BOOTSTRAP DISPERSION RELATIONS

and
a(d—e)=0, (B9)

but we are still unable to specify which factor of Eq.
(BY9) is zero.
Consideration of the process #+A — 72 leads to

p=0 (B10)

bg=fd. (B11)

The strangeness —1 amplitudes for K+N — 7-+A
lead to

and

kj=—il, (B12)
while the process K+N — -+ leads to
?=j2, (B13)
mi=nt=2k1=2P, (B14)
hin=gjm, (B15)
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and
(B16)

Since k?=1?, the only solution to Eq. (B16) that allows
any N-2 coupling is

v aml=~yc(k*—P).

=0, (B17)
and then Eq. (B8) reduces to
e=—d. (B18)

The relative magnitudes and sign correlations given
by Egs. (B1)-(B18) constitute charge independence for
the meson-baryon coupling constants. Consideration of
processes of the form w-baryon — n+baryon with a
single neutral #» meson then leads at once to isoscalar 7
coupling constants when the previously derived pion-
coupling-constant relations are used. All processes that
have not been explicitly considered in this Appendix
are consistent with Eq. (2) but lead to no new
information.
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We use conformal transformations to facilitate extrapolation of experimental values of the two isovector
and two isoscalar nucleon form factors, to find their spectral functions. Both isovector spectral functions
peak around 600 MeV, or somewhat below the energy of the isovector p resonance. Both isoscalar spectral
functions peak around 700 MeV, somewhat below the w resonance. We also analyze the electric form factor
for elastic electron-deuteron scattering in terms of the difference between the measured value and the
calculated value. The latter uses assumptions concerning the deuteron wave function, and concerning the
isoscalar electric nucleon form factor Ggs. By extrapolating this difference, we find Ggs in the time-like region
14 <t<9u,?, where ¢4 is the anomalous threshold, and the upper limit is the normal isoscalar threshold. These
values of Ggg are statistically consistent with the measurements for space-like momentum transfer. Extrap-
olation of the combined set of values for Ggg (space-like and time-like momentum transfers) gives a spectral
function again peaking at 700 MeV, with indications of a dip at 1150 MeV. The dip may be due to the

isoscalar ¢ resonance.

E have previously used!? a conformal transforma-
tion as a method to extrapolate the proton
electric and magnetic form factors (Gg, and Guryp)
measured for space-like momentum transfers to find
the spectral function for time-like momentum transfers.
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13.S. Levinger and R. F. Peierls, Phys. Rev. 134, B1341 (1964),
referred to as I. See this paper for further references to the

literature.
2 J. S. Levinger and C. P. Wang, Phys. Rev. 136, B733 (1964),
referred to as II.

Our basic equations and notations are given in the
Appendix; see I and II for discussions and tests of our
extrapolation techniques.

In this paper, we apply the same extrapolation tech-
niques to measurements of the isovector and isoscalar
nucleon electromagnetic form factors. We first use
data,® compiled June 1964, on the neutron form factors
found from inelastic electron-deuteron scattering and
also from scattering of thermal neutrons. The procedure
is straightforward: We merely combine these neutron
form factors with proton form factors at the same space-
like momentum transfer to find the isovector and iso-
scalar form factors, which we then extrapolate. The

(1; }34) R. Wilson and J. S. Levinger, Ann. Rev. Nucl. Sci. 14, 135
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TasLE L Input data. » is given by Eq. (A2). The nucleon elec-
tric (E) and magnetic (3) isoscalar (S) and isovector (V) form
factors are taken from Ref. 3.

Isovector form factors

t(F2) ) Guv Error Gy Error
-1 0.240 oy cee 0.430  0.007
—49 0.037 1.375  0.065 0225  0.020
—10 —0.101 0.965 0.030 0.193 0.036
—10 —0.101 cee oo 0.133 0.030
—11 —0.121 0.905 0.060 0.108 0.090
—12 —0.138 0.875 0.030 0.146 0.046
—14 —0.172  0.780  0.030 0.135  0.036
—15 —0.186 0.715 0.050 0.140 0.080
—16 —0.206 0.680 0.015 0.107 0.030
—20 —0.248 0.520 0.045 0.085 0.070
-25 —0.295 0370  0.040 —0.005  0.080
—30 —0.333 0.340 0.020 —0.028 0.018
-35 —0.366 0.160 0.080 —0.068 0.060
—45 —0.416 0.227 0.013 0.006 0.036
—175 —0.512  0.080  0.030 —0.010  0.040
— —1.000  0.000 0.030 0.000  0.040
Isoscalar form factors
: (F2) 7 Gus Error Ggs Error
-1 0.288 cee oo 0.450 0.007
—49 0.160 0.315 0.065 0.385 0.020
—10 0.054 0.185 0.030 0.243 0.036
—10 0.054 “ee ces 0.303 0.030
—11 0.037 0.165 0.060 0.298 0.090
—12 0.022 0.125 0.030 0.240 0.046
—14 —0.008 0.120 0.030 0.205 0.036
—15 —0.020 0.125 0.050 0.180 0.080
—16 —0.033 0.110 0.015 0.190 0.030
—20 —0.077 0.130 0.045 0.165 0.070
—25 —0.123 0.130 0.040 0.200 0.080
—-30 —0.161 0.060 0.020 0.183 0.018
-35 —0.195  0.160  0.080 0.193  0.060
—45 —0.248 0.013 0.013 0.085 0.036
—75 —0.356 0.025 0.030 0.050 0.040
— 0 —1.000 0.000 0.030 0.000 0.040

spectral functions determined in this manner might well
have simple interpretations in terms of resonant inter-
mediate 1~ states of definite isospin: e.g., the isovector
p, and the isoscalar » and ¢. The magnetic isovector
spectral function has been determined by Zeiler* in a
similar manner, and we shall compare with his results.

We then analyze electron-deuteron elastic scattering
(electric form factor Gga) to determine in a second
manner the electric isoscalar nucleon form factor, Ggs.
Previous work5® used the measurements to determine
Grs for space-like momentum transfers and found
values inconsistent with those based on scattering of
thermal neutrons. We extrapolate the measurements
of Gga to time-like momentum transfers in the interval
between the deuteron’s anomalous threshold of 1.73 u,2

4 7. Zeiler, Diplomarbeit, Technische Hochschule, Karlsruhe,
Germany, 1963 (unpublished).

8 N. K. Glendenning and G. Kramer, Phys. Rev. Letters 7, 471
(1961); Phys. Rev. 126, 2159 (1962); J. I. Freidman, H. W.
Kendall, and P. A. M. Gram, #bid. 120, 992 (1960).

8D. J. Drickey and L. N. Hand, Phys. Rev. Letters 9, 521

1962).
¢ 7B.) Grossetéte and P. Lehmann, Nuovo Cimento 28, 423
1963).
( 8 D. Benaksas, D. Drickey, and D. Frérejacque, Phys. Rev.
Letters 13, 353 (1964) ; and D. Benaksas (private communication).
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and the normal isoscalar threshold of 9 .2 (Here u, is
the pion mass.) We find that our values for Ggg in this
region are consistent with values of Ggg for space-like
momentum transfer. Thus, our new method of analyzing
elastic electron-deuteron scattering seems to remove the
inconsistency between Gpg found from elastic and
inelastic scattering measurements.

II. EXTRAPOLATION OF ISOVECTOR AND
ISOSCALAR FORM FACTORS

The isovector magnetic and electric form factors are
related to the proton (p) and neutron () form factors
in the standard manner:

GMV=%(GM9“GM7L) )
Gev=%(Gry—Ggn). 1)

We use as input data the magnetic and electric neutron
form factors Garn and Gg, given in Fig. 7 of Wilson and
Levinger.®® (Note that these values are as of June 1964.
Table II of Wilson-Levinger is based on slightly later
measurements'’; these new data would not substan-
tially alter our results.) These data from inelastic
electron-deuteron scattering measure (Gar,)? and (Gy)?
and thus do not give the signs of G, or Grn. We assume
the signs as negative for the former and positive for the
latter. Our assumption for the sign of Gg, is based on
the measured electron-neutron scattering length,!t
which gives

dGE”/dqzl 0= 0.021 F2, (2)

We also use Eq. (2) to give us a value for Gz, at
i=—¢*=—1F2 namely Gz,=0.02.

The values for proton form factors are taken from
Wilson and Levinger’s compilation, interpolating where
necessary. The errors for Gyy and Ggy are almost
entirely due to the errors in the neutron form factors;
we use the errors given by the experimentalists.

Our input data for the isovector form factor is given
in Table I. Note that we use normalizations Gv(0)
=2.353, and Gryv(0)=3. We also give the value of 4

TaBLE II. Goodness of fit versus degree of polynomial. Here
&=x?/ (degrees of freedom), for a polynomial of degree ¥ with two
constraints, fitting data of Table I.

N ¢ for Guy ¢ for Guy ¢ for Gys ¢ for Ggg
3 2.01 1.10 2.35 1.45
4 1.37 1.18 0.77 1.08
5 1.18 1.17 0.85 1.02

°T. A. Griffy, R. Hofstadter, E. B. Hughes, T. Janssens, and
M. R. Yearian, Dubna Conference (unpublished); C. Akerlof,
K. Berkelman, G. Rouse, and M. Tigner, Phys. Rev. 135, B810
(1964); J. R. Dunning (private communication) ; P. Stein, R. W.
McAllister, B. D. McDaniel, and W. M. Woodard, Phys. Rev.
Letters 9, 403 (1962).

*J. R. Dunning, K. W. Chen, A. A. Cone, G. Hartwig, N. F.
Ramsey, J. K. Walker, and Richard Wilson, Phys. Rev. Letters
13, 631 (1964).

L. L. Foldy, Rev. Mod. Phys. 30, 471 (1958).
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TasLE III. Coefficients @, and diagonal errors, for polynomial fits to data of Table I.
Guv (quartic) Gy (quintic) Gy Gus Grs
n n Error n Error n Error n Error Ay Error
0 1.258  0.013 1.305  0.029 0.229  0.007 0.136  0.010 0.241  0.010
1 3.097 0.013 3.329  0.130 0.783  0.017 0.662  0.029 0.628  0.042
2 0976  0.124 0.489  0.299 0.208  0.026 0.849  0.144 0.530  0.160
3 —1.149  0.032 —3.227 1159 —0.352  0.021 —0.152  0.058 —0.158  0.074
4 —0.285  0.095 —0.185 0.110 e e —0.476  0.107 —0.304 0.123
5 1.506  0.840

used in our conformal transformation, for a threshold,
to of 4 squared pion masses, and b=2. [See Eq. (A2)
for notation.] We are assuming a nonsubtracted disper-
sion relationship, to good accuracy; that is, we assume
that Gyv and Ggy at infinite space-like momentum
transfer are each zero, and we assign errors for this
“datum” as the same as for the measurements at
t=—75 F~2 Table I also gives the input data for
isoscalar form factors.

Table II gives the goodness of fit ¢ for the input data
of Table I, when we fit with a polynomial of degree N
(with two constraints) in the variable n. The quantity
¢=x2/(degrees of freedom) should be close to unity.
Using Table IT, we choose a quintic fit for the isovector
magnetic form factor Gyv, and a cubic fit for the iso-
vector electric form factor Ggy. We also include a
quartic fit to Gav for comparison. The isoscalar form
factors Gy s and Ggs are each fitted by quartics.

TasLE IV. Form factors for real 5, using the coefficients of Table III, and the complete error matrix
for the statistical error. See Eqs. (A2) and (A3).

Isovector
Quartic Quintic Cubic
n 1(F?) Guv Error Guv Error Gev Error
0.92 1.99 3.83 0.04 3.13 0.40 0.85 0.01
0.80 1.90 3.66 0.04 3.05 0.34 0.81 0.01
0.68 1.71 3.39 0.03 2.96 0.24 0.747 0.007
0.56 1.26 3.07 0.02 2.82 0.14 0.671 0.005
0.44 0.79 2.70 0.01 2.61 0.05 0.584 0.002
0.333 0.00 2.353 0.000 2.353 0.000 0.500 0.000
0.32 —0.12 2.309 0.001 2.317 0.005 0.4893 0.0003
0.20 —1.56 1.91 0.01 1.96 0.03 0.391 0.003
0.08 —3.78 1.51 0.01 1.57 0.04 0.293 0.005
—0.04 —7.38 1.14 0.01 1.17 0.02 0.198 0.007
—0.16 —13.2 0.79 0.01 0.80 0.01 0.11 0.01
—0.28 —23.2 0.49 0.01 0.48 0.01 0.03 0.01
—0.40 —41.5 0.24 0.01 0.24 0.01 —0.03 0.01
—0.52 —781 0.05 0.02 0.09 0.03 —0.07 0.01
—0.64 —180 —0.07 0.02 0.03 0.06 —0.09 0.02
—0.76 —427 —0.12 0.02 0.03 0.09 —0.09 0.02
—0.88 —1958 —0.10 0.02 0.05 0.08 —0.06 0.03
—1.00 — 0.00 0.03 0.00 0.03 0.01 0.04
Isoscalar
n HF?) Gus Error Ges Error
0.92 448 1.00 0.06 0.93 0.06
0.80 4.28 0.94 0.05 0.88 0.05
0.68 3.85 0.83 0.04 0.80 0.04
0.56 2.84 0.70 0.02 0.70 0.02
0.44 1.78 0.56 0.01 0.60 0.01
0.333 0.00 0.440 0.000 0.500 0.000
0.32 —0.27 0.425 0.001 0.488 0.001
0.20 —3.51 0.30 0.01 0.39 0.01
0.08 —8.50 0.19 0.01 0.29 0.01
—0.04 —16.6 0.11 0.01 0.22 0.01
—0.16 —29.7 0.05 0.01 0.15 0.01
—0.28 —52.4 0.02 0.01 0.11 0.02
—0.40 —93.4 0.01 0.02 0.08 0.03
—0.52 —176. 0.01 0.03 0.06 0.04
—0.64 —405. 0.02 0.04 0.05 0.05
—0.76 —961 0.03 0.04 0.04 0.05
—0.88 —4406 0.03 0.03 0.03 0.04
—1.00 — 0.00 0.03 0.00 0.04
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TasirE V. Spectral functions, using coefficients of Table III,
and the complete error matrix. See Eqgs. (A4) and (AS5).

Isovector
& Mass Quartic Quintic Cubic
(deg) (MeV) amv Error guv  Error ggv  Error
0.0 280 0.00  0.00 0.00 0.00 0.00 0.00
14.9 289 0.21 0.003 0.13 0.04 0.05 0.001
25.8 308 0.70 0.03 —0.32 0.57 0.16 0.004
373 337 1.59  0.09 —0.77 1.32 0.35 0.01
47.5 373 2.61 0.15 —0.25 1.61 0.57 0.02
58.1 418 3.61 0.8 1,65 1.11 0.81 0.03
66.1 459 4.19 0.17 3.84 0.27 0.98 0.04
74.6 509 4.53 0.13 6.15 0.91 1.10 0.04
83.3 571 4.51 0.05 7.79 1.83 1.16 0.04
89,9 622 4.27 0.04 8.07 2.12 1.14 0.03
96.1 683 3.85 0.10 7.49 2.04 1.07 0.03
104, 757 3.26 0.15 6.05 1.56 0.95 0.02
106 800 2.93 0.18 5.06 1.20 0.87 0.02
114 903 220  0.20 2.81 0.39 0.68 0.02
122 1037 1.46 0.19 0.63 0.50 0.46 0.02
126 1120 1.11 0.17 —0.26 0.78 0.34 0.03
129 1217 0.78 0.15 —0.94 0,97 0.23 0.03
134 1333 0.49 0.12 —1.38 1.06 0.13 0.04
138 1474 0.25 0.09 —1.58 1.02 0.04 0.04
142 1647 0.05 0.06 -1.55 0.89 —0.04 0.04
147 1867 —0.11 0.04 -1.34 0.69 —0.10 0.04
151 2154 —0.21 0.03 —1.02 0.45 —0.15 0.04
155 2545 —0.27 0.04 —0.67 0.22 —0.17 0.04
160 3111 —0.28 0.04 —0.34 0.05 —0.17 0.03
164 4000 —0.26 0.04 —-0.09 0.11 —0.16 0.03
168 5600 —0.21  0.04 0.05 0.15 —0.12 0.02
180 © 0.00  0.00 0.00 0.00 0.00 0.00
Isoscalar
£ Mass Quartic Quartic
(deg) (MeV) F37¢] Error 8ES Error
0.0 420 0.00 0.00 0.00 0.00
149 434 0.07 0.01 0.05 0.01
25.8 462 0.34 0.05 0.24 0.06
37.3 506 0.83 0.12 0.58 0.13
47.5 560 1.33 0.18 0.95 0.20
58.1 627 1.68 0.20 1.23 0.22
66.1 688 1.76 0.17 1.32 0.19
74.6 764 1.60 0.11 1.26 0.12
83.3 856 1.21 0.03 1.03 0.04
89.9 933 0.84 0.08 0.80 0.11
96.1 1024 0.43 0.15 0.54 0.19
104. 1136 0.02 0.22 0.27 0.26
106 1200 —0.16 0.24 0.14 0.28
114 1354 —0.45 0.25 —0.07 0.30
122 1556 —0.59 0.23 —0.19 0.27
126 1680 —0.60 0.21 —0.22 0.24
129 1826 —0.57 0.18 —0.23 0.20
134 2000 —0.52 0.14 —0.21 0.16
138 2211 —0.43 0.10 —0.18 0.11
142 2470 —0.33 0.06 —0.13 0.07
147 2800 -—0.23 0.03 —0.08 0.04
151 3231 —0.13 0.03 —0.03 0.05
155 3818 —0.05 0.05 0.01 0.06
160 4666 0.01 0.06 0.03 0.07
164 6000 0.05 0,06 0.05 0.07
168 8400 0.06 0.05 0.05 0.06
180 © 0.00 0.00 0.00 0.00

Table III gives the coefficients @, and diagonal errors
for the polynomials as selected in the above paragraph.
These coefficients, and the complete error matrix, are
used to give the form factors for real values of  pre-
sented in Table IV. Here the values for —75<¢<0 are
interpolations of the input data of Table I; while the
remainder of Table IV gives extrapolations. Note that
the extrapolated values for Gy for ¢<—75 F~2 appear
rather different for the quartic and quintic fits. How-
ever, the difference is only about two statistical errors,
due to the large error of the quintic fit, so it should not
be taken seriously. Similarly, the statistical errors given
in Table IV for the quartic fit to Guy are unrealistically
small in this region of momentum transfer. They
represent the error only if we assume that we must fit
with a quartic. Since the statistical criterion given in
Table II does not demand a quartic fit, but in fact
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suggests a quintic fit, the statistical error assuming a
quartic fit does not include the main source of error.
Table V gives the spectral functions, and their sta-
tistical errors, for the coefficients of Table III. We also
compare three different isovector magnetic spectral
functions in Fig. 1: the quartic and quintic from
Table V, and Zeiler’s* third spectral function in his
Fig. 13(b). [This fit of Zeiler’s uses a quartic, with an
unsubtracted dispersion relation and constraint (A6).
Zeiler here uses 5=2.2, very nearly the value of 2.0
that we have taken.] The figure shows that all three
spectral functions peak in the region of 600 MeV:
namely, 500, 620, and 620 MeV for our quartic, quintic,
and Zeiler’s fits, respectively. The full width at half-
maximum I' is 530, 360, and 620 MeV for the three fits.
It is more meaningful to express the width I' in terms
of the angle in the n plane: namely, 68, 42, and 66°,
respectively. Our work in I shows that a very narrow
peak fitted by a polynomial of degree N will have a
width of about 180/N in angle £. Since Fig. 1 gives
somewhat larger values, there is a suggestion that the
true spectral function may have a nonzero width, or
may have structure. The position of the peak is lower,
in each case, than the 750 MeV shown in Fig. 1 for the
center of the p resonance; but it is not clear whether
this difference is significant. It is significant that we
obtain a peak near 750 MeV for the isovector spectral
function without at any time assuming that the spectral
function should have a peak in this region. We used only
knowledge of the isovector threshold and of the zero
slope of the spectral function at threshold. See I for
further discussion and tests of the significance of

~ spectral function peaks found by our extrapolation

technique.

There is a slight tendency for the magnetic isovector
spectral function to become negative for high values of
the mass of the intermediate state; this tendency is
weak compared to the rather definite negative peak
around 1500 MeV for the proton spectral functions

‘found in II.

We should make clear that we have selected one of
many extrapolations made by Zeiler. In fact, the main
point that he makes is that this extrapolation procedure
has two arbitrary features. First, he obtains different
results for different values of the degree N of the
polynomial chosen; second, he obtains different results
for different choices of the parameter b in Eq. (A2).
We argue that the choice of NV is actually not arbitrary
but, in fact, is determined by statistical criteria, as
illustrated in Table II. A possible uncertainty between
neighboring integers for values of N does not cause
great difficulties, particularly when one considers the
large statistical errors in the fit with the larger value
of N, as is done in Fig. 1. (Zeiler does not use the
original experimental errors in his input data, and does
not make an error analysis of the output spectral
function.) In II, we discuss the dependence on the
parameter b, and we justify the choice 5=2 for fitting
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Fic. 1. Magnetic isovector spectral
function plotted versus mass in MeV.
The curve marked ‘“Zeiler” is from 4r
Ref. 3, using Zeiler’s third spectral
function in his Fig. 13 (b). Our quartic
and quintic fits, with their statistical 2-
errors, are taken from Table V.

-2

proton form factors. The value of b is not as definite
for the isovector form factors; but we believe that &
should not be allowed to vary over the wide range used
by Zeiler. Correspondingly, the effect of varying & will
not greatly affect the main features of the spectral
function. [See Fig. 6(b) of II: A change of £ in b changes
the peak energy by less than 100 MeV.]

Table V shows that the isovector electric spectral
function gpv behaves similarly to the magnetic gav.
The peak of the electric spectral function is at 580 MeV,
in the region of the three fits discussed above for gav.
The width of 600 MeV, or 60° in £ is to be expected for
a cubic fit to a resonance much narrower than 600 MeV.
There is an indication of a minimum of the electric
spectral function around 2500 MeV.

The isoscalar spectral functions gus and ggs also
given in Table V each peak around 690 MeV, or some-
what lower than the 790-MeV position of » resonance.
Again a peak in the right region has been found directly
from the data and knowledge of the threshold behavior
alone. There is an indication (3 standard errors) of a
minimum around 1700 MeV. The width of 420 MeV,
or 50° for the main peak is consistent with quartic fits
to a narrow resonance.

So far we have neglected the condition used in II

TasLE VI. Values of nucleon form factors at ¢=4M2 Form
factors and statistical errors using coefficients of Table III. The
corresponding magnetic and electric form factors are not incon-
sistent with each other, in a statistical sense, at t=4M2.

Magnetic Electric
Real part of isovector: (quartic) —0.960.11
(quintic) —0.30.£0.39 041019
Imaginary part, isovector: (quartic) —0.114-0.04
(quintic) —1.3 07— 0-10+0.04
Real part, isoscalar —0.10+0.13 —0.102-0.17
Imaginary part, isoscalar —0.55+£0.17 —0.224-0.20

MASS(MeV)

that the complex magnetic and electric form factors
should be equal at t=4M? where M is the nucleon mass.
Table VI shows that this condition is in fact met,
within statistical errors, by our extrapolations.

L L 1 L

6

: .
-t (F™)

Fic. 2. The isoscalar electric form factor Ggs versus ¢* in F~2
The circles from Table I are based on inelastic electron-deuteron
scattering, and on scattering of thermal neutrons; the triangles
from Refs. 6 and 8 are based on elastic electron-deuteron scatter-
ing; the curve from Table IV is our interpolation for the data of
Table 1.
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() (b)

(c)

Fic. 3. Diagrams for elastic electron-deuteron scattering. (a)
is the additive diagram, with anomalous threshold 1.73 u,2; while
(b) and (c) represent two of the infinite number of nonadditive
diagrams.

III. ELECTRON-DEUTERON ELASTIC SCATTERING

As we have mentioned briefly in the Introduction,
previous analyses of electron-deuteron elastic scattering
give results for Ggg for space-like momentum transfers
which are inconsistent with those used in our input data,
Table I. The disagreement is illustrated in Fig. 2, where
we show use of the analysis of Drickey et al.%® as
triangles, compared to circles from Table I and the
solid curve from Table IV. (This disagreement is
usually shown in a more striking manner by comparing
values for the neutron electric form factor Gg,. In
either case, the disagreement is statistically significant.)
We note again that the “datum point” for t=—1 F—2
is based on scattering of thermal neutrons, while we
have assumed a positive sign for Gg, for the point at
t=—49 F2

In this paper, we shall instead analyze the region

14<1<9,2; 0.865 F2<(<45F2  (3)

Here {4=1.73 u.? is the anomalous threshold for the
deuteron, while 9u.? is the normal threshold for an
isoscalar intermediate state. In the region of Eq. (3),
we have the special feature that the imaginary part of
the deuteron form factor? is accurately known from
effective-range theory, and that the nucleon isoscalar

1 F, Gross, Phys. Rev. 134, B405 (1964) ; 146, B140 (1964).
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form factor Ggs is real. We use the notation
Gra=2DGgs+R. 4)

Here Gra is the electric form factor (including quadru-
pole effects) for elastic electron-deuteron scattering. D
is the quantity which in a nonrelativistic theory is the
Fourier transform of the squared wave function of the
deuteron, and therefore, in a relativistic theory,”? has
become complex at the anomalous threshold {4=16Me
=0.865 F2. (Here M is the proton mass and e is the
binding energy of the deuteron.) R stands for all “non-
additive” terms. Figure 3(a) illustrates the additive
term 2DGrs; Figs. 3(b) and (c) illustrate two of the
many nonadditive terms. Of course, R=0 for /=0, from
charge conservation, while for the magnetic analog of
Eq. (4) the nonadditive term may be of significance
even in the static limit.1¥ The usual procedure®2 is to
assume a value for D, and assume R is zero for the
space-like momentum transfers at which Gga is
measured.

Our procedure has two main advantages over the
usual procedure of assuming an expression for D and
assuming R=0. First, we treat the problem relativisti-
cally. Second, we make a minimum of assumptions con-
cerning the neutron-proton potential: We use the
deuteron binding energy and the triplet effective range.
In contrast, the usual use®8 of the nonrelativistic
Hamada-Johnston wave function to give D() for space-
like ¢ involves the assumption that a static potential
should be used to extrapolate from neutron-proton
scattering to find the off-energy-shell matrix elements
involved in D. (Of course, properties of the deuteron
ground state are used to constrain the extrapolation.)
But how do we know that the neutron-proton potential
is not velocity-dependent at small distances? Further,
the customary neglect®™#® of nonadditive terms R in
Eq. (4) is justified only by the resulting simplification
of the calculation. Since R is expected to decrease less
rapidly than D with large space-like increasing ¢%, we
do not see why R should be neglected. Indeed, our
analysis below suggests that R/D is not negligible at
moderate space-like momentum transfers, e.g., t=—35
F-2. Here the Hamada-Johnston wave function gives
D=0.204; using R=0 and the measured Grs=0.125
gives Gggs=0.31, which is plotted as a triangle in Fig. 2.
We find from our analysis (Table XII and Fig. 5):
Grs=0.346, and R=—0.016. Thus R is small compared
to unity, but R is almost 109, of D at this momentum
transfer, if we use D for the Hamada-Johnston wave
function.

We fit the data for space-like momentum transfer
with the expression

Gpa=JG—Y. 5)
We choose a form for J which has an imaginary part
13D, Harrington, Phys. Rev. 133, B142 (1964); A. Q. Sarker,

Phys. Rev. Letters 13, 375 (1964) and (private communication) ;
R.J. Adler and S. D. Drell, Phys. Rev. Letters 13, 349 (1964).
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TasLE VIL Electron-deuteron elastic scattering. The quantities ¥ given in the last four columns are found from (Eq. 5)
using different choices [ (8a), (8b), (7) and related material] for J and G, respectively.

Input data Two-pole G One-pole G
t(F2) ) GEra Error Ref. Hulthén Hamada Hulthén Hamada
—0.3 0.265 0.824 0.006 a —0.002 —0.004 —0.002 —0.005
—0.6 0.212 0.680 0.004 a 0.016 0.011 0.016 0.010
—0.882 0.169 0.599 0.009 b 0.007 —0.001 0.007 —0.001
—1.002 0153 0.546 0.004 a,b 0.027 0.017 0.028 0.016
—1.334 0.113 0.472 0.009 b 0.025 0.010 0.026 0.011
—1.590 0.086 0.429 0.006 a 0.019 0.003 0.021 0.005
—2.28 0.024 0.319 0.010 a,c 0.031 0.010 0.033 0.012
-3.0 —0.028 0.255 0.007 d 0.026 0.000 0.029 0.003
—3.2 —0.041 0.219 0.012 [ 0.044 0.018 0.047 0.020
—3.96 —0.083 0.162 0.009 c 0.051 0.026 0.054 0.027
—40 —0.085 0.174 0.005 d 0.036 0.010 0.040 0.013
—4.93 —0.129 0.148 0.008 c 0.018 —0.009 0.023 —0.006
—-5.0 —0.131 0.125 0.003 d 0.039 0.012 0.041 0.015
—6.0 —0.170 0.093 0.005 e 0.037 0.011 0.042 0.012

a Drickey and Hand, Ref. 6.
b Grosstéte and Lehmann, Ref. 7

o Friedman et al., Ref. 5, as a.nah;zed by M. Casper (private communication).

equal to ImD in the region of Eq. (3): This means that
J and D should have the same value for the effective
range p(—e¢,— €), since in this region

ImJ=ImD=31r(1—ap)1(ta/t) 2. (6)

[The value given for ImD depends just on the coeffi-
cient of exp(—ar) in the deuteron wave function; and
this coefficient is determined by the values of & and p.]
In this paper, we make two specific choices of J, corre-
sponding to a central Hulthén potential, and corre-
sponding to a Hamada-Johnston potential.®® Both use
p=1.76 F and are illustrated for negative ¢ in Fig. 4.
The Hulthén choice for J has a simple analytical
expression:

J(q)= (1.565/¢)[cot=1(0.9268/q)

+cot™(5.508/¢) —2 cot™1(3.217/9)]. (7)

Note g=(—1#)'/? is positive for space-like momentum
transfer.

We choose G to be similar to 2Ggg in the following
respects: (i) static value of unity; (ii) slope dG/d¢
evaluated at ¢ of zero should be 0.09 F~2, based on e—p
scattering, and scattering of thermal neutrons; (iii) G
goes to zero as ¢ goes to infinity; (iv) ImG=0 for
$<ty=4.5 F~2. We have used both one-pole and two-pole
Clementel-Villi forms for G, namely,

Gi=11/(11-1),
Gy=33.9/(16—1)—30.2/(27—1).

(8a)
(8b)

In the one-pole expression we have no freedom as to
the position of the pole; the position of 11 F-2 is below
that of the observed isoscalar resonances. In the two-
pole expression we have chosen the pole positions to
correspond to the w and ¢ resonances.

For each of these choices of J and G, we determine ¥V
using experimental values of Ggq for negative . We
make conformal transformation (A2) using #=0.865

d Benaksas, Drickey, and Frérejacque, Ref. 8.
e Benaksas (private communication).

F-% and =2, so that ¥ has, in general, a nonzero
imaginary part in the region of Eq. (3). Equating the
imaginary parts of Egs. (4) and (5) and using (6), we

1.0

1

3
-t (F®)

4

Fi6. 4. The deuteron form factor J versus g2 in F~2. The dashed
curve for a Hulthén potential is taken from Eq. (7); while the
solid curve for a Hamada-Johnston potential is taken from
Refs. 6 and 8.
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TaBLE VIIIL. Goodness of fit versus degree of polynomial. The
goodness of fit is given by ¢ =x2/(degrees of freedom). The values
of ¥ given in Table VII are fitted by polynomials in n with three
constraints.

Two-pole G One-pole G
Hulthén Hamada- Hulthén Hamada-
N J Johnston J Johnston
2 28.5 4.5 33.0 5.1
3 1.75 1.75 1.84 1.46
4 1.65 1.77 1.55 1.55
5 1.79 1.89 1.69 1.70
find
Grs=%G—ImYV/2 ImD. 9)

We used Eq. (5) after several attempts to extrapolate
Gga into region (3). For example, M. Casper extrapo-
lated Gga directly, using the anomalous threshold. He
found a spectral function which rose quite rapidly for
t>14. However, this technique could not give a spectral
function which jumps from zero for ¢<z4 to the value
7Grs(ta)(1—ap)™ for t>t4. This jump cannot be
reproduced accurately by a Fourier series truncated
after several terms.

By extrapolating YV, defined in Eq. (5), we obviate
this difficulty since Im¥ =0 for {<¢4 and starts at O
for 4>1t4. [Here we assume that Eq. (6) is satisfied and
also that G(£4) =2Grs(t4).]

In other words, by introducing J we are making full
use of our knowledge of the deuteron’s spectral func-
tion: We use botk the value of the anomalous threshold
and the value of the jump at that threshold. We can
then hope to find the value of Gggs in region (3).

We use three constraints on the polynomial in . The
static value ¥ (0)=0 gives

Zaaa[ (0—1)/(b+1)]"=0. (10)
The condition that ¢V (£) remain finite for f=— e gives
Za(—1)%a,=2,(—1)"na,=0. (11)

The above analysis is applied here only to the electric
form factor Gga for electron-deuteron elastic scattering;
the deuteron has a form factor G. associated with the
electric monopole, and a form factor Gg for the electric
quadrupole. Present measurements for unpolarized

TasLE IX. Coefficients for fits of polynomial (with three con-
straints) to values of ¥ given in Table VII. Quartic fits are given
for a Hulthén choice for J; and cubic fits for a Hamada-Johnston
choice for J.

Two-pole G One—pble G
Hulthén Hamada- Hulthén ~Hamada-
J " Johnston J Johnston
0 0.032 0011 0.034 0.012
1 —0.055 —0.011 —0.065 —0.012
2 —0.136 —0.053 —0.140 —0.062
3 0.019 —0.032 0.053 —0.037
4 0.069 cee 0.093 e

LEVINGER AND C. P. WANG

deuterons determine Gga=[G>+ (/18 M*)Gg* ]2 The
magnetic form factor of the deuteron has been measured
but with less accuracy than the electric form factor, so
in this paper we limit our work to Ggqg. The input data
for the electric form factor and its statistical error is
given in Table VII. Four values of ¥ are given, using
choice (8a) or (8b) for G; and with a Hulthén choice,
Eq. (7) for J, or a value of J for a Hamada-Johnston
potential. Of course, the error in ¥ is the same as that
in GEd-

Table VIII is used to determine the degree NV of the
extrapolating polynomials. We find that we should use
a cubic for either G for a Hamada-Johnston choice for J
and a quartic for a Hulthén choice for J. (Our choice
of a quartic rather than a cubic for Hulthén J is
controversial.)

The coefficients of Table IX are used to determine
ImY in the region of Eq. (3). The complete error matrix
is used to determine the statistical error in ImY. These
values of ImY are then substituted into Eq. (9) to
determine the isoscalar nucleon form factor Ggg in this
region. [The value of G is taken from Egs. (8a) and
(8b), and ImD from Eq. (6).] Our results are given in
Table X. It is clear that there is some dependence on
the choices made for G and J. The dependence on J is
not far outside the purely statistical errors; the depend-
ence on G is statistically significant for a Hamada-
Johnston choice for J. It would, therefore, be unreal-
istic to have confidence in the very small errors given
in Table X for a Hamada-Johnston choice for J. Also,
the results of this extrapolation depend on the, so far,
arbitrary choice of 5. We have examined the dependence
on b for a one-pole G and Hulthén J and find an un-
certainty of order 0.01 in Ggg due to an uncertainty of
order unity in .

Table X shows that our determination of Ggg in our
chosen time-like region is relatively insensitive to the
choice of J. In fact, Eq. (5) shows that the value of
ImY in the region of Eq. (3) should be independent of
the choice of J, as long as J obeys Eq. (6). The above
sentence is true in an ideal situation, but is not true in
a practical sense when we extrapolate data with
statistical errors. We have examined this question by
using a J with the same anomalous threshold, and the
same ImJ in region (3). We use a wave function
exp(—ar)/r, normalizing J according to Eq. (6). Then
J(0)= (1—ap)~1is far from unity, and also J—1 is large
in the region of negative ¢ where we evaluate Y. Thus,
Y(®) is large for :<0. When we extrapolate this Y,
allowing it to become complex at 24, it tends to have a
large imaginary part in the region of Eq. (3), even
though its imaginary part should be identical to the
small values for ¥ based on Hulthén or Hamada-
Johnston choices of J. If we used a Fourier series (A4)
with a very large number of terms, we could recover the
desired small value of ImY; but we are unsuccessful
with a Fourier series truncated at a small value of NV.
We conclude that it is highly desirable to have J(f)=1
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TasLE X. Output values for isoscalar nucleon form factor. The isoscalar nucleon form factor Ggs is determined from electron-deuteron
elastic scattering using Eq. (9) with different choices for the quantities G and J. See Tables VII and IX.

Two-pole G One-pole G
£ (deg) t(F2) Hulthén J Hamada-Johnston Hulthén J Hamada-Johnston

Ggs Error Ggs Error Ggs  Error Ggs Error

8 0.88 0.54 001 0.55 0.001 0.54 001 0.55 0.001

26 1.04 0.56  0.03 0.57 0.002 0.55  0.02 0.57 0.002
47 1.54 0.62 0.01 0.60  0.003 0.62 0.01 0.60 0.003
66 2.33 0.70  0.02 0. 0.002 0.72 0.02 0.65 0.002
83 3.60 0.78  0.04 0.72 0.001 0.82 0.04 0.75 0.001
90 427 0.81 0.04 0.77 0.001 086  0.03 0.81 0.001

at t=0, so that ¥ is zero at {=0, and Y is small for
negative ¢.

A similar discussion applies to our sensitivity to the
choice of G. It is clear that (provided R=0) the best
possible choices for J and G would be such that J=D
and G=2Ggsg, so that ¥ would be identically equal to
zero both for space-like and time-like momentum
transfers. We guess that use of a Hamada-Johnston J
and a two-pole G comes closest to this ideal condition,
so we shall emphasize these values of Ggg below.

IV. ANOTHER EXTRAPOLATION FOR Ggzs

We now examine two questions: (i) Are the values
of Ggs for space-like momentum transfer of Table I
consistent with the values of Gggs of Table X in the
time-like region (3) found above from elastic electron-
deuteron scattering? (ii) If they are consistent, what is
the spectral function found by extrapolating the com-
bined data to time-like regions of momentum transfer
above the normal isoscalar threshold?

As shown in Fig. 2, and discussed above, previous
analyses confined to negative ¢ gave a negative answer
to our first question. We here examine the consistency
question by using as input data a combination of the
electric isoscalar nucleon form factors for space-like
momentum transfer from Table I with those given in
Table X for the time-like region (3). We choose the
results in Table X for a two-pole G, with two different
choices for J. For Hulthén J, we use the statistical
errors as given in Table X ; for a Hamada-Johnston J,
we arbitrarily take constant errors of 0.01. As above in
our fits to Ggs, we use fp=9 squared pion masses, and
b=2. We use the static value and (A6) as two con-

TaBLE XI. Goodness of fit versus degree of polynomial. The
goodness of fit is given by ¢ =x2/(degrees of freedom). The data
‘of Tables I and X for Ggg are fitted by polynomials in 5, with
two constraints.

¢ (Hulthén J) ¢ (Hamada-Johnston)

N

2 22 39

3 4.0 3.0
4 21 2.64
5 2.2 1.8
6 1.28 1.22
7 cee 113

straints on our least-squares fit with polynomials in .
Table XTI gives the goodness of fit for different degrees
N of the polynomials. The data for negative ¢ only was
fitted well by a quartic (¢=1.08, given in Table II),
while now a quartic gives ¢ values of 2.1 and 2.64 for
Hulthén and Hamada-Johnston choices, respectively.
However, if we go to higher N, we can fit the combined
data with a sextic, obtaining values of 1.28 and 1.22,
respectively, for our two choices of J. We interpret this
behavior shown in Table XTI as evidence for consistency
of the two sets of data: It is reasonable to expect to use
a somewhat higher value for the degree N of the
polynomial when we make a substantial increase in the
range of the input data, as we do by including the re-
sults of Table X. If the two sets of data were really
inconsistent, one could still obtain a good fit with a
polynomial in », but only by going to a quite high value
of NV so that the polynomial could wiggle in a sufficiently
complicated manner to accommodate itself to the in-
consistency. In choosing N=6 for the combined data,
we argue that we have not gone to a “quite high value”:

‘In particular, the number of degrees of freedom is still

quite large—actually larger for our sextic fit than for
our earlier quartic fit to the data of Table I.

Table XII gives the coefficients, and diagonal errors
for our sextic fit. Figure 5 shows the input data, and
statistical errors, and also shows our sextic fit for Ggg
for real 5. The triangles for the data from Table I, and
the circles for the data of Table X, appear not in-
consistent with each other. The relatively high order
of six for our sextic fit seems to be demanded mainly
by the unusually large range in 5 of our data, rather
than by any marked inconsistency between the data

TasLE XII. Coefficients to two-constraint polynomial fits
to Ggs from Tables I and X.

Hulthén J Hamada-Johnston
n Un Error Qn Error
0 0.238 0.011 0.240 0.011
1 0.416 0.055 0.553 0.041
2 0.699 0.186 0.627 0.178
3 2.591 0.707 0.901 0.538
4 —3.478 0.716 —1.976 0.391
5 —2.633 0.684 —1.089 0.522
6 2.916 0.681 1.473 0.430
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F16. 5. The electric
isoscalar form factor
Ggs versus 5. The
triangles show thein-
put data of Table I
for space-like mo-
mentum  transfer;
the circles show our
results of Table X
for time-like momen-
tum transfer (Ham-
ada-Johnston, two-
pole G); and the
curve shows a sextic
in 7.

-l -6

represented by triangles and circles. We have not shown
the behavior of the sextic fit for <<—0.4: the curve
dips below the axis to a minimum of —0.3, but it is
never more than two standard deviations below the

TasLE XIII. Another extrapolation for isoscalar spectral function
(spectral functions using the coefficients of Table XII).

£ Mass Hulthén J Hamada-Johnston
(deg) (MeV) ges  Error ggs  Error
0 420 0.00 0.00 0.00 0.00
14.9 434 —031 0.08 —0.17  0.04
25.8 462 —0.93 0.28 —0.53 0.14
37.3 506 —0.20 0.25 —0.15 0.10
47.5 560 2.62 040 144 029
58.1 627 585 1.04 340 0.63
66.1 688 6.59 1.18 407 0.65
74.6 764 443 0.78 3.23 040
83.3 856 —0.61 0.69 0.78 0.62
89.9 933 —4.55 1.38 —1.30 1.06
96.1 1024 —7.63 1.95 —-3.07 135
104 1136 —8.62 2.05 -3.89 131
106 1200 —8.08 1.87 —-3.80 1.15
114 1354 —492 1.09 —2.58 0.59
122 1556 —0.04 055 —040 0.54
129 1826 448 1.34 1.76 1.10
134 2000 589 1.62 247 1.25
138 2211 648 1.70 2.82 1.27
142 2470 621 1.58 277 114
147 2800 519 1.29 2.36 0.91
151 3231 3.66 0.88 1.70  0.60
155 3818 1.94 045 094 0.28
160 4666 0.39 0.11 0.23  0.08
164 6000 —0.70 0.24 —0.27 0.20
168 8400 —1.16 0.33 —0.50 0.26
180 ) 0.00 0.00 0.00 0.00

axis, so this extrapolation giving negative isoscalar form
factors for large space-like momentum transfers is not
really firm.

Our arguments, from Table XI and Fig. 5, for con-
sistency between the two types of data for the electric
isoscalar form factor are clearly not rigorous. However,
we believe we have shown at least that the two sets of
data are not definitely inconsistent with each other:
i.e., it is possible to interpret elastic electron-deuteron
scattering to give isoscalar form factors not inconsistent
with those given in Table I.

The spectral functions ggs for two different extrapola-
tions (based on our two choices for J) are given in
Table XIII, and the Hamada-Johnston result is shown
in Fig. 6. We see that either choice of J gives the first
peak in the isoscalar spectral function at about 700
MeV. The same peak is seen in the quartic fit (Table V)
to the data of Table I, alone. The peaks for the sextic
are about as narrow (~30°) as they could be for fits to
an arbitrarily narrow resonance. The dip at 1150 MeV
shown for the Hamada-Johnston result is only three
standard errors below the axis; the extrapolation using
the results of a Hulthén J show a four-standard-error
dip at the same location. One is tempted to regard this
dip as real and to associate it with the ¢ resonance at
1020 MeV; but the statistical errors are uncomfortably
large. In I, Fig. 11(b), we showed that a spectral
function consisting of two peaks of opposite sign would,
if resolved by a truncated Fourier series, appear as two
peaks spread further apart than their true positions.
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F16. 6. The electricisoscalar spectral
function gz versus mass in MeV. The

quartic fit is taken from Table V, and 0 T
the sextic fit from Table XIII.

Thus our values of 700 and 1150 MeV in Fig. 6 are not
inconsistent with the 790- and 1020-MeV values for the
¢ and w resonances, respectively.

We note that Bronzan and Low!>* have recently
introduced a new selection rule they denote as A4 parity.
From their selection rule, the w resonance should not
contribute to the isoscalar form factor. However, both
of our fits to Ggs shown in Fig. 6 do show a strong peak
in the region of the w resonance ; and the G of Table V
shows a similar behavior. Thus the Bronzan-Low
selection rule does not hold for isoscalar form factors.

We doubt if the positive peak around 2200 MeV has
any significance: It is only a two-standard-error effect,
and our extrapolation method has a tendency to produce
spurious peaks, as illustrated in I, Fig. 9.

V. DISCUSSION

We have extrapolated isovector and isoscalar form
factors, as determined from electron-proton scattering
and electron-deuteron inelastic scattering, to determine
the isovector and isoscalar spectral functions. Both
magnetic and electric isovector spectral functions peak
around 600 MeV, or somewhat below the 750-MeV
peak of the p resonance. A similar result was found for
proton form factors in I and II. Perhaps, as argued by
Ball and Wong,'s the effective position of the resonance
is shifted towards lower energies for form factor calcula-
tions, as compared to its position in two-pion final
states. Alternatively, one could question whether the
difference between 600 and 750 MeV is of statistical

(1:6:!1.) B. Bronzan and F. E. Low, Phys. Rev. Letters 12, 522
15, S. Ball and D. Y. Wong, Phys. Rev. 130, 2112 (1963).

1 1 L
1000 1500 2000

MASS (MeV)

significance. A third possibility, which we plan to
explore, is that one could fit isovector form factors,
assuming the position and width of the p resonance as
known from other experiments, and extrapolate the
remainder of the isovector form factor to find the
isovector spectral function above the p resonance. (We
should remark here that the p resonance is sufficiently
broad, and sufficiently strong, that it swamps any low
mass contributions due to noncorrelated pion pairs.%)
We conclude that the p resonance does indeed play a
major role in the isovector electromagnetic nucleon form
factors, but that we have not determined whether this
resonance is shifted towards lower energy. The region
above the p resonance is virtually unknown, but we can
at least state that we see no strong evidence for a vector
o’ resonance, for example, that used by Freund et al.l”
The isoscalar form factors, determined from the above
data, extrapolate to give spectral functions peaking at
700 MeV, or slightly below 790 MeV for the w resonance.
There is weak evidence for a dip around 1600 MeV.
We are able to interpret the electric form factor Ggqg
in elastic electron-deuteron scattering so as to be
consistent with the isoscalar form factor Ggg found
from inelastic electron-deuteron scattering and from
scattering of thermal neutrons. Our interpretation
assumes that either the customary Hamada-Johnston
form factors are not accurate at ¢?~5 F~2 and/or that
appreciable nonadditive effects are present in this
region.
16 G. F. Chew, R. Karplus, S. Gasiorowicz, and F. Zachariasen,
Phys. Rev. 110, 265 (1958).

17 A, P. Balachandran, P. G. O. Freund, and C. R. Schumacher,
Phys. Rev. Letters 12, 209 (1964).
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Using our analysis of electron-deuteron elastic
scattering, we find Ggs over a much larger range. Our
extrapolation gives an isoscalar spectral function with
a peak and a dip which one can identify with the w and
¢ resonances. The Bronzan-Low selection rule fails to
eliminate the effect of the w resonance.

ACKNOWLEDGMENTS

We are grateful to D. Benaksas, K. Berkelman,
J. R. Dunning, R. Hofstadter, and P. Stein for giving
us unpublished experimental results. We further thank
R. F. Peierls and the staff of the Cornell computing
center for help in the computations and M. Casper for
his determination of some of the values for Ggq used
in Table VIIL. Finally, we thank F. Gross for proposing
the use of Eq. (5), for pointing out errors in other
attempts of ours to analyze elastic electron-deuteron
scattering, and for his criticisms of this manuscript.

APPENDIX

The form factor G(¢) is related to the spectral function
g (1) using a subtracted dispersion relation

1 00
Gl)=- / )it/ —D+G(—=). (A1)

™ J t

The threshold # is 4 squared pion masses (or 2.0 F2)
for isovector form factors, and 9 squared pion masses
(or 4.5 F2) for isoscalar form factors. We use measure-
ments of G(¢) for negative ¢ to find the imaginary part
of the complex G(#) for > £y by making the conformal
transformation

n=[b—(1—1/t) 1[0+ (1—t/t)'*].  (A2)
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The choice of the parameter b is discussed at some
length in I and II; throughout this paper we choose
b=2.

We fit the values of G({)=K(y) with a truncated
power series and determine the coefficients a,, and their
error matrix:

K(n)=§ aun™.

n=0

(A3)

The order of N of the polynomial chosen is determined
by statistical criteria. We examine the dependence of
¢=x?%/(degrees of freedom) on N. Usually, ¢ (V) levels
off rather abruptly at a value near unity. We choose the
degree of polynomial where ¢ is just leveling cff.

The spectral function is determined using the coeffi-
cients a,:

N
g)=ImG({)=3" a,sinné(t), (A4)
n=1
where the angle £(§) in the 7 plane is given by
cosé (1) = (B*41—1/t0)/ (B*—1+1/t0) . (AS)

The complete error matrix is used to determine the
statistical error in g(#) ; we give the diagonal part of the
error matrix as an indication of the errors in the
coefficients.

We usually use two constraints on the coefficients:
(i) that we obtain exact agreement with the static form
factor, at t=0; (ii) that the spectral function have zero
slope at threshold, namely,

N
> na,=0.

n=0

(A6)



