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term of the same structure, We add a final remark about the solution of the
equation

(I/y)' P 8;(c; &'&*+c;"')= —P (c,&r& ('h (A21) (A24)
a, s

The term p~(') contributes

In deriving (A20)—(A22) essential use has been made of
the Hartree-I'ock equations. There is 6nally a second-
order contribution arising from the interaction term in

the energy depending on (p~&&)':
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16' 1i

(A25)

possesses, for a rotationally invariant Hamiltonian, a
solution

One must in fact question the existence of any solution
to this equation, since it is well known (cf. Appendix C
of I) that the corresponding homogeneous equation

—' g P [c, &'&*c, ; &'&*(rza'
~

V ~ii')
ai a'il

+c ~' c&. '~'&(zz'( V(aa')+c &'&*c ~ '&'&(rzi'& V&iu')

+c.;&' &c;; &'&*(rz'i
~

V
~

i'a) j. (A23)

Since

(
(&;=z(

Z 4"je'=0,

(A26)

(A2'7)

If we add (A19)—(A23) we obtain Eq. (98) and sequel, however, we may anticipa, te the existence of a solution
the formulas given in the text for the moment of inertia. of (A24).
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In Feynman s space-time approach to nonrelativistic quantum mechanics, the wave function may be
considered to be the sum of path integrals over Brownian-motion trajectories. This formalism is entirely
equivalent to the Schrodinger-equation treatment with its intrinsic indeterminacy. Pursuing the analogy
with Brownian motion further, one may introduce a hidden variable corresponding to particle velocity in
order to represent the wave function as a sum of path integrals taken over phase-space trajectories. By means
of a hidden parameter corresponding to the time scale of Gctitious interactions of the particle with the
vacuum, one can de6ne generalized propagators which over very short times produce wave functions which
are localizable in phase space and hence are deterministic. For long times the conventional Feynman formal-
ism is recovered. This short-time causality does not violate the von Neumann injunction against hidden
variables since the new velocity variable turns out to be non-Hermitian over the long time scales normally
considered. In contrast to the models proposed by Bohm and others, the present Brownian model is linear
and preserves the usual statistical interpretation of the wave function for su%ciently long times.

I. INTRODUCTION

0 avoid the mathematical and epistemological
difficulties of high-energy quantum 6eld theory

it has often been suggested 3 that quantum theory be
reformulated in terms of a fundamental cuto8 length.

Arguments have been advanced by Landau and others

for introducing a natural cutoB equal to the short-

range distance over which the electromagnetic and

gravitational interactions become of comparable mag-

~ L. D. Landau, L. Rosenfeld, and Q. Klein, in Niels Bohr and
the Development of Physics, edited by W. Pauli, L. Rosenfeld, and
V. Weisskopf (Pergamon Press Ltd. , London, 1955).

' S. Deser, Rev. Mod. Phys. 21, 417 (1957).
' B. S. DeWitt, Phys. Rev. Letters 13, 114 (1964).

nitude. This rvould serve to eliminate the divergences
occurring in quantum electrodynamical and meson
processes involving the exchange of virtual quanta.
However, in the words of DeWitt, ' "There exists as yet
absolutely no concrete mathematical evidence either to
support or to deny these speculations. A long program
of formalism building and calculations is an unavoidable
prerequisite. "

In a recent book, ' Bohm has also argued eloquently

B. S. DeWitt, in Gravitation: An Introduction to Current
Research, edited by I. Witten (John Wiley 8z Sons, Inc., New
York, 1962), Chap. 8.

~ D. Bohm, Causality and Chance in 3fodern Physics (Harper R
Brothers, New York, 1957).
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for the development of new models for quantum theory,
especially along deterministic lines, since these seem to
contain the most directly available physical insight.
Accordingly, Bohm has reintroduced into quantum me-

chanics the concept of continuous particle trajectories
defined as orthogonal to the constant phase surfaces of
the Schrodinger waves. ' These Schrodinger waves

are regarded as real force fields, rather than merely
abstract probability amplitudes, which are capable of
influencing the particle trajectories by means of new

quantum potentials inserted into the classical equations.
A short-range modification in this picture of field theory
would involve the introduction into Schrodinger s equa-
tion of additional terms making it possible for the
guided particles to react back, in a nonlinear way, upon
the guiding force field. Bohm's point of view has been
criticized on several grounds. First, as Heisenberg has
emphasized, the current form of the theory is experi-
mentally indistinguishable from conventional quantum
mechanics and merely amounts to an alternative lan-

guage. Second, the nonlinear character of the suggested
short-range modifications has been questioned by
Feynman, ' who points out that the superposition
principle appears to be useful even for high-energy
events involving neutral k.aons. Third, the particle tra-
jectories resulting from Bohm's theory are continuous
but rapidly fluctuating in time and space, somewhat
like Brownian motion trajectories, thereby vitiating
their usefulness as aids to the intuition. More recent
attempts by Wesley" to construct a deterministic model
for quantum mechanics in which the notions of par-
ticle trajectories and of probability differ substantially
from the previous work are also not free from mathe-
matical and conceptual difhculties.

The situation can be brought into sharper focus by
means of Feynman's space-time (propagator) approach
to nonrelativistic quantum mechanics"; according to
that approach, the probability amplitude for a particle
reaching the point (x,t) is the sum of path integrals
taken over all possible trajectories leading to this space-
time point. In the correspondence limit A=O, the domi-

nant trajectories are indeed just those of classical

Hamilton-Jacobi theory; however, for finite values of
h they come to resemble the continuous but non-

differentiable trajectories of Brownian motion theory.
Hence the reintroduction of determinism at this level

of description seems as unprofitable as the reintroduc-

tion of ray concepts into optical diffraction theory. On

the other hand, such arguments cannot exclude the pos-

' D. Bohm, Phys. Rev. &5, 166, 180 (1952).
7 D. Bohm and J. P. Vigier, Phys. Rev. 96, 208 (1954).

For a survey of the deterministic theories by Bohm and de
Broglie, see H. Freistadt, Nuovo Cimento Suppl. 5, 1 (1957).

~ W. Heisenberg, essay in book cited in Ref. 1.
' R. P. Feynman, Theory of Fundamental Processes (W. A.

Benjamin, Inc. , New York, 1961), p. 50.
"J.P. Wesley, Phys. Rev. 122, 1932 (1961}.
'2 R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

sibility of determinism existing at some underlying sub-
quantum-mechanical level of description. '

The similarities between quantum mechanics and
Brownian motion are not surprising and have been
noted by Furth" and others. "'~' Now, in Brownian
motion the uncertainty principle governing fluctuations
in position and velocity is such that these fluctuations
may be reduced indefinitely by lowering the ambient
temperature. In addition, if one goes to times corn-
parable to the collision period of the ambient medium,
the trajectories become relatively smooth. Over very
short times the motion is entirely rectilinear (in the
absence of external forces) and deterministic.

It is natural to assume that the Brownian motion
analogy is complete, and that a kinetic model can be
used to introduce a fundamental time scale into quan-
tum mechanics. This time scale, corresponding to the
collision period of fictitious interactions between the
particle and the vacuum, is chosen so that for sufB-
ciently long times conventional quantum mechanics is
recovered. This idea is present, in embryonic form, in
the work, of Fenyes, "Weizel, " Guth, ""and Bohm. ' '

In the present paper, a hidden parameter P, corre-
sponding to the above-mentioned time-scale parameter,
is introduced into the nonrelativistic propagator for-
malism, in conjunction with a hidden variable g, which
plays the role of particle velocity. The space-time
approach in Sec. II is then generalized so that the
probability amplitude becomes the sum of path inte-
grals taken over all possible trajectories in the phase
space. For short times the dominant trajectories indeed
tend to be deterministic and causal in violation of the
uncertainty principle, and for long times the trajec-
tories once again take on the Brownian motion appear-
ance of the Feynman formalism. The crucial point in
the discussion is whether or not in nature there actually
exists a subquantum-mechanical time scale, character-
ized by finite values of the hidden parameter P. If so,
there should appear, for energies of order hP, shifts in
the effective mass of the electron proportional to these
energy values. " The current theory does not violate
von Neumann's famous theorem"" against hidden
variable formulations of quantum theory, since the
hidden variable in this case turns out to be non-

R. Furth, Z. Physik 81, 143 (1933)."I.Fenyes, Z. Physik 132, 81 (1952)."W. Weizel, Z. Physik 134, 264 (1953); 135, 270 (1953).'6N. Wiener, nonlinear Problems in Random Theory (MIT
Press, Cambridge, Massachusetts, 1958), Chap. 9; N. Wiener and
A. Siegel, Phys. Rev. 91, 1551 (1953)."E. Nelson, J. Math. Phys. 5, 332 (1964).' E. Guth, Phys. Rev. 126, 1213 (1962)."E. Guth, in Proceedings of the Midwestern Conference on
Theoretical Physics, Argonne National Laboratory, 1962
(unpublished).

'OIn this connection see H. Goldstein, Classical Mechanics
(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1953), p. 314."J. von Neumann, Mathematical Foundations of Quantum
3fechanics (Princeton University Press, Princeton, New Jerse
1955), p. 323 8.

w Jersey,

"J.M. Jauch and C. Piron, Helv. Phys. Acta 36, 827 (1963).
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Hermitian for large values of Pt, as is discussed in detail
in Sec. III. It should be emphasized that the present
Brownian model differs from its predecessors in that
it is completely linear, and that it preserves the statisti-
cal interpretation of the Schrodinger waves for long
times. The determinism only appears in the sub-
quantum level of description for times too short for the
randomizing sects of the particle-vacuum interaction
to operate. As a consequence, certain unphysical results
contained in %eizel's work" do not arise here, as dis-
cussed in Sec. IV.

This expression~is equivalent to the usual Schrodinger
equation

ih(BQ/Bt) = ( h'/2—m) ~+Vit, (2)

as may be seen by expanding all functions in Taylor
series about the point (x,t), performing the integration
over hx, and passing to the limit LU —+ 0. Equation (1)
may also be extended to the many-particle problem

by introducing additional position coordinates. The
exponential factor is just the Green's function or propa-
gator which takes the particle from (x—Dx, t) to
(x, t+ht). The free-particle propagator (m/2rrihht)s"
Xexpfim(hx)s/2hht5 resembles the Brownian-motionss
Green's function (4irDht) "' expL —(d,x)'/4Dht5, where

the diffusion constant D depends on the state of the
Quid in which the Brownian particle is immersed. In
fact, we have the formal equivalence

D= ih/2m, (3)

6rst noted by Fiirth. "
Using the mathematical apparatus of Brownian

motion as a guide, we may introduce as a hidden
variable the particle velocity g, and a distribution func-

tion for the probability amplitude, namely C, defined

such that

P(x,t) = C (x,g, t)dg.

That ( may be consistently thought of as classical par-
ticle velocity, at least under limited circumstances, is

"For a comprehensive review of Brownian motion, see
S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943), especially
Chap. II.

II. GENERALIZATION OF NONRELATIVISTIC
PROPAGATOR THEORY

In the space-time approach of Feynman" the wave
function iP(x, t) for a single nonrelativistic particle of
mass m in a potential field V(x) is given by the integral
relation

~
sos

P(x, i+at) =
2~ihnti

-im(Ax)s Vht
exp i —P(x—Ax, t)dAx. (1)

2hkt

explored more thoroughly in the next section of this
paper. We further assume that the distribution of
probability 4 is given by the Green's function expression

C(x, g, t+At)= E(gx ( (~ gt)e iv—(x)di/s

XC (x—Dx, g', t)dAxd(', (5)

where the generalized free-particle propagator E(x,g, t)
is governed by the Fokker-Planck equation23 24

BE/Bt+g VE=Pvt (gE+so'V'tE) . (6)

Here the hidden parameter p plays the role of a fic-
titious collision frequency, as is discussed in Sec. III,
and ~0' plays the role of a 6ctitious thermal speed in
analogy with Brownian motion; the latter quantity
may be eliminated by means of the Einstein relation

which follows from Eq. (5) upon expanding both sides
about (x,g, t) and utilizing Eq. (6) in passing to the
limit 5t —+ O.

It has been shown by Smoluchowski" that for sufB-
ciently large values of Pt, the distribution attains the
asymptotic form

C (x,(,t) = (2irss') si' exp( —('/2sss)it (x,t), (9)

where it satisfies

BP/Bt=v (Dvy) —(i/h)VP.

But this is just the Schrodinger equation (2) in slightly
disguised form, hence we have arrived at a correspond-
ence principle between the generalized theory and
ordinary quantum theory for suKciently long times.
Now, Smoluchowski also showed that for a Brownian
particle in a slightly inhomogeneous potential field U,
one obtains the asymptotic equation

Bf f 1—= V
~
Dvf+ fv U

~

——Ui/i. —
Bt E p

Even for large values of p, however, this last expression
does not seem to be useful, since the additional gradient
term in Schrodinger s equation would constitute a dis-
sipative mechanism and thereby render quantum
mechanics non-Hamiltonian. Consequently, the only
sensible choice is to set V=0.

"Of course, a consistency requirement for (5) is that at time
At=0, E:=B(hx)5((—g'), where 5 is the three-dimensional Dirac
delta function."Reference 20, p. 41.

sps=PD,

where the diGusion constant D is given by the Furth
relation (3). The equivalent differential equation is

ae iv—+—&I+) VC=PVr ((C+sssvtC)
ar
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Another consequence of the asymptotic solution (9)
is that the generalized propagator K, deffned by Eq. (6),
eventually becomes (Pt&)1)

1 (Ax)p) 1
exp

(4prDAt)"' 4DZLt) (27ro ')"'

(()'
Xexpl —,(12)

2op'

and so from Eqs. (4) and (5) we arrive at the Feynman
formalism

II (x, I+At) = Z(Ax, ht)p(x —hx, I)dhx, (13)

relativistic effects would tend to mask the shift given
by Eq. (17) in an actual high-energy experiment.

III. OCCURRENCE OF CAUSALITY ON THE
SUBQUANTUM-MECHANICAL LEVEL

OF DESCRIPTION

For times short compared to P ', causality or deter-
minism enters the picture. To see how this follows from
the generalized Schrodinger equation (8), we observe
that for small values of PI the right-hand side may be
neglected in comparison with the left. This is just the
collisionless approximation so often used in rarefied-gas
dynamics. In the case of a free particle (i.e., V=O), we
have

where
84/Bt+g VC =0, (18)

E=E(Ax, (',AI)dg= (4prDE/) P~'

2~, 2m
(15)

For long times pAf&)1 this expression gives a small

change in the effective mass of a particle amounting to

(m~ —m)/m= hm/m= I/PcQ. (16)

Utilizing the energy-time uncertainty relation, we

obtain, for energies E= (6/At)=ko, the approximate
expression

am/m-E/AP. (17)

The observation of such a mass shift would constitute
a determination of the hitherto unspecified hidden

parameter P, in the same sense that Brownian motion
measurements lead to a determination of the Boltzmann
constant of statistical mechanics. It should be noted
that in a proper relativistic treatment additional mass
shifts Am/m E/mc' would probably arise. Clearly, the
subquantum-mechanical-energy scale hP must greatly
exceed the particle rest energy mc'; consequently, these

2' Reference 20, Eq. {286)."Reference 20, Eq. {175').

&& expL —(Ax)'/4DLU) expL i V—(x)ht/ A) . (14)

For ffnite values of PI one may perform numerical cal-

culations of the generalized wave functions by means of
Eqs. (4) and (5), since the solutions of the free-particle
Green's function K can be written in closed form."In
certain simple cases the differential equation (8) itself

may be solved by separation of variables and transform

techniques, as discussed in the next section. It must be
stressed that in all such calculations the hidden variable

F, plays an essential part.
Before concluding the present section, we observe

that from Brownian motion theory'7 we may write an

effective diffusion constant

which has the solution C(x,g, t) =f(x—gt, g), where the
function f is determined by the initial distribution
C'(x, ),0)=f(x,(). Clearly, special solutions may easily
be written down which violate the uncertainty principle;
for example,

C'(x, V)=~(x—V)~((—4) .

Substitution of (19) into (4) yields the traveling wave
function

P(x, I) =b(x—gpI), (20)

which should be contrasted with the Schrodinger solu-
tion for the initial condition It (x,0)=5(x), namely:
f= (m/27rihhI)pi' expl imx'/(2hht)). The Schrodinger
solution responds to the perfect initial localization by
spreading ininitely fast; that is to say, liplp=const for
nonzero times. On the other hand, once solution (20)
is localized in position and velocity it remains so.
Furthermore, the Ehrenfest theorem corresponding to
(20) is just d(x)/dI= gp, rather than the form dictated
by uncertainty, namely: d(x)/dt= ( ihB/Bx—)

To gain deeper insight into the physical and mathe-
matical properties of the Brownian-motion model let us
consider the stationary solutions corresponding to a
free particle in a perfectly reflecting box of length J.
Fourier-analyzing away the spatial dependence by
setting

C'= exp (ok„.x—prpI)F ((), (21)

where k„=ypr/&, lpl=0, +I, +2, , we get for (8)

( irp+ikn 4)P(k)—=PVr (P'+ro'&P) . (22)

By means of the transformations (= Voo(, Vpp=2soo
F=exp( —oP)G, this expression becomes

Vr'G+ Ly —(f+a)')G =0, (23)

where & =3+2opp/dp —k, Vop/p', a=ok, Vo/p But (23).
is merely the Schrodinger equation (in velocity spa, ce)
foi- a harmonic oscillator. Hence the eigenvalues are
T=2l+2m+2e+3 (I, m, N=O, 1, 2 ) and the cor-
responding eigenfunctions are Gr „(()=GqrQ', )Gp (t'„)
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XG3„(t,), where, for k chosen along the s axis, we have

G (t.)=& -p(--', f.')H 0.),
&.-(f.)=&- exp( —2t')H-(f. ),
G.(t..)=&".pl ,'—(i—.+ )'jH. (t.+ ),

(24)

m t
ttk„'-

C(x,g, t)=~ (
exp

&2i~Pki 2iaP k

Xexp(ik x—ko t) . (26)

The above relation is completely equivalent to the
usual wave function, and the hidden variable ( is seen

to be merely a dummy variable which is eliminated

upon substitution of (26) into (4). Yet it is interesting
to note that nsQ)=bk~ in accordance with the de
Broglie relation. Moreover, the mean-square fluctuation

{(d,()') is proportional to P, indicating that the hidden

variable g strictly represents particle velocity only for
small values of P and is spread out greatly for large
values of p. This behavior is in harmony with the role

assigned to g in the preceding discussion. For the general
nonstationary case, initial value solutions must be built

up by means of linear superpositions of the above
Hermite velocity-eigenfunctions. "From the unnormal-

ized. version of (24) it is clear that the spread in g is

always governed by the parameter p.
The Fokker-Planck formalism presented in Sec, II

is entirely equivalent to the complex Langevin
equation"

d(/«= Pi+ t'"~(t) ~— (27)

in which the quantity A is a real stochastic G-aussian

process representing the CGects of collisions on a
Brownian particle. Due to the presence of the complex
coefficient j'I2, wc roust conclude that the randomizing

process in quantum mechanics involves 6ctitious col-

lisions described by trajectories in a phase space with

complex values of velocity g. This indicates that the

~8 The necessary mathematical techniques were developed in a
diferent connection by K. C. Taylor and G. G. Comisar, Phys.
Rev. 132, 2379 (1963).

111 Which 8='Lk~VO/p, Hg 1S the HeHlllte polynomial
satisfying the equation H"—21H'+2/H=o, the nor-
malization constant is E&= (t!2'n'12)—'", and so forth.
The dispersion relation connecting op and k„must
th«efo«be o«h«orm = iP(k—,'V,'/2P +t+~+~).
Stationary solutions correspond to l= no= e=0, so that

co = —ik„'Vo'/2p =hk, '/2m. (25)

Notice that (25) is just the eigenvalue predicted by the
Schrodinger equation for an electron in a box. Qf course,
one would not expect a stationary solution to exhibit

any time scale.
However, the situation is not entirely trivial as may

be seen by combining (21), (22), and (24) for the case
3=m=x=0:

statistical interpretation of quantum theory is real, not
apparent, and that the deterministic structure of the
subquantum-mechanical level of description can never
reveal itself by measurements taken over long times. It
is only over time scales so short that the randomizing
mechanism has not suKcient time to operate that one
can detect the deterministic microstructure underlying
quantum mechanics. In other words, initially, wave
functions may be localized without spreading and
feature real velocities satisfying the relation d{x)/dt = $0.
KventuaHy the randomization mechanism, here visual-
ized in terms of hctitious collisions of the particles with
the vacuum, begins to operate forcing the hidden
variable ( to take on complex values and to develop a
spread about its initial value. This is accompanied by
a corresponding spread in the wave function according
to the usual uncertainty relation d(x)/dt= (—iN' ). As
$ ceases to be strictly real, it ceases to be a dynamical
observable in the quantum-mechanical sense, since,
although it continues to commute with the position x,
it no longer is Hermitian. For this reason the present
hidden variable model lies outside the conditions of the
von Neumann theorem, ""which states that quantum
mechanics is logically complete since no further speci-
fication of Hermitian hidden variables can cause it to
become deterministic.

One may consider the present model a mathematical
bridge leading from an intrinsically statistical quantum-
mechanical world of 1.ow-energy processes to an in-
trinsically deterministic subquantum-mechanical world
of very high-energy processes. The curious feature is
that imaginary diGusion and complex collisions must be
introduced into the discussion, This is analogous to the
phase-space, probability distribution functions used by
signer' to provide a bridge between quantum statis-
tical mechanics and classical statistical mechanics. The
difficulty in the case of %igncr's distribution functions
is that they do not necessarily represent strictly posi-
tive-definite probabilities for hnite values of h, as is well
known.

IV. COMPARISON WITH THE HIDDEN VARIABLE
MODELS OF VfEIZEL AND OF %'IENER

AND DELLA RICCIA

Thc plcscnt model may bc corlsldcrcd an improve-
ment on the Brownian-motion model of Weizel, "which
in turn is based on the deterministic models of Bohm' ~

and Fenyes. '4 As was discussed previously, the present
model is not built up completely from deterministic
notions, but only displays causality on the subquantum-
mechanical level. On the other hand, in the work of
glcizel one assumes that for Schrodinger waves of the
form /= It. exp(iS/k), where R and S are real functions
of space and time, there exists a meaningful and actual
particle momentum given by y= VS. The Schrodinger
equation (2) can then be used to derive an equation of

~ E. P. signer, Phys. Rev. 40, 749 I'1932).



continuity
Bp/Bt+V' (pU) =0 (28)

where the extra potential terms are intrinsically quan-
tum mechanical in nature.

To shed light on the deterministic structure of his
model, Weizel then shows that if one begins with (28)
and the relation

U,„=ve —A/2m V lnp, (30)

which he derives from a kinetic argument in which U,
and vo stand, respectively, for the average particle
velocity and the velocity of that fraction of particles
actually suffering collisions per unit time, then with the
help of these two relations one can deduce the mo-
mentum equation (29). This would seem to constitute
an actual deterministic proof of the Schrodinger equa-
tion. However, the physical consistency of expression
(30) seems doubtful.

In particular, let us substitute U„=U=m 'VS into
Eq. (30). This reduces to

vs = (b/2tn) V ln (R' exp28/h), (31)

which, for the case of a particle between two perfectly
reflecting walls, turns out to be equal in magnitude to

where, as before, k„=rrl/L, x=0, &1 &2 . But
this expression has poles at all the nodal planes, which
seems unreasonable owing to the fact that eo is a quan-
tity that has been averaged over a supposedly well-
behaved ensemble of particles. The present treatment
avoids such difhculties by investigating f ratherss than

There exists another interesting approach to the
hidden variable problem due to Wiener and Della
Riccia." Starting with the many-particle Liouville
equation of classical statistical mechanics

BIf~ & P, BE~ & BV BFg
+Z — —Z

8f s=j SS QQ s=j BQ QP

O'These remarks also apply to the recent work of D. Kershaw
LPhys. Rev. 136, 8 1850 11964)j; for example, in his text compare
the equation following Kq. (15) with our Eq. (30}.

~' N. Wiener and G. Della Riccia (private communication).

where an CGective Quid density is given by p=R', and
an effective Sow velocity by U=m 'V5. In addition,
one gets a momentum conservation equation

dU O' 7'p (Vp '
tn = —V V—

8m p lp

where F~(tl,y,f) is the X-body distribution function in
the 6$-dimensional phase space (tl,y) and V is the po-
tential energy for the system, one may project out the
momentum variables y, by means of the expression

where X is an initially unspecified parameter. After a
great deal of straightforward algebra, one arrives at

]
+~(tl)0,

Bt2 2' ~=& Bg;2
(35)

Except for the potential term, this is just the Klein-
Gordon equation of relativistic quantum theory. By
the usual trick of subtracting OG the rest energy, one
obtains the E-body Schrodinger equation

We can 6nd several points of contact between this
approach and that presented in Sec. II. First, the
hitherto unspecified parameter X turns out to be imagi-
nary and, in fact, corresponds to an imaginary tem-
perature of the sort implied by Eq. (7). This rules out
a direct causal passage from classical statistical me-
chanics to quantum mechanics. Second, the initial
classical distribution corresponds to f rather than

~ g ~

'.
Third, thcI'c ls lacking thc kind of correspondence
principle that would always leave the potential energy
invariant in passing from the subquantum to the
quantum doI11aIIi.

The difference between the Wiener model and the
present one hes in the fact that the former starts from
a reversible point of view, while the latter starts from
an irreversible kinetic formalism. This is the reason
that the Wiener model leads to a differential equa-
tion that is hyperbolic, while the present leads to a
parabolic (diffusion) equation. Since irreversibility has
been introduced into the Brownian motion formalism
from the outset, it is not surprising that this particular
system tends to become Maxweltian with the passage
of time. On the other hand, in the I iouville approach,
into which no irreversibility has yet been inserted either
explicitly or implicitly, it is dificult to see the justi6ca-
tion for using Maxwellian-type solutions as was done
in Eq. (34).

"Compare Eqs. (&1) and (36).


