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The connection between continuous Regge trajectories and the vanishing of renormalization constants is
explored, It is.found that if, in a field theory Z& ~ 0 and Z, ~ 0 in such a way that Z~/Zv ~ 0, then a Regge
trajectory moves smoothly under an elementary particle pole so that the particle becomes dynamical in the
Regge sense. Thus a bootstrapped world may perhaps equally well be defined by its satisfying a field theory
with all renormalization constants set equal to zero, as by saying that all particles lie on Regge trajectories.

"pions" and spinless "nucleons" and shall focus our
attention on the "pion" pole in "nucleon-antinucleon"
scattering.

Our conclusion is thus that both definitions of
"dynamical" agree, so that the bootstrap hypothesis can
indeed be stated equally well in the context ot (an un-
fortunately not yet completely well-defined) "S-matrix
theory, " with Regge boundary conditions, or in the
context of Lagrangian 6eld theory, with all renormali-
zation constants set equal to zero.

There is one clarification to be made with respect to
this conclusion. For the case of certain problems with
spin, the condition that a gi~ee particle lie on a Regge
trajectory is rot by itself sufhcient to guarantee that the
particle is dynamical. Howev'er, it is conjectured that
in spite of this, if al/ particles in the theory have to lie on
trajectories, then the theory is still a bootstrapped one. '
Possibly analogous statements apply to the Z =0
conditions.

Finally, it may be worth remarking on the fact that
neither of these ways of de6ning a bootstrap theory is as
yet entirely satisfactory. Intuitively, a bootstrap theory
should be something like the following: One should
start with some set of information sufFicient to specify a
theory, e.g., the number of particles, their quantum
numbers, masses, couplings, etc. The theory is then
defined in the sense that the given input is sufhcient,
when implemented by some method of calculation, to
predict all observable quantities. These quantities,
which constitute the output, will include the number
and type of all particles, stable and unstable, and their
masses and couplings, as well as all scattering ampli-
tudes, production amplitudes, etc. The bootstrap re-
quirement is the requirement that the input and output
be the same. Now it is obvious that one needs a precise
mathematical condition which can replace this sorne-
what nebulous intuitive idea, but which will ensure the
principle expressed by it. It is this which either the

I. INTRODUCTION

HEN Chew and Frautschi first suggested the
bootstrap hypothesis, ' they formulated their

idea in terms of Regge poles. They postulated that each

strongly interacting particle should appear on a Regge
trajectory, and there should be no 6xed poles in l, i.e.,
no Kronecker delta in the S matrix. Such a requirement

was presumed to guarantee the dynamical nature of
each particle.

Within the framework of conventional Lagrangian

field theories, it has been suggested by several people' '
that an elementary particle may be made to look

dynamical by imposing the requirement that its wave

function renormalization constant vanish. Thus a
normal type of 6eld theory, with this added condition

on a]l wave function renormalization constants, might

also define a bootstrapped world.

We should like to explore the connection between

these two languages. In particular, we should like to
follow in some detail the eRects, in a Lagrangian field

theory, of turning oR the renormalization constants of

a given elementary particle. We shall find that as

Zt/Zs-+0, where Zi is the vertex renormalization

associated with the coupling of the elementary particle

and Z3 is its wave function renormalization, a Regge

trajectory moves smoothly under the elementary par-

ticle pole, and passes through it, thus making the

particle dynamical. If at the same time Z3 —+ 0, then the

residue associated with the trajectory smoothly ap-

proaches the same residue as the pole had when it was

elementary. The combined limit thus replaces the

elementary particle by a superficially indistinguishable

dynamical one. Our analysis will be restricted by the

assumption of elastic unitarity, but is otherwise general.

To be specific, we shall discuss a theory of, say, spinless

*Q'ork supported in part by the U. S. Atomic Energy
Commission.
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condition of Regge trajectories or the conditions Z=O
purport to do. However, the condition of Regge be-
havior, which is a condition on the analytic properties of
5-matrix elements, presupposes that one knows how to
write down all these matrix elements sufficiently ex-
plicitly to permit the analytic properties to be exhibited,
and this cannot yet be done. On the other hand, the
condition Z= 0 probably presupposes that a Lagrangian
6eld theory with well-de6ned Z's can be constructed
which includes high spins, and this we do not know how
to do either.

Fro. 1. Diagrams representing the input B&(s)
in the usual type of model.

II DERIVATION OF THE DYNAMICAL CONDITIONS scattering amplj tude
Let us suppose we are given some input for an E over

D calculation of nucleon-antinucleon scattering in a
field theory (we assume spinless nucleons) which in-
cludes an elementary particle pole representing a spin-
less pion of mass m coupled to the nucleons with a
renormalized coupling constant g. %e may write the
input as

B ()=B ()—Lg'/( — ')j&o, (2.1)

where Br(s) is presumed to be an analytic function of I
except for certain well-dehned singularities. H, for
example, we use as an illustration the standard type of
bootstrap calculation, the two terms in (2.1) will repre-
sent the diagrams of Fig. 1, and Bi{s)will be propor-
tional to a Qi function with poles at all negative integer
values of E.

Our input will generate an Ã function of the form

g'Do(rrt')
X (s) =X (s)+j — +F(s) ib „(2.2)

s—m'

1 p(s')ds' g'Do(m')F()=-, (Bo(")—B.()) —, +~(")
~x' s —s )s

—5$

Ei(s) 1
«(s) = = sin5((s)e"i&'&.

Di(s) p (s)
(2.7)

No subtraction is explicitly indicated in the D functions
(i.e., we have subtracted at infinity) but we could have
made one at any other point at no cost, since the results
of the E over D method are well known to be
independent of a subtraction in D.

If we had been doing the calculation of nucleon-
antinucleon scattering without the presence of the
elementary pion, our resulting scattering amplitude
would have been simply

«()=.~ ()/D (). (2.8)

As is easily seen from the model indicated by I'ig. 1,
this ti(s) may be expected to be a smooth function of l,
containing only Regge poles. Thus, we may write

& ()/D ()=Z.P.()/(I —-()) (2.9)

plus other terms containing cuts or what have you in
l, but at least containing no Kronecker deltas.

Next we may separate out the bio terms in Eq. (2-.7)
explicitly. A minimal amount of algebra yields

Xi{s)=Bi(s)+-
p(s')ds' e.{)—(Bi(s')—Bi(s))Xi(s'), (2.3) Ii(s) =P

s —s " l-n. (s)

so that E(s) is proportional to Do(m'). Finally, from
Eq. (2.2) we can construct the D function

Di (s) =Dr {s)+G{s)ohio,

1 p(s') ds'
Di(s) =1—— Xi(s'),

s —s/

(2.4)

g'Do(rro')
G(s) = p {s')ds'

(s' —rrr') (s'—s)

1 p(s')ds'
F(s') . (2.6)

)'

In these equations, p(s) is a phase-space factor, result-
ing from the normalization we use for the partial-wave

iVo{s)G{s)- 1
(2.10)

Do(s) -Do(s)

plus whatever other terms occurred in Eq. (2.9).
Dynamical bound states of Io(s) occur when Do(s) =0

Hence, when Do(rrr') is small, we can expect there to be a
bound state s=go near rn'. Furthermore, since Do(s)
=Do(s)+G(s), and since G(s) —+0 as Do(rro') ~0,
associated with the point 8o there will be a zero of Do(s);
call it so. This point must correspond to some trajectory,
call it n(s), passing through /=0 at s=so, and so will
also approach rm' as Do(err') ~ 0. Finally, because of the
existence of the pole in ¹(s),there will be a zero of

¹

at a point s= neo' which gets near to eP as the residue of
the pole weakens.

Let us summartre the geometry:
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traj8ctofp c(s)

So mo

(i) so is the point at which the trajectory n(s)
passes through /=0: n(so)=0. The residue here is
R=——p(so)/n'(so).

(ii) so is a zero of Do(s):Do(so) =0.The residue of this
pole in fo(s) is El=Ã(so)/D'(so).

(iii) mo' is a zero of g(s):E(mo') =0.

Obviously, we do not insist that 80 is the only zero of
Do(s); it is the zero which approaches m' in the limit
Do(m') -+ 0.

Note that, although n(so) =0, the amphtude does nof
in fact have a pole at so, since the b~o term in (2.8) also
contains R pole at so exactly cancelling the one on the
Regge trajectory. Altogether, then, vre have the struc-
ture indicated in Fig. 2. fo(s), as expressed by (2.10), has
a dynamical bound state at s= 80) another pole Rt, s= 5P~
and two ccNc8lltsg poles Rt so, RQd lt has a zero at 580 .
This zero at s=nso is the position of the Castillejo-
Dalitz-Dyson (CDD) pole expressing the existence of
the elementary particle at s=m'. In spite of the nota-
tion, we do not mean to imply that mo' has anything to
do with the bare mass of the elementary particle.

As we have already said, in the limit Do(ms) ~ 0, the
cntix'c cBcct of thc elementary partlclc goes away. This
not very subtle remark should be no surprise to anyone
remembering Eq. (2.2). Nevertheless, it is of some
interest to watch the transition from the elementary
case to Do(ms) =0. For small Do(m'), we may write

Fro. 2. Poles and zeros of the partial wave amplitude f~(o).
There are two cancelling poles on sf), poles on 80 and m', and a
zero on iso.

When we remember that G(ms) ~ 0 as Do(m') ~ 0,
it is clear that so, 80, and mo' all approach m' in the limit.
Using, for example, (2.11)and (2.12), it is easy to show
that as D,(m') ~ 0,

(2.16)

What happens as the elementary particle is removed
rs then clear. As Do(m ) ~ 0, the dynamical bound sta'te
Rt s= 80 moves ovcl to s=PP& Rnd so docs thc Reggc pole
at s=so and its cancelling 8~0-like companion. The
dynarmcal pole from s= 80, the elementary pole, and the
companion pole all cat each other, leaving no b~o term.
The theory is now purely Regge-like, with a dynamical
particle of mass ms on the trajectory n(s). The residue of
this pole is

In order for the same residge to appear now as in the
clexnentaxy case, we must in addition require R —+ —g'
or 8~ 0 in the dynamical limit. This final condition is

—P(m'}/n'(m') =¹(ms)/Do'(m') ~ —g'. (2.17)

The froo conditions Do(m') —+0 nwd E!—+0 thus
dehne a dynamical bmit in which the elementary
particle has disappeared but R Regge pole with thc
same parameters has taken its place. The transition to
the limit is entirely smooth, and no discontinuous be-
havior is to be expected for any of the relevant functions
ox' numbers.

III. INTERPRETATION OI' THE
DYNAMICAI CONDITIONS

Let us next investigate the meaning of the dynamical
coQditlons ln teITAs of normal field-theoretic quantitics.
First, the condition Do(ms) =0.

We know that the form factor F(s) for the pion, in
thc two-parti clc unltarlty approxlIQatlon, cRQ bc
written

I'(s) =g(Do(m')/Do(s)).

F(s)=gI'r(s)hr r(s)/Ar (s), (3.2)

where Fr (s) is the renormalized proper vertex function,
hor(s) is the renorrnalized pion propagator, and lLo (s)
is the free pion propagator. Finally, we know that'

6pr(s}/Ar (s) -+ 1/Zo as s —+ ~ (3.3)

(2 1]) and
I'r(s) —+Zr as s-+~. (3 4)

with

e= —Do(m )/Do'(m );
so= m +e,

Do (m') —G(m')
0

Do'(m') —G'(m')

mo'= m'+ 5,

&=g'Do(mo)/Eo(m') .

(2.12)

(2.13}

(2.14)

(2.15)

o H. Lehmann, Nuovo Cimento ll, 342 (1954).See also Ref. 7.
7 G. Kallen, Helv. Phys. Acta 25, 417 (1952), and Hendbgch der

I'hys@, edited by S. Fliigge (Springer-Verlag, Berlin, 1958),
Vol. V, p. 358.Kallen's proof is actually given for quantum electro-
dynaInlcs. The validity of his proof has bccn challenged by S. 0.
Gas).orowlczq D. R. Ycnnlcs a,nd H. Suula, Pllys. Rcv. Letters 2p

5&3 (1959).Nevertheless, the result is vaM at least in the 6rst few
orders of perturbation theory, and sloppy pseudoproofs of it Inay
easily be given. LSee, for example, M. Gell-Mann and F. Zacha-
riasen, Phys. Rev. 125, 1065 (1961), Appendix A.g In any case
we Inay use Eq. (3.4) as a dejin@ion of a quantity Z1, which has
6eld-theoretic signi6cance, and which may or may not be identical
with Zj. as usually deaned.
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Thus we have, from (3.2),

F (s) —+ gZi/Zz as s —+ ~ . (3.5)

On the other hand, for our (subtracted at infinity)
Dp, we know Dp(s) ~ 1 and s —+~. Hence, it is also the
case that

(3.6)

and hence
X/ (zzz' —sp) —+ g/( —8)'t',

Z,—' —+ 1—g'/R.

(3.13)

(3.14)

Finally, if we in addition demand that 8 —+ 0, we get

we see that F(s) —+ 0 from Eq. (3.1). Then (3.12) tells
us that

so we get Z3 —+ 0. (3.15)
Dp(m') =Zi/Zz

and the dynamical limit is'

Zi/Zz ~ 0.

(3.7)

(3.8)

The other condition, 8 —+ 0, is equivalent to Z3 —+ 0.
To see this, we note that in the field-theory case, with
two-particle unitarity,

X (—Jil) "' 1 pds'
g= gZi/Zp+ +- F*(s')to(s') (3 12)

m —so m s' —m

Now let us go to the dynamical limit. As Dp(zzz') ~ 0,
' That Z1 ——0 and Z3 ——0 are equivalent to bootstrap conditions

on a particle has been shown in an approximation to lowest order
perturbation theory by R. M. Rockmore, Phys. Rev. 132, 878
(1963).The Z3 ——0 condition is discussed more generally in Ref. 3.
It should, however, be noted that the model and conditions we are
employing do rot coincide with those of Ref. 3.Lee et al. explicitly
assume that there are no dynamical bound states in the Geld-
theory case, and they therefore do not obtain a dynamical theory
until Z3 ——0. For us, on the other hand, a dynamical situation
occurs as soon as Z1/Z3 ——0.

dpi(s)= — +
s—zzz' (ap —zzz')' s—sp

1 pds' iF(s')i'
(3.9)

zr s' —s (s'—zzz')'

The pole at s= so occuls because of the existence of the
dynamical bound state. The constant X is the effective
"coupling constant" connecting the elementary pion
directly to the bound state.

From (3.9) and using (3.3), we can find Zz.

1 iF(s') i'
Zp '= 1+ +— pds' . (3.10)

(sp —zzz')' zr (s'—zzz')'

We can relate X to 8 through the dispersion relation
for the form factor F(s), again assuming two-particle
unitarity. We have

x(—8)it'
F(s) =gZi/Zz+

s—so

1 p (s')ds'
+— F*(s')tp(s'), (3.11)

7l S —S
and therefore

In conventional field theoretic language, then, the
limit described at the end of Sec. II is the limit Z~ —& 0,
Zp —+0, such that Zi/Zp —&0.

Finally, it may be worth remarking that the passage
to the dynamical limit in some toy models does rot
exhibit the behavior described here, even though these
models have often been used to guess at what the
dynamical conditions should be. In this connection, it is
helpful to look at Levinson's theorem. ' Define the func-
tion Dp(s) by

Do(s) = Dp(s),
(s sp)'''(s s )

(3.16)

where the s are all the zeros of Dp(s) in the physical
plane (it has no poles). ¹(s)is divided by the same
polynomial to form Ep(s). The function Dp(s) now

goes like s " as s ~~. On the other hand,

Dp(s) =Dp(s) exp—
bp(s')

ds', (3.17)
, (s' s)(s' s)— —

'N. Levinson, Kgl. Danske Pidenskab. Selskab, Mat. Fys.
Medd. 25, No. 9 (1949)."P.Zachariasen, Phys. Rev. 121, 1851 (1961).

from which we can conclude that

8p(s„)—Sp(~) = zz~. (3.18)

However, S'p(s) now has zz+1 poles, the zz poles we
have introduced plus the pole at s=m'. Levinson's
theorem now tells us that one pole is elementary. If
Dp (zzz') =Zi/Zz ~ 0, ¹

has only zz poles and the theory
is dynamical. The phase shift still changes by ex as
before. The limit Z3 —+ 0 is not necessary to make the
amplitude dynamical, but is only required to ensure
that the dynamical pole has the same residue as the
elementary one had.

On the other hand, in a toy model, " the dynamic
limit is not reached until Zz —+ 0, (Zi ——0 in any case).
This is so because Arp(s) in that model has one pole at
s= zzz' and Dp(s) s~ ~—(X/16zr') ln

i
s i+Zp. For a dy-

namical amplitude, Dp(s) must go as s ', where r(1.
This limit is reached when X —+ 0 and Z3 —+ 0. Also, the
CDD zero in this model is given by zzzp'=zzz' —g'/X.
Therefore, as the dynamic limit is approached, mg —&~

rather than to the pole, leaving the pole nakedly behind
at m', looking dynamical.


