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Trouble with Relativistic SU(6)~
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Recently, several authors have proposed a relativistic generalization of the SU(6) group, based on
U(6) U(6). The smallest group containing this group and the Poincarh group is found. This group has the
catastrophic feature that all of its faithful unitary representations contain an in6nite number of states for
fixed four-momentum; thus there are an inhnite number of particles in every supermultiplet. It is con-
jectured that similar difhculties afHict every group that contains an internal symmetry group and the
Poincare group in such a way that these groups do not commute. The conjecture is proven for a large class
of Lie groups (semidirect products of semisimple groups and Abelian groups) under a restrictive assumption
(that the translations are contained in the Abelian group).

I. INTRODUCTION

KCENTLY, there has appeared a series of papers'
which apply the group SU(6) to elementary par-

ticles physics, This group is not an internal symmetry
group in the usual sense, but a group which is conceived
as mixing internal and spin degrees of freedom, in a
manner similar to that of the SU(4) group which
appears in Wigner's theory of nuclear supermultiplets.
This approach has led to some remarkable successes,
but it is not without diKculties. Prominent among these
is one which rests upon the fact that the formulation of
the theory involves a separation of total angular mo-
mentum into its spin and orbital parts. This separation
is not Lorentz-invariant; thus, neither is the theory (at
least in appearance). Three alternative views on this

difhculty have been advanced:
(1) The true theory of the strong interactions does

not possess SU(6) symmetry; the symmetry appears
only in the non-relativistic limit. ' The hydrogen atom
provides an example of a dynamical system where
something very similar occurs. The trouble with this
idea is that all attempts to implement it involve a model
of the observed baryons and mesons as bound states of
fundamental unitary triplets ("quarks"). Because there
exist no such triplets below 3 SeV, the binding energy
of the nucleon must be more than 9 of the rest energy of
its components; this is an ultrarelativistic situation,
not a nonrelativistic one.

(2) The true theory of the strong interactions does
not possess SU(6) symmetry; SU(6) is the dynamical
symmetry group of a particular problem —for example, '
the baryon-resonance system in the static limit. This
viewpoint is extremely attractive, but, at least in its
current state of development, it severely reduces the
realm claimed. for SU(6). For instance, it offers no

*Work supported in part by the U. S. Air Force Once of Scien-
tific Research, under Contract No. A. F. 49(638)-1380.

f Alfred P. Sloan Research Fellow.' F. Gursey and L. Radicatti, Phys. Rev. Letters 13, 173 (1964);
A. Pais, ibid 13, 175 (1964); B.. Sakita, Phys. Rev. 136, B1756
(1964).' B. Sakita (Ref. 1); P. Freund and B.Lee, Phys. Rev. Letters
13, 592 (1964).

'R. Capps, Phys. Rev. Letters 14, 31 (1965); J. G. Belinfante
and R. Cutkosky, ibid. , p. 33 (1965).
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reason to believe that SU(6) has any application to
purely mesonic systems.

(3) The true theory of the strong interactions pos-
sesses SU(6) symmetry in some badly broken, but still
relativistic, approximation. In the non-relativistic limit,
the SU(6) group acts in the familiar way on spin
variables, but, for higher energies, its behavior does
not have such a simple interpretation. If we adopt this
view, we have to answer such questions as, "What are
the Lorentz transformation properties of SU(6)?" or,
equivalently, "What is the structure of the smallest
group containing SU(6) and the Poincare group?'"

It is our purpose here to investigate this last alterna-
tive and explain why we find it unsatisfactory.

In Sec. II we examine a theory recently proposed by
several authors. ' In this theory SU(6) is imbedded in
a group isomorphic to U(6)U(6) whose generators
have known Lorentz transformation properties. We
calculate the smallest group containing the Poincare
group and this group and And its irreducible unitary
representations. These representations turn out to have
a catastrophic property: each of them contains an
ignite number of states with the same four-momentum.
Thus this theory predicts an infinite number of dif-
ferent types of elementary particles, all in the same
supermultiplet, all with the same mass.

In Sec. III we examine another group that contains
both SU(6) and the Poincare group. The irreducible
unitary representations of this group contain only a
Qnite number of states for any given four-momentum,
but they each contain a continuum of masses. Thus,
once again, we have an infinity of particles in the same
supermultiplet, but in this case it is a mass in6nity,

4 M. Gell-Mann suggests that a group might be useful for classi-
fying particles even if it has no connection whatsoever with the
approximate symmetries of the world (private communication).
For example, useful information can be obtained from the assump-
tion that the operators of the group turn single-particle states at
rest into single-particle states at rest. There is no need to assume
that they transform any other states in any simple way, as would
be implied by the third view above. This would be a fourth
viewpoint.

~R. P. Feynman, M. Gell-Mann, and G. Zweig, Phys. Rev.
Letters 13, 678 (1964). Similar groups have also been discussed by
K. Bardakci, J. Cornwall, P. Freund, and 3. Lee, ibid. 13, 698
(1964);by S. Okubo and R. E. Marshak, ibid. 13, 818 (1964);and
by R. Delbourgo, A. Salam, and J. Strathdee (unpublished).
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TROUBLE WITH RELATIVISTIC 8U(6)

rather than a spin inanity. %e conjecture that this
inhnite-particle catastrophe addicts any theory except
those vrhich are constructed by combining an internal
symmetry group and the Poincare group in a certain
trivial way. If this conjecture is correct, it is impossible
to formulate a satisfactory relativistic SU(6)-invariant
theory.

In Sec. IV we prove the conjecture for a large class
of Lie groups (semi-direct products of semi-simple
groups and Abelian groups) under a restrictive assump-
tion (that the translations are contained in the Abelian
group).

Sec.V contains some speculations and our conclusions.

where ), are a set of nine independent 3X3 Hermitian
matrices. That of the PO1Ilcax'e gx'oup 1s genex'ated by
in6nitesimal transformations of the three forms,

Bray= ssog%y+ e(g'st~8 'N~ ~

8N~ =&,'o,e~+-x'O'N~ x'8sg—~,

(2a)

(2b)

n. U(6) SU(6) ~mo ITS Gmzm LIZXnomS

Let us consider two unitary triplets of two-component
Acyl helds, I+ and I . The very strong interactions of
these 6elds must be invariant under the action of the
group U(3) an.d also under the action of the connected
group of inhomogeneous Lorentz transformations, the
Poincare group, I'.

The action of U(3) is generated by the infinitesimal
transformations

where ~„=(I,e). The matrices occurring in (3) form a
set of 36 independent 6)&6 Hermitia, n matrices, which
must span the space of all such matrices, and thus
generate the group U(6). When we add the transforma-
tions of the form (4), we obtain U(6) U(6).

This group is not Lorentz-complete. The commutator
of a transformation of the form (3) with one of the
form (2a) or (2c) is indeed a transformation of the form

(3). However, commutation with (2b) yields the
trans format1ons

bg+=),o-„m+, 8N =0.
The missing factor of i is a consequence of the fact that
the commutator of an inhnitesimal rotation and an
mfinitesimal Lorentz transformation is a Lorentz trans-
formation, not a rotation. The matrices occurring in
(5) form a set of 36 independent asti Her-mitial
matrices. When adjoined to those in (3), they form a
set of generators for the group of all nonsingular corn-
plex-valued 6)&6 matrices, GL(6). When we apply corre-
sponding arguments to the transformations {4), we

obtain GL(6) GL(6). This group is the Lorentz-com-
pletion of the group U(6) 8U(6).r

Even GL(6) QGL(6) is not the full group generated
by the transformatlons (2) and (3). However, lt ls easy
to see what this group is. If we multiply a transforma-
tion of the form (2) by an appropriately chosen infini-
tesimal generator of GL(6) SGL(6), we may eliminate
the spin part of the transformation. The space parts
generate a group isomorphic to I', which vre call I".
The transformations of I" evidently commute with
those of GL(6) glGL(6); thus the full group is

(2c) G=GL(6) GL(6) gP. (6)
These generate rotations, pure Lorentz transformations,
and translations, respectively. %e call those terms in
(2) that involve derivatives the space parts of the
transformations; the remainder we call the spin parts.

Several authors' have suggested that, in some badly
broken' but still useful approximation, the strong
interactions are invariant not only under the transfor-
mations (2) and (3), but also under the transformations

be+=i'A, O„N+, 8N =0,

' It should be emphasized that none of the authors cited in Ref.
5 claims to be able to construct a Lagrangian Geld theory for
which this group is an exact symmetry. 3ardakci et e/. write down
an interaction Lagrangian which is invariant under these trans-
formations, but the free Lagrangian breaks the symmetry. Per-
turbation expansions are done with the free Lagrangian as a per-
turbation. Likewise, Feynman eI e3. construct operators which
effect the transforrnations (3) and (4) on the fields at any fixed
time, but these operators at different times need not be equal.

Nevertheless, it is difhcult to see how these theories can be used
for classifying hadronic states, and how they can be connected
with the SU(6) theories of Ref. 1, if the group in question is not
an approximate symmetry of the strong interactions.

I would like to thank Professor G. Zweig and Professor 3.Lee
for discussions of their work.

A general element of G may be written as (gt,gs, A,u)
where gt and gs are elements of GL(6), h. is a homoge-
neous Lorentz transformation, and u is a translation.
The true Poincarb group I' consists of all elements of
G of the form (A,A,A,u).

Invariance under the U(6)U(6) group, together
with invariance under P, implies invariance under this
154-parameter group. It should be emphasized that
this result is critically dependent on the explicit
realizations of these groups as transformations on
YVeyl 6eMs; this alone enables us to calculate the com-
mutators of the tvro types of transformations. If we
consider these structures as abstract groups only, no
such result holds. '

%'e vrould now like to examine some properties of the
approximate world in which G is an exact symmetry
of the fundamental interactions. In particular, we would
like to 6nd the irreducible unitary representations of G,

~ This was flIrst shown to me by R. Sawyer. It was also known at
an early date to S. L. Glashow (private communications).

U(6)t3PU{7), where PU(7) is the group de6ned at the be-
ginning of the next section, is a counter example. This is a 99-
parameter group, and so cannot contain G.
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for the one-particle states must transform like the basis
for a sum of these; thus knowledge of these tells us the
possible supermultiplets of elementary particles. o

The necessary analysis is a trivial extension of the
classic work of Wigner" on the Poincarc group, I et
I'„bc the four generators of space translations. Then

III. ANOTHER EXAMPLE AND A CONJECTURE

Let us define PU(ts) as the connected. part of the
group of all linear transformations on e complex vari-
ables which leave unchanged the Hermitian quadratic
function of pails of points~

m2= I'„I'"

commutes with all the generators of the group and is a
constant for all the irreducible representations. Thus,
Rll the particles in a supermultiplet have the same mass.
Kc are, of course, particularly interested in the cases
where m' is greater than or equal to zero. Let us con-
sider the first case. The E'„all commute and may there-
fore all be simultaneously diagonalized. In any irre-
ducible representation all momentum four-vectors on
the mass hyperboloid must occur. Let us consider
those states for which P„has the value (m,0,0,0), and
let us define the little group of 6 as that subgroup which
leaves this set invariant. Then, as Wigner has shown,
the irreducible unitary representations of 6 are charac-
terized by the irreducible unitary representations of the
little group.

In olil' CRsc tlic little group is GL(6) GL(6) 3SO(3).
Now GL(6) is noncompact; furthermore, the only
compact factor groups of GL(6) are Abelian. Thus, all
the unitary representations of GL(6) are either one-
dimensional or inhnite-dimensional. If all the elemen-

tary particles transform according to the one-dimen-
sional representations of GL(6), there is no point in
putting GL(6) in the theory in the first place —GL(1)
would have done as well. If they do not transform in
this trivial way, there are an infinite number of ele-
mentary particles in every supermultiplet. "

A common criterion for proposed higher symmetry
schemes is this: The more unobserved particles a theory
places in a superrnultiplet, the less plausible it is. By
this standard, the scheme discussed here is the least
plausible yet proposed.

' There is a well-known method, shorter than this one, for 6nd-
ing at least some of the possible supermultiplets; this is to look
for the finite-dimensional representations of the homogeneous
group. (I'or the Poincare group, this method gives all of the
positive-mass representations and some of the zero-mass ones. )
These representations tell us the possible 6elds directly; thus, once
we have identified the positive- and negative-frequency parts of
the 6elds with annihilation and creation operators, we know the
possible states. Unfortunately, this identi6cation depends on the
canonical commutators; since the transformations of GL(6} do
not preserve these, the short method cannot be justined for our
problem. In fact, it is easy to see that for the group G discussed
above it gives patently false results.

The reader should be warned that almost all statements in the
literature on the content of G supermultiplets have been obtained
by this method, and are incorrect.

'0 E. P. signer, Ann. Math. 40., 149 (1939).' The same analysis applies to the mass-zero representations.
Here the little group is GL(6)GL(6)E(2}, where E(2) is the
Euclidean group on two variables.

%'lmrc p RIld X run from j. to Q~ Mld g ls R Hermltlan
111Rtl'1x wltll sigIIR'tiirc (+—' ' ' —).PU(Is) is 'tllc gcIici'-
alization of the Poincare group to unitary transforma-
tions. it has Is+2m generators; ns of these generate
homogeneous transformations and 2e generate trans-
lations. It will be convenient to gather these last into
a complex n-vector 6') .

PU(7) evidently coIitaiIis botll +U(6) (Rs tile llonlo-
geneous transformations of determinant one on the
last six variables) and P (as the real transformations
on the first four variables). Thus it is a possible candi-
date for the underlying symmetry group of R rela-
tivistically invariant theory that contains SU(6).
Just as in the last section, let us find the irreducible
unitary representations. 3P=5'~~6'~ commutes with all
the generators of the group and is a constant for all
the irreducible representations. The (Pq and the 6'qt all
commute Rnd may bc siQlultancously diagonalizcd. In
any irreducible representation all complex seven-vectors
on the hyperboloid of constant 3P must occur.

But this is already catastrophic l For the true mass,
the mass wc measure experimentally, is not M' but

stss=P„PI'(p, =0, 1, 2, 3)

I p (tp„+p„t)(pi+tpit)

and this assumes a continuum of values for any irre-
ducible representation, running from —~ to + eo.is

We emphasize that the disaster here is of the same
general kind as that of Sec. II, though different in
detail. There we had an infinite number of states for
any given four-momentum —a "spin in6nity" —but
only one mass in a supermultiplet. Here wc have only
a finite number of states for any given mass (the little
group is U (6), a compact group), but an infinite number
of masses occurs in any supermultiplet —a "mass
inhnity. "In both cases, however, an in6nite number of
elementary particles occurs in any supermultiplet, and,
furthermore, in such a way that an infinite number of
elementary particles occur in a 6nite-mass range. It is
this latter feature that makes the situation especially
unpleasant: We would probably be willing to accept a
theory with an in6nite number of particles, as long as
they were spread out in mass in such a way that experi-

» The same diiiicnity atnicts the Sl.(dl model of Michel and
Sakita (unpublished), and the Lie-group contraction to Rat space
of the De Sitter space theory of Roman and Aghassi LPhys.
Letters 14, 68 (1965}g.In these cases, for some representations the
continuum runs from a 6nite lower bound up to infinity.
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and
LQ. Qbl=0

A-tQ.A =D.b(A) Q, .

(10b)

(10c)

The enlarged set of generators generates an extension
of the Poincare group. We call this a trivial extension. "

Trivial extensions of the Poincare group are evidently
particle-finite. In the particle-6nite representations, the
eigenvalues of the Q's are simply tensor functions of the
eigenvalues of the P's. Each particle-finite representa-
tion of the extended group contains only one representa-
tion of P. It is for these reasons that we use the pejora-
tive adjective "trivial. "

Conjecture. Every connected particle-finite Lie group

» S. Goshen (Goldstein) and H. Lipkin, Ann. Phys. (N.Y.) 6,
301 (j.959). I am indebted to Professor Lipkin for removing my
considerable confusion on this point. )Note added crt proof. A
beautiful theorem recently proven by O'Raifeartaigh LPhys. Rev.
Letters 14, 575 (1965)j shows that this phenomenon cannot occur
in relativistic theories. If D is any irreducible representation of
any connected Lie group containing P, for which the representa-
tion of P is unitary, then the mass spectrum of D is either a con-
tinuum or a single point. There is never any band structure. g

'4To my knowledge, these objects were discovered by P.
Federbush (private communication).

ments conducted at limited energy could only detect a
finite number of them. (Similar phenomena occur in
certain nuclear models. ")

These considerations lead us to propose the following
definitions:

Defbrtitt'ort. Let G be a group that contains the
Poincare group and let D be a unitary representation of
G. We say "D is particle-6nite" if D, when restricted
to P', decomposes into the direct sum of positive-mass
representations of P, in such a way that, if M is any
positive number, there occurs only a 6nite number of
representations of P with mass less than M.

Defirtitiort Let. G be a group that contains I'. We say
"G is particle-finite" if there exists at least one locally
faithful unitary particle-finite representation of G.

The local faithfulness in the above de6nition is
merely a technical restriction. We want the elementary
particles to transform according to a particle-finite
representation of G. If this representation is not locally
faithful, we can find a factor group of G that is repre-
sented faithfully, and use that as our fundamental
symmetry group.

In the language of these definitions, the trouble with
the two groups discussed above is that they are not
particle-finite.

It is easy to construct a large family of particle-
finite groups. Unfortunately, they are almost completely
uninteresting from the view-point of physics. This
family is defined below.

Definitiort. Let D, '(A) be any real matrix representa-
tion of the homogeneous Lorentz group. Let us add to
the generators of the Poincare group a set of operators
Q„whose commutators are given by

t Q„E„]=0, (10a)

is locally isomorphic to the direct product of a compact
Lie group and a trivial extension of the Poincare group.

I have been unable to prove this conjecture, but I
have also been unable to 6nd a counter example. I have
been able to prove a more restricted form of the con-
jecture; this proof is presented in the next section.

If the conjecture is correct, any attempt to formulate
a relativistic SU(6) theory in the sense discussed in the
introduction, indeed, any attempt to combine space-
time and internal symmetries in any but the most
trivial way, is doomed to failure.

IV. PROOF OF A THEOREM

In this section we will state and prove a restricted
version of the conjecture of Sec. III. To simplify some
of the equations, we use the symbols —for isomorphism,
= for local isomorphism, and )( for semi-direct product.

Let G be the group referred to in the conjecture. Then
we will prove the conjecture under the additional
conditions:

(1) G='SXA,

where S is semi-simple and A is Abelian; and

(2) A~X,

where T is the group of space-time translations. "
These two conditions are severe restrictions. We

adopt them because they enable us to analyze the uni-
tary representation sof G, using the method invented by
Wigner for the Poincare group. '

The remainder of this section consists of the proof.
Let P„be the generators of T, and let Q, be the other
generators of A. Let us suppose that there exists a
faithful, unitary, particle-6nite representation of G,
which we call D. We use the same method as before,
and begin by diagonalizing the generators of A. There
can be no linear combination of these operators whose
eigenvalues are everywhere zero, for if this were the
case, D would not be faithful. The elements of G induce,
through inner automorphisms, linear transformations
on the generators of 3, and therefore on their eigen-
values, which we call p„and tt, .The same is true for any
subgroup of G. Let I- be the group of homogeneous
Lorentz transformations; then we may divide the P's
and the Q's into sets which transform according to
various irreducible representations of I.. The P„ trans-
form like a vector, and the Q s like various irreducible
tensors. If D is to be particle 6nite, the q's must be
tensor functions of p„. These functions are determined,
within a scale factor, by the transformation properties

» The theorem is also true if we consider ray representations as
well as true representations. Ray representations introduce
multiples of the identity operator on the right-hand side of the
commutation relations which define the Lie algebra of the repre-
sentation. However, we may always enlarge the group by adding
the identity to its generators; the ray representation then becomes
a true representation of the enlarged group. If the original group
satisfies our conditions, so does the enlarged group, and the re-
mainder of the proof is as above.
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of the Q's. Under the action of 8, these scale factors
must change continuously, If they run through a con-
tinuum of values, D is not particle 6nite. Therefore they
are invariant. By the same reasoning, I'„I'I' is invariant.
From now on we will restrict ourselves to the manifold.
of states for which these invariants have constant
values. Let the action of 8 turn (P„,Q„pq, qs) into
(P»Q'„p'q, q's) P„'. is a linear function of Pq and Q;
however, when we write g, as a function of p» we 6nd
p'„as a polynomial function of p„. %le may reduce the
degree of this polynomial by using the fact that I'„I'I'
is a constant; let us suppose the polynomial has been
reduced to its minimum degree d. Let Q be that one of
the Q's which transforms like a tensor of maximum
rank, and let this rank be t'. Since Q' is a, linear function
of the Q's and P's, j' is a polynomial function of p„of
degree &r. On the other hand, since j' is a known

polynomial function of p „ofdegree r, it is a polynomial
function of p„of degree rd. The only way these two
statements can be consistent is if d= i. Thus p'„ is a
linear function of p„. Since p„p& is an invariant, this
transformation defines a mapping of S into the set of
all linear transformations leaving this quadratic form
invariant, that is to say, into I..

It is clear that this mapping is R homomorphism.
Since 6~I', the homomorphism must be onto. Let E
be its kernel. Then

But S is a semisimple connected Lie group; all of its
normal subgroups are locally direct factors, and thus

By the definition of E, PE,T$=0. If LE',Q)WO, the
eigenvalues of the Q's must run through a continuum

of values, for 6xed four-momentum. Since D is partic1e
6nite, this cannot be. Therefore,

The little group of 6 hRS E Rs R dlx'ect factor. If E
is not compact, the unitary faithful representations of
the little group are in6nite dimensional, Rnd this cannot
be. Thus E must be compact. It is easy to show that
I.&A must be a trivial extension of I', and hence the
theorem ls proved.

~s Michel and Sakita (Rei. 10) have established independentiy
somewhat more restricted results, using similar methods. The con-
ditions of the Michel-Samhita theorem exclude the trivial exten-
sions of 9, and their conclusions apply only to the factor group
G/T, not to the full group. I am indebted to Dr. Sakita for an en-
lightening discussion of this vrork.

V. SPECULATIONS AND CONCLUSIONS

%e conclude with a sequence of speculat&ve remarks,
arranged. in order of decreasing optimism. '

(I) Perhaps the conjecture of Sec. III is false. In
this case, particle-6niteness suggests itself as a valuable
criterion for proposed hlghex' syInmetry sche111es. Since
every connected. Lie group may be written as a semi-
direct product of a semi-simple group and a solvable
group, the theorem of Sec. IV shows that to construct a
particle-6nite group, we must —speaking very loosely—
either put the translations in a semi-simple group or put
them in a non-Abelian solvable group. It is easy to imbed
I' in a semi-simple group; the familiar representation
of I' as a set of 5)&5 matrices disp1ays it as a subgroup
of Gl.(5). But this construction (and. all similar ones
I have investigated) involves including an element
with the e8ect of a dilatation, and thus insuring that
the group is not particle-finite.

(2) If the conjecture is true, perhaps we can escape
its consequences by looking for objects more general
than unitary representations, Certainly the Poincare
group and the SU(3) group must both be represented
by unitary transformations, if we are not to sacri6ce
the understanding of these invariances we already
possess, but there is no real reason why this should be
the case for the other elements of G. Then these trans-
formations would not represent invariances of the
system in the usual sense, but might still give us infor-
mation about selection rules and the structure of super-
multiplets. Straightforward analysis shows that this
relaxation of our conditions does not help matters for
the group discussed in Sec. II, but the general case
remains to be investigated.

(3) In the same vein, perhaps we will be forced to
objects more general than Lie groups. In6nite-param-
eter continuous groups are sufhcient for our purposes.
For example, the group of all unitary transformations
on the positive-energy states of a single spinless particle
contains I' and is particle 6nite, but it is not a semi-
direct product. A more interesting example, both be-
cause its structure constants may be speci6ed in closed
terms and because it leads to a nontrivial mass spec-
trum, may be constructed in the following way: Let
T; be a set of three operators that obey the angular-
momentum coxnmutation rules. Let us consider the
infinite-dimensional Lie algebra spanned by the gener-
ators of the homogeneous Lorentz transformations, plus
all operators of the form of polynomials in the I'~
multiplied. by the T;. If we identify the generators of
translations with the operators I'„T„we have an
embedding of the Lie algebra of I' inside this algebra.
In the particle-6nite representations, the masses of the
particles either run from zero, through the positive

~7 The speculations in this section are a product of conversations
at the Second Coral GaMes Conference on Symmetry Principles
at High Energies. I pro6ted especially from discussions with Pro-
fessor R. Hermann, Professor B. Lee, Professor L. Michel, and
Professor E. C. 6, Sudarshan.
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integers, to some upper bound, or run from ~, through
the half-odd integers, to some upper bound. It is clear
that we can build parallel structures using an arbitrary
Lie group instead of SO(3), and thus obtain consider-
ably more complicated mass spectra.

(4) Nevertheless, although these are all intriguing
possibilities, they remain at the moment unfu161led
hopes. The situation is dark; all we can say with con-
fidence is that the construction of a relativistic SU(6)
theory along the lines described in Sec. I is a more diffi-
cult task than previously has been imagined.
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APPENDIX ADDED IN PROOF: ON SUPPLEMENTARY
CONDITIONS

In the body of this paper, we have argued that a
relativistic SU(6) symmetry inevitably leads to the
appearance of a plethora of undesired states. There is,
of course, a standard remedy for such a condition; this
is the introduction of a supplementary condition. A
subspace of the set of all states is de6ned as the space
of physical states; the orthogonal subspace is dehned
as the space of unphysical states. The physical Smatrix
is defined as the original Smatrix restricted to the space
of physical states. This automatically removes the
undesired states; the danger is that it may also remove
unitarity. If the original S matrix has nonvanishing
matrix elements between physical and unphysical
states, the squares of the transition probabilities, re-
stricted to physical states, will no longer sum to one."

In this Appendix we discuss two suggested supple-
mentary-condition theories that violate unitarity.

"Supplementary conditions may be imposed in other ways,
which do preserve unitarity. For example, if we define E by
S= (1+iE)/(1—iE), we may apply a supplementary condition
to E rather than to S. The unitarity of S is equivalent to the
Hermiticity of E; supplementary conditions, as defined above,
preserve Hermiticity, so unitarity cannot be lost. However, in this
case, crossing symmetry, which is automatically preserved in the
S-matrix-restriction procedure, is endangered.

1. I'ulton and Wess" have considered a symmetry
group in which the four-momenta are part of a set of 36
commuting operators. It has been suggested that the
32 extra operators ("the unphysical momenta") be set
equal to zero for initial and 6nal states in any scattering
process. This removes the unwanted states for the one-
particle subspace; however, in elastic scattering, the
particles can exchange unphysical momentum, and
thus, particles beginning in physical states may scatter
to unphysical states.

2. Let C' be a set of 6elds transforming according to
some (perhaps reducible) representation of the homo-
geneous Lorentz group, and let us consider a Lagrangian
of the form

2= 8„4'8% +Z',

where 8' is invariant but involves no derivatives. The
theory de6ned by this Lagrangian is invariant under a
group of transformations of the form I.P', where I
is the homogeneous Lorentz group acting on spin indices
only, and I" is the group of purely spatial Lorentz
transformations. It is clear that by choosing the inter-
action Lagrangian properly, such a theory may be
made invariant under a larger group of the form 6)&I",
where 6 is a group acting on spin indices that may con-
tain SU(6).

The difhculty with this theory is that the quadratic
form 4%, is not positive-de6nite; thus, the quanta of
some 6eld-components are associated with states of
negative norm. This difhculty can be removed by a
supplementary condition. The physical space must con-
sist only of states of positive norm and must be Lorentz-
invariant, but otherwise it may be chosen arbitrarily. "
Since the original theory involves states of negative
norm, it is not as evident as in the previous example
that unitarity is necessarily lost, but specific calculation
shows this to be the case for all the theories of this type
which have been proposed. "

"T.Fulton and J. Wess (unpublished). The group is the same
as that of Ref. 10.' Many theories of this sort have been proposed, although not
in the language used here. Some examples are: A. Salam, Pro-
ceedings of the Second Coral Gables Conference on Symmetry
Principles at High Energies (to be published); M. Beg and A.
Pais, Phys. Rev. Letters 14, 267 (1965);3. Sakita and K. Wali,i'. 14, 404 (1965). The choice of the physical subspace corre-
sponds to "choosing a boost" in the language of Beg and Pais.» M. Bdg and A. Pais, Phys. Rev. Letters 14, 509 (1965); R.
Blankenbecler M. L. Goldberger, K. Johnson, and S. B.Treiman,
ibid 14, 518 196. 5). In fact, even if we loosen our requirements
by allowing the original S matrix to be nonunitary, the restricted
S matrix still cannot be made unitary.


