I)~P I'.
It is readily seen from (2.5) that

N
(for a system of bosons).
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3. UPPER BOUNDS

It is convenient to write the antisyLnmetry projection
operator in the form

tÃ
OAs(1, ",1V)

=OAs (1, ,M) OAs (M+1, ~ ~ ~, 1V)

minty M, Ml—

(—)'I

It should be noticed that

14.M,~ 0(——1V lM"&) .

This is the same order of magnitude as the largest
eigenvalue of I'lM~&l for a system of [1V/2] bosons. '

Since the eigenvalues of the first-order density matrix
of a single-determinant wave function are 1, it follows
that A.1 & is equal to X». It is shown in Sec. 5 that
A2, ~ is also equal to x2,g.

XP{(1, M+ 1)(2, M+2) ~ (i, M+i))

XOAs(1, ,M)OAs(M+1, , 1V), (3 1)

where OAs( ) denotes the antisynnnetry projection
operator defined with respect to the coordinates in the
parenthesis, and P{(1, M+ 1)(2, M+2) (i, M+i) )
denotes the operation of replacing the coordinate 1 by
M+1, M+1 by 1, , i by M+i and M+i by i This.

shows that the f and g that give the extremum in Eq.
(2.4) should be antisynnnetric. Therefore we may intro-
duce the density matrices of the ith order F; ~ and F; ~

reduced from f and g. Hy the use of these density ma-

trices, we obtain

4. EXTREME PROPERTIES OF WAVE FUNCTIONS

In this section we study the case where the largest.
eigenvalue of the Mth-order density matrix is almost
equal to the least upper bound A.~,~. Suppose we have a
wave function 4 such that

(fI'M, ef)=&M,~

where e is a small non-negative number and f is a
normalized function of M particles. It should be noted
that f may or may not be an eigenfunction of I'M z.
Define a function C by the equation

XM,N= 1+sup

min�(~,

iV—~)
(—)' ',f *.' ( ) C,(1.. . P)

kM)

—1/2

Since density matrices are positive definite, it is easy to
see that

0&trl', ,fl, ,&min(trl';, r)l„,~ M', trI';, ,X;,M)

where
XOAsf(1, ,M)g(M+1, , 1V),

—
(Mq |'1V—Mq

=min
] )1l; A M, (

[ll.;,M . (3.3)
ki)

From (3.2) and (3.3) we obtain an upper bound of the

eigenvalues by the recurrence equation'

g(M+1, , 1V)

-/1V
(~M, ~—~)

—1/2

1lM,%&14.M, K= 1+
min j [AM], [&(N—3II)] l 3f

min
2i

X 0'(1 . 1V)f*(1 M)Chl ChM.

The solutions of (3.4) are
(
X—M

(3 4) It ls easy to see that

2j
(g,g) = (&M,~ ~) '(fI'M, ~f) =1,

AQN —1)
31~=1)
Am ~ [glV], 1V)4——

AS, A
——1+3[-,' (1V—3)], 1V)6

~, =1+([-'1V]—1)(1+6[l1V]—6[-'1V])

+ (1V—4[-'1V]) (1V—4[-'1V]—1), 1V)8

A4, A
= 1+10[2 (1V—5)]+5A4,N 4, 1V) 10

7 Lxg stands for the integral part of x.

—
Nq

(+,c)=
~

&M,~ (+OAs fg)
Mi

—
)1V

—1/2

(+,fg)

= (1—e/XM ~)'~'

' This was conjectured by C. N. Yang, Rev. Mod. Phys. B4, 694
(1962). (See also footnote 9.)



)V~
(C,C)= lI(fgO. fg)/l . &1

ui
Then it follows that

0& (+—C, % —4)
= (~p)+ (c,c)—(e,c)—(c,e)

(2 2(1 &/liIr &) l (2&/g~ & (4 1)

application of the previous discussion, it is found that

—1/2

(&-p)—!-
XO»fi(1)" f.(P)g(P+1, ",ll'), (46)

I'I,~= Z f')(f*+I'I.u

From the!Irst three terms of (4.1), we obtain

(C,C) & 2 (1—e/XIr ~)'~' —1& 1—2e/XIr ~.

Summarizing the results obtained above, we have a
theorem.

Theorem 3. If a normahzed M-particie function f
satis6es the following equation

(fI'~,ef) ="Ir,x

the wave function 0 can be expressed as

)&Ogsf(1, ,M)g(M+1, A)+h(1, ,$),
where (g,g) = 1, (h, h) & 2e/X Ir,~, and 1& (+—h, 4—II)
&1 2&l&Ir,sr-

We apply the above theorem to the 6rst-order
density matrix. Ke know that some of the eigenvalues
of the first-order density matrix can be XI,&(= 1),

Z*,f,'(1)g(1, 2, ",m P)= 0— (~—=1, ",P). (4.g)

(FI„,F2„)=2"I!/(2N)!+O(e'), (5.2)

(F2~i F2 +I)= 2 e!/(2th+1)!+O(e) (5.2 )

S. THE LEAST UPPER BOUND OF THE EIGENVALUES
OP THE SECOND-ORDER DENSITY MATRICES

In this section, we prove that the upper bound A2,~
derived in Sec. 3 is actually the smallest.

Def ne functions F,„(1"2~) and. F,„+,(1" 2~+ 1)
by the equations

F2„(1, ,2e) =Oxsf(1,2)f(3&4) ~ f(2g 1, 2II) &-
F2~I(1, ' ', 2ts+ 1)=Ogsf(1 2)f(3 4) ' ' (5.1)

Xf(2N —1, 26)g(26+1),

where f(1,2) is a normalized antisymmetric function of
two particles and g(1) is an arbitrary normalized func-
tion of a particle.

Then it is found that

I'I.~(1,1')= 2 f'(1)f''(1')+ Z lief'(1)f'*(1') (4 2) "=tr(1'l.f)'= f(1,2)f(3,4)f*(1,3)

Xf*(2.4)&xi&~,&*,&*,. (5.3)
In such a case, it follows from theorem 3 that the wave proof.
function 4' can be expressed as

(F2.,F2.)=(O~sf f O~sf * f)
= (f "fOJ sf f).
= (1/(2~)!)Z~ ~~(f" f,Pf" f)
= (1/(2~)!)Z~ o~

(4.3)0=Ã"'Ops fi(1)gi(2, ,Ã) .

Using (3.1), we obtain

1= (4'p) =N(figIOgsfigi) =1— . ch2 chai I
where ui =op(f fPf f). In order to evaluate the
above sum, we consider a subgroup IJ of the symmetric

X fi*(1)gi(1,2, X—1)dpi, group S~„.The subgroup H is generated. from e trans-
positions, (12), (34) (2ti—1 2N), and two other
permutations, (13)(24) and (135 ~ 2N —1)(246 2N).
There are 2"e!permutations in H. It is easy to see that
aI =1 for such a permutation since epPf f=f f,
but otherwise uI is of the order of tr[(1'I,f)'].

For odd E, (5.2') can be similarly proven. In this case
some of the perlnutations will give integrals of the order

(4.5) tr(1'I, ri'I, g), but

1.e.)

dhifi*(1)gi(1, 2, , A —1)—=0.

The first-order density matrix of g is found from (4.3)
and (4.4) to be

~1,gi I 1,%' I 1,ji ~

Comparing (4.2) wi'tll (4.5) we see that the largest 0& trodi, f~i.0& [tr(~I r)
eigenvalue of I'I

„

is also 1 if P&1. Thus, by repeated = [tr(1'I, r)'-]'"= ~. Q.E.D.
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(fFs.~"f)= [2Nj+O(e) . (5.5)

It is possible to make tr(F1, /)2 as small as we wish, and
therefore the largest eigenvalue of I'2, ~& can be arbi-
trarily close to A2 g.

It is found further that a wave function 4' can be
approximated by the form (5.4), if the largest eigenvalue
is close to A2, ~. To prove this, suppose we have an E-
particle wave function @ and a 2-particle function f
such that

(fFs.~f)= [N/23 —'
Then using theorem 3 and (3.1), we obtain

V(1, ,N) =FN (1, ,N)/[(FN, FN) jr/2. (5.4)

Using (3.1), (5.2), and (5.2') we obtain

(@N yN) —1

(FN—2P N—2)
(f@N 2O sf—@N 2)—

(FN,FN)

1—trI', rF, sn s+ (-fF2 sz sf)-
[N/2j+o(e)

Here we have used a trivial equality

0/, s(1, ~,N)
=Ops(3, ~,N)Ops(1, ,N)O»(3, ~,N) .

Since trFt, rF1,2~-~=0(e), we fmally obtain

XO~sf[ [ "] .]+hs +h1

Ops f(1 2)f(3 4) ' ' '
2N/'(N/2)!

Xf(N 1, N—)j/'2(1, ,N), (N even)

O» 1,2) 3,4)".
2&N "/'[(N —1)/2)/

Xf(N—2, N —1)g(N)+h(1, ,N), (N odd), (5.8)

where

(h(h) =O(e). Q.E.D.

By lls111g (5.3), tile first-order density IIla'tllx call be
written in the form

F1,~~2NF t,q, (N even)

Ft.s,='2 (N—1)F1,/+g) (g. (N odd)
(5.9)

The expressions (5.8) and (5.9) suggest that such a
state may be interpreted as a system of fermion pairs
which occupy the same state. These electron pairs
behave like quasibosons and, since they are all in the
same state, the limiting wave function corresponds to a
situation with complete Bose-Einstein condensation. '

where (hs~ hs) &4e/A2, N 2. Repeating the procedure, we
obtain a decomposition of the total wave function%':

-1/2 —( N 2 p
1/2

Oza

- 1/2

O»fgr+k1
l2/
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where (h, ~h,,) &2e/~2, N, and

2e N)
~
(fgtOasfgt)/~2. N

A2N 2i
=(I—t F, F,„+(fI'.„f))/Ag,

g —2 —1/2

g1 112,N—2 OAsfgs+hs p

2
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