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By making use of the phase representation, the relation between the high-energy behavior of the sym-
metric forward scattering amplitude F(x) and the asymptotic properties of the ratio cotb=ReF/Im F is
discussed. Starting assumptions are dispersion relations and the Greenberg-Low bound. Lower bounds as
well as upper bounds are derived. Under the assumption of the Froissart bound, it is shown that cotb cannot
stay indefinitely greater than an arbitrarily small positive number. Also if the total cross section decreases
steadily to a finite limit, but slower than const/E, the real part must tend to —~.The results are discussed
in connection with those of Khuri and Kinoshita. The unsymmetric case is also treated by the same methods.

1. INTRODUCTION
' 'T is well known that a certain analyticity of the scat-
' ~ tering amplitude in the momentum transfer t plane,
unitarity, and polynomial boundedness in the energy
variable s imply the existence of an upper bound on the
scattering amplitude at high energies. ' ' In these deriva-
tions, however, no use of the dispersion relation in s for
fixed t has been made. Recently Khuri and Kinoshita'
have taken into account analyticity in the s plane to im-

prove these bounds by making use of a theorem on
harmonic measure. In general, it is obvious that those
bounds in Refs. j. and 2 cannot be improved by means
of dispersion relation in s alone, without further assump-
tion, since the physical amplitude is the boundary value
of an analytic function, while in the t plane the physical
point is always in the interior of the analyticity domain.
In fact the improvement in Ref. 3 is based upon an
assumption on the ratio ReF(s)/ImF(s) =cot8(s) where

F(s) is the forward scattering amplitude. In general
one cannot exclude the cases in which those bounds are
saturated.
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In this paper the theorem on harmonic measure as applied to the
function g (E) only implies that there exists some neighborhood of
an in6nite sequence of points (E„},(E„~ce), on which (g(E)
&C(E/Eo) ~', but it does not follow that the bound is valid
everywhere; there may in fact be infinite sequences of points or
even of finite nonoverlapping intervals where the bound is not
valid. It should also be remarked that although by construction
Img(E))0 for large E, so that the curves li and F2 do not
intercept, it is not so for g(E)'/'~ if o.&-', (or more generally
82& 2BI) because then the phase could become larger than 2r. Thus
the conditions of the theorem would not be fulfilled. In order to
overcome this difhculty one should consider instead the function
f (1—W) ('2 2'I+&)/2~g(L~) }~/'(~g 'I+&). One then obtains the bound
g(E) (

&C(E/L&'0) &"~ "»~'» Lor C(E/Eo)&+'& '«1 in the neighbor-
hood of the infinite sequence (E„).These points have also been
overlooked by Meiman (N. N. Meiman, Zh. Eksperim. i Teor. Fiz.
43, 2277 (1962) )English transl. : Soviet Phys. —JETP 16' 1609
(1963)]).It is apparent that some consequences drawn by the
authors do not follow from the theorem.

If one likes to relate the high-energy behavior with
the asymptotic ratio ReF/ImF, the phase representa-
tion [which is essentially a dispersion relation for
lnF(s) j is most useful, for 8(s) is nothing but the imagi-
nary part of lnF(s). In this paper, we shall investigate
the high-energy behavior of the forward scattering
amplitude in terms of the phase representation.
Throughout the paper, unless otherwise stated, we shall
assume only the consequences of axiomatic Geld theory,
namely, dispersion relation for forward-scattering ampli-
tude and the Greenberg-Low bound. Apart from its
simplicity the use of the phase representation has the
advantages of giving (i) lower as well as upper bound on
F(s), (ii) bounds which depend on the sign of ReF, and
(iii) a way of treating the nonsymmetric case as well.

In Sec. 2 we give a proof of the phase representation
under very general conditions with a restriction much
weaker than that of Sugawara and Tubis. ' In Sec. 3,
high-energy upper and lower bounds are derived for the
symmetric case in which one of the particles is self-
conjugate. The best lower and upper bounds in any
complex direction are obtained in terms of lower
and upper bounds on the phase. On the real axis we
have a result which is sufhcient to ensure that one
can write a dispersion relation for F(x) Dn the variable
x= (s—ms —ps) s/4m'ys j with only one subtraction,
provided tanb never vanishes as x —+~. We also give
lower and upper bounds which, however, may not be
the best possible under the assumptions made. It follows
from our analysis that cot3(x) cannot be persistently
larger than an arbitrarily small positive number without
the Froissart bound being violated. In Sec. 4 the absorp-
tive high-energy scattering, in which the phase tends to
s./2 is discussed in detail and the methods of Sec. 3 are
used to provide restrictions on the power of the factor
lns. It is also shown that ReF(s) —+ —~, if the total
cross section decreases steadily to a limit o (eo) but not
faster than const/s. Finally, in Sec. 5 the unsymmetric
case is brieRy discussed, and in Sec. 6 we make some
comments on the results obtained.

4 M. Sugawara and A. Tubis, Phys. Rev. 130, 2127 (1963).
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2. THE PHASE REPRESENTATION integration so as to write

Let us consider a function F(s) with the following
properties:

(i) Analytic in the s plane cut along the real interval
(I,co).
(ii) Bounded by a power of ~zj as s~m in any
direction.
(iii) Real in the sense that F(s*)=F(s)*.
(iv) The discontinuity across the cut is continuous
and has not more than a finite number of zeros.

r/cos8 (x cos8—r)8(x) dx

,l„,e x'+r' 2—xr cos8 x

8(~.)
ln(1+r' —2r cos8)

2'
1

+-[8(h)—8(b)] ln
~
»n8

~
. (6)

Also for large [ s(, [ G(s) [ is bounded by a power of
~

s
~

so that one can find a positive number X such the, t
~G(s)

~
&C(r+1)N In o.rder to investigate the asympto-

tic behavior of H(s) near the positive real axis, let us
take a circle with center at the origin and radius
R=r+1 The.n applying Cauchy's theorem to the func-
tion H(z)" where 0&v&[(8s—8i)/ir] ', we have

G(s) =F(s)/II(s-s')

is clearly an analytic function of s in the cut plane and
the discontinuity across the cut is given by

Taking into account (2), it follows from (5) and (6)It has been shown that such a function has only a
finite number of zeros, ' say s& s„.Then the function
lnG(s), where

1
8(x) =—[inG(x+ie) —lnG(x —ie)]

2i
1 F(x+ie) ImF(x)=—ln =tan ' . (1)
2i F(x i c) —ReF(x)

Since the phase of F(x+ie) is not uniquely defined we
shall, following Sugawara and Tubis, 4 adopt the con-
vention that 8(1)=0. It follows from (iv) that 8(x) is
continuous and bounded above and below:

H(s)"=
27ri

H(s')
ds =—

S —8 2'

Rvv H(Revv) v

dco
Re'"—s

2x'

IH() I

"&—
2' 0

Qv

~
H(Re' ) ~

d~&—(R+1)'+v())'+'»~)
2'

(sjn2(g)v(81 i2) lv'd(g(Qvv(r+2)1+v(N+b2ivv)

bs& 5(x) & 8i. (2)
ol'

~
H(s)

~

(Cv(r+2)llv+N+imlw

Let us consider the function H(s)—=G(s) exp[ —(v(s)],
where

s "8(x) dx
V (s)=-

Therefore, for large
~

s ~, H(s) is bounded by a power of
~
s~ in all directions. But H(s) is an entire function and

has no zeros; therefore, H(s) is a constant. Hence oile
can write

t's " 8(x) dx
F(s) =A 'Q(s —s;) exp~—

i x—s x
the integral being convergent on account of (2). H(z)
is an entire function and has no zeros (except possibly
at in6nity). Now writing s=re" we have (for 8/0)

8(~)
ln(1+r' —2r cos8) .

2'
Re(v(s) =—

(ii-a) For large
~
s

~ v
both F(s) and F(s)—i

O(exp
~

s
~

' "+@),where p is an arbitrarily small posi-
tive number.
(iv-a) F(s) has not more than a finite number of zeros.

On the other hand, if cosg)0, the integrand changes
sign at x= r/cos8 and we shall divide up the interval of

which is the phase representation for F(s).
r " (xcos8—r)8(x) dx This derivation can be trivially extended to the case

(s) (4) in which F(s) has a finite number of poles. An essential
x'+r' 2xr cos8x-point in the above derivation is condition (iv), that the

discontinuity across the cut does not go through zero
U cos8& 0, then (x cos8—r) is always nega tivev and an infinite number of times. Actually the representation
applying the mean value theorem we have (8) holds under more general conditions. One could, for

nstance, replace (i) and (iv) by:

' Y. S. Jin and A. Martin, Phys. Rev. 135, 81369 (1964).
The proof of representation (8) under these assumptions
is given in the Appendix.



FOR%'ARD SCATTERI NG AMPLITUDE B 1281

3. THE FORWARD SCATTERING AMPLITUDE

Let us consider the symmetric combination of ampli-
tudes for forward elastic scattering of two particles of
mass m and p, respectively, say a nucleon and a pion,
as a function of the variable z=(s—res' —ti')'/4ns'p, '
where s is the square of the energy in the center-of-mass
system of the particles. From axiomatic field theory
one can deduce (under certain restrictions on the masses)
that the forward scattering amplitude F(s) satisfies
conditions (i)—(iii) of the preceding section except for a
pole on the real axis at zs ——ti'/4rN'. From analyticity in
the I.ehmann ellipse and unitarity the following bound
obtains for large

I
s

I q& a,(x)&~—q. (13)

where p is an arbitrarily small positive number. ' One
can obtain an upper and lower bound for IF(s) I

as
z ~ac in any complex direction (800), directly from

(5) and (6). We have

C,
l

I"—"'~(sin-'8)i" ""~&IF(z)l
&Cilzl "t (sin —'8)i" "it~ (12)

where v=0, 1 [or v= —1, 0, in case (2)) is the difference
between the number of zeros and poles.

In order to study the asymptotic behavior along the
positive real axis let us introduce Ai(x)=8(x) —8i+tt,
so that

IF(z) I &Clzl(lnlzl)s. (9) Then one can write

Also unitarity ensures that ImF(x)&0, but we shall
further make the plausible assumption that ImF(x)
does not vanish infinitely many times. Then F(s) will

admit a representation (8) but for a factor 1/(z —zs).
So we shall write

4'(z) = exp' (z) = (1—z) "' &' t

t s 'At(x) dx~
&&et(z) expl — —I, (14)

i x—zxi'
where

A s "8(x) dx)
II(z—«') exp — ——

I
(10)

8—Sp ~=& ~, x—sx&

s "At(x) dx
yi(z) =exp-

7r g g S X
(15)

Let us first suppose that F(x) has no zeros in the physical
region x&1. Then. according to the convention 8(1)=0
and the condition ImF(x) &0 we have

(1) F(1)&0, 0&8(x)&x,

(2) F(1)&0, 0&8(x)&—w.

It then follows from (5), (9), and (10) that n &3 or tt &2
for the first and second case, respectively. If F(x) had p
zeros in the physical region, the phase for x above the
last zero would be shifted by (P—2q)s where q is an
integer in the interval 0&q&P. Likewise we would then
have the restriction n P+2rt&3 —or 2, for F(1)&0 or
F(1)&0, respectively, the equality holding only if
ReF(x)/ImF(x) —+ —~ when x —+~. We remark that,
since the residue at the pole is negative, F(x) has a zero
in the interval (xs, l) when F(1)&0. Then, unless

ReF(x)/ImF(x) —+ —~, we have q=0 and I—P&2
or 1.

%e shall from now on suppose, unless otherwise
stated, that F(x) has no zeros its the physical region and
F(1) is Positise. Our results, however, can easily be seen
to be independent of such restrictions. We shall also
make the following relevant physical assumption:

ReF(x)
is bounded by a constant.For x&x,

ImF(x)

Then the number of zeros of F(x) is either one or tvoo for
case (1) /sero or one for case (2)]. Let 8t and 8s be the
greatest lower bound (g.l.b.) and the least upper bound
(l.u.b.) of 8(x) for x&x, so that by the above assumption

2rt&8t&8(x)(8s&m —2rt, (11)

is an analytic function of s with a cut along (x, ao) and
has the following properties:

() ~(*)=~()*.
(b) the imaginary part of Pt(z) is Immit(z) = lyt(z) I

)&sinA~, with

1 " ht(x)r sin8
Ag= —

. dx
s x'+r' —2xr cos8

At(t) x x—r coso—tan —1

7r 2 r sin8
(16)

where the sign is that of sin8. Therefore 0&
I
At I

&s.—rt and sinai has the sign of sin8. Hence Pi(z) is a
Herglotz function.

(c) For real x&x, gi(x) is real and positive.
Since gt(z) is a Herglotz function it admits the

representation
z "Imlt t(x) dx

yt(z) =1+Bs+

6 We recall that 51 and b2 are, respectively, monotonic increasing
and decreasing functions of z and they have a limit. When S(x)
has a limit 5 as x ~ ~, the quantities 51 and b2 have the same limit
5 and we shall write 8~ ~52~5.

where 8)0. For real negative s= —x& —x, we have

x ~ Immit(x') dx'
0&Pi(z) & 1—Bx—— — & 1

x'+x x'

1 dx
Bx Immi(x—')——

27/ g'
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For sufBciently large x the inequality will be violated
unless 8=0 and

amplitude is required to satisfy Froissart's bound'

(z) l &Clzl ' (inlzl) (24)
dx

l 4 x(x')
l
sink~(x') (1;

2' S'

but by (13) sinA&(x) )sing, then

(17) then one of the following applies:

(a) F(x) has only one zero (v=0); then the total cross
section falls off at infinity in such a way that o(co) is

L(1,~) in the variable ~=x'I'. We recall the relation

o = (4x/has) ImF.
Hence from (10), (14), and (18) one concludes that

l F(x)/x~]QL(1, m); p) 1+p —hq/s, (19)

where v has the same meaning as in, (12).
One can obtain a similar restriction on the asymptotic

behavior of F(x) ' by introducing the function 62(x)
= 8(x) b~ —ri an—d writing

( s .hz(x) dx)
+(z) '= (1—z) """'42(z)expl- —l, (20)

i x—s x&'
where

( s "Az(x) dx)
A(z) =«pl-

x—s x&

This is an analytic function with properties analogous
to those of p~(z). Following the argument developed be-
fore, we conclude that L&2(x)/x]QL(1, ~) and therefore

(P) The total cross section is a slowly varying func-
tion of x Lin the sense that xo'(x)/o(x) ~0] and
ReP(x)/ImF(x) ~ 0 (bg ~ b2-+ z/2).

(7) The real part of the scattering amplitude stays
negative for large x.

Corollary 4. If (ReF/ImF) tends to a limit
cot8 (8z —& 8z ~ 8) then the asymptotic behavior of P(s)
is given by l

s
l

" times a slowly varying function of s.
Although (19) and (21) put some restrictions on the

high-energy behavior of F(x) along the positive real
axis, they do not provide us with actual bounds. The
problem of finding lower and upper bounds for F(x) on
the real axis is clearly not one in the proper realm of
analytic functions since one is here on the boundary of
the domain of analyticity. Thus, it should be possible to
obtain the best bounds under condition (11)by examin-

ing, for instance, the behavior of

P(x) 'x'CL(1, ~);p& —1+p—hz/s . (21)
x " b(x') dx'

Req (x)=—P
1 g' —gg' (25)

l P(x) l
&C,x-&»-»1.. (22)

This result is stronger than that of Ref. 3. Also there is
a similar sequence on which

C x~(h+»l~( lP(x) l (23)

Corollary 3. If for x)x the real part of the scattering
amplitude does not change sign and the scattering

We summarize these results in the following theorem:
Theorem 1. If for x)$, the phase of the scattering

amplitude satisfies the inequalities h~&5(x)&4, then
for large lzl, the function F(s) is bounded by Zq. (12)
uniformly in the angle 8, and along the positive real axis
(19) and (21) hold. The bounds (12) are the best possible,
since for F(s)=C(1 z)' 'i~ we hav—e 8~——82 ——5 and both
bounds are saturated. One can draw some immediate
consequences of this theorem:

Corollary 1. Condition (19) ensures that only one sub-
traction is required in the forward scattering dispersion
relation for F(z) and therefore that F(s) is a Herglotz
function. This result was 6rst given by Khuri and
Kino shita. '

Corollary Z. It follows from (18) and the continuity
of Pq(x) that given an arbitrary positive constant C
there is at least an infinite sequence of neighborhoods
fx„), (x„~~)on which lpga(x) l

(C.Therefore on this
set of intervals F(x) is bounded by

Here, however, we shall not attempt to derive the best
possible bounds. We shall simply give some bounds
which can easily be deduced from (25) or from results
already derived in this section. We start by remarking
that the function Pq(z) I"~»+'» [see (15)]still satisfies
condition (13) and therefore this function has the
properties (a), (b), (c) given for gq(z), hence also
(18). But if we write yg(x) =Leigh(x)]&'~»+'»I, then
f&(x)CL(1,~) which means that it is bounded by a
constant "almost everywhere, " in the sense that for
x)x the measure of the set of intervals on which

lgq(x)l)N is m~(N)&C(x)/N where C(x) is inde-
pendent of S and tends to zero as S~~.

A similar result may be deduced for pr(x). Therefore
we obtain for F(x) the following bounds on the positive
real axis:

C&x"- "~»+~ ( lF(x) l &C,x~&'»-~~»l~ (26)

which hold "almost everywhere, "
g being an arbitrarily

small positive number. If we make the additional
assumption that the phase 8(x) satisfies a Holder
condition,

l 8(x+6)—8(x) l
&Ah", (27)

uniformly in x, for all h in the interval 0&h&2a and p,

a positive numer, then one can show from (25) that the
bounds (26) hold everywhere with g=0. Indeed, we
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have'

8y lnx&xP

~~ l)(x') dx'

I
Q x x x

b(x') ch'
&b2 lnx,

~Q x x x

*+ 6(x') —8(x) dx'x—6= 5(g) ln
h+(r z g. x —x x/r /

28 @I'

& + b(x)+—2A
x p

h(x') ch'
—282 lnx&xE & —2bg lnx,

x x x

so that ReZ(z)~ —(2/rr) ln lnlzl. Thus we have the
following result:

Theorem Z. If for x&$ the phase of the scattering ampli-

tude satis6es the inequality

nt& [8(x)—-,'xj lnx&ns, (29)

then for large 2 =re", the following bounds hold uni-

formly in the angle:

Csr '/'(Inr) —' s/ (sin-'t))s( ~ »/ '""& lF(z) l

(Ctree)/s(lnr) 2ul/~(stnrg)2(ar —as)/m' Inr (30)

and along the positive real axis we have

F(x)/x'+~'"(1nx) v&L(1 ao) p) 1—2(rt/s (31)

wherefrom the bounds (26) follow with r/=0. For small

enough fluctuation of the phase, the Greenberg-Low

upper bound as well as the lower bound obtained by
Jin and Martin are improved. For instance, if at high
energies ReF(x)(0 (dt&n. /2), Eq. (26) with t/=0 is
better than the Greenberg-Low bound. If, on the other
hand, the fluctuation is large these bounds become
rather weak and for 82&28~ there will be no improve-
ment over the Greenberg-Low bound.

1
I(x)=— dx

A(x')
x'

(28)

is convergent. This is mathematically equivalent to
Pomeranchuk's theorem on the equality of the limits of
total cross sections in crossed channels. However, if we
demand that the total cross section is to stay bounded
and finite, then it is not necessary that A(x) ) 0, but
(28) must be bounded. If, on the other hand, (28) is not
bounded, we write /Ii(x) =n(x)/Inx and first suppose that
for x)x, (ri and (rs are the g.l.b. and l.u.b. of n(x).
One can then follow exactly the same procedure of the
preceding section to obtain upper and lower bounds for
F(z). These bounds depend on the asymptotic behavior
of the real part of

z " (lnx')-' dg'
Z(z) =-

g x 8 x

which is easily deduced by remarking that the discon-
tinuity of the analytic function /(z) =in lnL1+(1—z)'/']
is asymptotically given by

Im/(x) = ——,'s (lnx) ',
r G. Prye and R. L Warnock, Phys. Rev. 130, 478 (1963).

4. THE ABSORPTIVE HIGH-ENERGY SCATTERING

We shall now consider in more detail the case
bi~ 5s~rr/2, in which the forward scattering is
dominated by the absorptive amplitude. Let us write
d(x)= sirr+A(x). If the total cross section tends to a
constant limit as x )ao, then d, (x) ) 0 and

F(x) 'x '+~' /'(1 nx) v+L(1,~); p( —1 2rr—s/s(. 3.2)

It follows from (30) that if we impose on F(z) the
Froissart bound (23), then either v=0 or ns& —s.. Also

if LReF(x)/ImF(x)] lnx tends to a limit as x~~, this

must be o.& —m.

Again here, as in Sec. 3, the bounds (27) are the best
possible. On the positive real axis we have a similar

situation, as before. The following bounds hold "almost
everywhere" for large x:

Csg~i/s(lng) s(~i—s~s-s) /~(
l
F(g) l

(Cthe/2(ing)2(us-sar+'r)/e (33)

Under the assumption of a Holder condition (27) on the
phase these bounds hold everywhere and with q=0.
An interesting consequence is that when (ReF/ImF)
Xlnx —+0. then, NrIless a=0, the total cross section is
either not bounded (n&0, v=1) or tends to zero faster
than C/(lnx)" "",(n& r/) 0).'

Finally we shall prove the following important result:
Theorem 3. If for x&x the total cross section decreases
steadily to the limit o(oo) but not faster than const/
(x'/' lnx), then ReF(x) becomes negative for suKciently
large x, and tends to —~.

Let us introduce the variable o)=gz and. the analytic
function

y(o)) =F(o)s)—2//s/iLo(~)/4rr7(1 —o)s)i/' (34)

with two cuts (—1, —~) and (1,~) in the (o plane. By
hypothesis we have for lo)l)o),

ot/»l~l &Im&(~) «s l~l (35)

where u~ and u2 are positive constants. Let us next write
the dispersion relation (for o))(o):

R ~( )=~(0)
o) p 1 1 ) do)—

l
Im4)(~') . (36)

7f i Eo) o) o) +o)l (o

We shall divide the interval of integration in the follow-

s P. Olesen, Phys. Letters 15, 175 (1964); 14, 66 (1965).
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lng wRy:
2(o' " Imp(co') d(v'

Ree(~) =0(0)+
Cd —Cd Cd

cd 1 1 CjjCd

F — Imp(o)')
7I &y Cd 4) GO +07 Cd

2(d Imp(CO ) do)

CO Cd Cd

(37)

ol
' Imp(ro') d(o' (o co+1

+as—ln, (38)
'E ~ rd +el td 1r M 1

ce
"' Imp(o1') da)'

Rey(ol) &0(1)——
'E ~ ol +M re

&ut Imp(o1)) al/in~; hence the right-hand side of (39)
becomes negative for large cd and tends to —~ as
co ~~.Thc thcoI'cIn ls thus pI'ovcd.

5. NONSYMMETRIC AMPLITUDES

So far we have been dealing with amplitudes which
are symmetric under crossing of the Mandelstam vari-
ables s and u such as in pw' scattering or with symmetric
combinations like (F~ ++Fr -) in which the amplitude
has only one cut in the variable @=co'. However, the
methods developed in the preceding sections apply
equally to the case of nonsymmetric amplitudes hkc
F„+or F„-which are analytic functions of co in the
two-cut plane. The phase representation in this case
takes on the form

A
F(~)=—— II(~—~')

C0 Cdo

"6+(ol') do)'

Xexp —
I

where 8+(~) and 8 (co) are the phases in the direct and
crossed channels, respectively. The bounds (12) of Sec.
2 hold with B~ and 5'2 replaced by half the sum

(bl, s++Bl,s ) of the bounds on the phases of the two
channels. The number of zeros and poles in the variable
cd is twice the number in the variable s so that the diGcr-
cIlcc between zcIos and poles ls 2p= —2, —1, 0, 1, 2
where the values (—2, 0) or (0,2) correspond to the
cases in which the scattering lengths in the two channels
are either both negative or both positive, respectively.

Now for sufficiently large ol)o1, by hypothesis Imp(&o)
is a decreasing function of cd. Therefore one increases thc
right-hand side of (36) by replacing Imp(co') by Imp(ol)
in the principal value integral and by its upper bound
(34) in the last integraL Then

t'd 1 Cd

Rey(o1) &y(0)+ ln — — Imp(~)

The values (—1, 1) would correspond to cases in which
the scattering lengths have opposite sign, which ob-
viously has no counterpart for symmetric amplitudes.
According to the convention that 8=0 at threshold, the
phases will then have opposite signs in the two channels.
The analogue of Corollary 3(y) of Theorem 1 is that at
least in one channel the amplitude stays negative for
large cd. On the other hand, if the total cross sections
tend to a finite constant, either (cotta++ cot8 ) —+ 0 or it
oscillates indefinitely.

As for the bounds on the real axis one can see that
they can be improved if the conditions formulated in
Sec. 3 for the variable x=cd' are assumed to apply to

Then. one can easily deduce from (40) that for ~)ol

the following bounds hold on the real axis except possi-
bly on a set of measure m„-~ 0 in the variable cd:

~el~i"' "& IF'(~)
I
&C,l~l"'+~ (41)

where F+(a))=F(war) and

~2, 1 2& (bs, l +62,1 )+(~1,2 ~2, 1 ) * (42)

Also if wc impose the Holder condition

I
s+(~+h) —v(~) I

&ah~ (43)

to hold uniformly in M, for every h in the interval
0&k&28 alld posltlve p, tllell 'tile bounds (41) hold
everywhere with g= 0. Condition (43) is clearly stronger
than(27) since ls2 sll = I~s+~rl lo1s—e11I.However, ol

is essentially the energy of the incoming particle in the
rest frame of the target or the square of the energy in
the center of mass system; therefore, (43) is physically a
reasonable assumption whereas to impose (27) instead
would be somewhat artificial.

In the symmetric case we would have obtained the
bounds Cmx ("2-'»~' and Cgx ("& '»~' The upper
bound improves the Grccnberg-Low bound provided
that 82& 3bg.

Similar considerations couM be made with respect to
the results of Sec. 4. If the Frroissart bound is assumed
for F(o1) one needs, in general, two subtractions in the
forward dispersion relation. But if the phases of both
channels satisfy the inequalities (29) with x=ol, and if
(nr++nr ))s/2, then one subtraction will be suKcient.
Also the bounds (33) can be improved under the stronger
Holder condition (43) and a result analogous to (41)
would obtain. e

Finally if the sum of the total cross sections satishes
the conditions of Theorem 3, then the result of the
theorem clearly applies at least to one channel, namely
that its amplitude becomes negative at large energies
and tendS tO —eo aS ol —+~ (Or ol —& —~ ).

6. CONCLUDING REMARKS

%'e have proved the equivalence between the phase
representation Rnd thc dlspcI'sion rclRtlon fol thc foI'-

9 If a+(co) and n (co) tend to the limitsa+ and a, then, for the
total cross sections, 0+ to be bounded and 6nite one must have
n++a =0. Hence, either ReF has opposite signs in the two
channels as [cu[ -+ ~ or (ReP/ImP) 1n [co( -+ 0.



ward scattering amplitude with the sole restriction that
the number of zeros be finite. The result also applies to
the scattering amplitude in the unphysical region
0&If,&4p, '. In the physical region 1&0, the absorptive
part is not positive de6nite and the restriction on the
number of zeros is not physically so plausible. However,
if one makes some assumption such as, for instance,
Regge behavior at high energies, then the number of
zeros will bc 6nitc and the phase icplcscntation ls valid.

It is quite apparent from our analysis that the phase
representation is a very powerful tool in the study of
asymptotic behavior even when the phase is allowed to
oscillate, or RCP to change sign, indefinitely. In complex
directions the bounds obtained, both upper and lower
bounds, are the best possible under the assumptions
made. Our results for the behavior on the real axis are
quabtatively better than those of Khuri and Kinoshita. ~

In particular we have a rigorous proof that if (ReF/ImF)
is bounded at high energies, then one needs at most two
subtractions in the dispersion relation for F(&o) as a
function of co, or one in the case of a symmetric ampli-
tude F(x) as a function of x=(o'.

The analysis also shows that there is a tendency for
ReF(&e) to become negative at least in one channel. For
instance, one cannot have an asymptotic behavior such
that (ReF/ImF)&e without violating the Froissart
bound. Second, if (ReF/ImF) ~ 0, the scattering being
predominantly absorptive, the total cross section will
not be bouilded unless (ReF/ImF) lilINI(e Third. , if
the total cross section decreases steadily to a constant
limit as suggested by the experimental results, again the
real part must become negative. These conclusions

apply at least to one channel; the 6rst two are related
to the "crossing" property of field theory, whereas the
third one is simply a consequence of dispersion relations.
In terms of an CBective potential one would say that its
real part tends to become repulsive at small distances.
These results are in agreement with the analysis of
Soding ' based on a Regge-pole picture of the asymptotic
behavior. They are also consistent with recent experi-
mental determllla tlons of ReF (&0) lil which Ilegatlve
values were found. ""One would like to have a better
experimental determination of the high-energy behavior
of total cross sections as well as of ReF(~).

b(x) F " E(x') dx'

I l
&o X S S

(A3)

exists almost everywhere and also belongs to
1.~( ~, ~).i—s The reciprocal formula

Z(x) F " $(x') dx'

/
pQ X X X

(A4)

also holds almost everywhere and IG(x) Ie"&*i is the
boundary value of the analytic function

)» " h(x') dx'y
G(s) =G(0) expI—

We shall now show that 6(s) and 6(s) ' are
o(expIsI'/&'+~'&). On the real axis the result is ob-
viously true. For complex s=re", (8/0 or x) we have

" b(x') dx'

&o X S X

S(x')
dS +

g(x') i i/n

dS

APPENDIX

We shall prove here that if a function F(s) satisfies
conditions (i), (ii-a), (iii), (iv-a), of Sec. 2, then it ad-
mits a representation (8).

Let us introduce the function

E(z) = Re 1nLG(s)/G(0)], (Ai)

where G(s) has the same definition in terms of F(s) as
in Sec. 2. Then it follows from (ii-a) that for large I

x I,
f&!(x) is bounded by

IR(x) I
(C

I xI '/&'+». (A2)

Therefore the function (R(x)/x) belongs to I.~( ~, ~—)
with P=1+I/P', (0(P'(P), and its Hilbert transform
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(A6)
(sing) e' / &i+e')

where we have used Holder's inequality. It follows from
this result and condition (ii-a) that the function
x(s) =G(s)/G(s) and its inverse are o(exp

I
s

I
'/&'+e'&).

But X(s) is analytic in the upper half-plane, has no zeros
and is of modulus one on the real axis; therefore by the
maximum modulus principle X(s)=e'" where i/ is a real
constant. Then writing b(x) —i/=8(x), the representa-
tion (8) follows from (A5), with 8(x) readily identified as
the phase of F(x+ie)

» E. C. Titchmarsh, Theory of Foggier Ietegruls (Oxford
University Press, London, 1948), p. 132.


