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a(d —e) =0, (89) y'anal =yc (o' P—) . (816)

but we are still unable to specify which factor of Eq.
(89) is zero.

Consideration of the process s+A —+ s+Z leads to a=0, (817)

Since k'=P, the only solution to Eq. (816) that allows
any E-Z coupling is

(810) and then Eq. (88) reduces to
and

kj= —il,

while the process X+X +~+2—leads to

m'= e'= 2k'= 2P

hin=g jm,

(813)

(814)

(815)

fg=fd (811)

The strangeness —1 amplitudes for K+X —+++A
lead to

(812)

e= —d. (818)

The relative magnitudes and sign correlations given
by Eqs. (81)-(818)constitute charge independence for
the meson-baryon coupling constants. Consideration of
processes of the form m.+baryon~ g+baryon with a
single neutral g meson then leads at once to isoscalar q
coupling constants when the previously derived pion-
coupling-constant relations are used. All processes that
have not been explicitly considered in this Appendix
are consistent with Eq. (2) but lead to no new
information.
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We use conformal transformations to facilitate extrapolation of experimental values of the two isovector
and two isoscalar nucleon form factors, to 6nd their spectral functions. Both isovector spectral functions
peak around 600 MeV, or somewhat below the energy of the isovector p resonance. Both isoscalar spectral
functions peak around 700 MeV, somewhat below the co resonance. We also analyze the electric form factor
for elastic electron-deuteron scattering in terms of the difference between the measured value and the
calculated value. The latter uses assumptions concerning the deuteron wave function, and concerning the
isoscalar electric nucleon form factor G@p. By extrapolating this diGerence, we find G~a in the time-like region
tz &t(9p, where tg is the anomalous threshold, and the upper limit is the normal isoscalar threshold. These
values of Ggp are statistically consistent with the measurements for space-like momentum transfer. Extrap-
olation of the combined set of values for Gzz (space-like and time-like momentum transfers) gives a spectral
function again peaking at 700 MeV, with indications of a dip at 1150 MeV. The dip may be due to the
isoscalar p resonance.

E have previously used' ' a conformal transforma-
tion as a method to extrapolate the proton

electric and magnetic form factors (Gs~ and G~„)
measured for space-like momentum transfers to find
the spectral function for time-like momentum transfers.

*A preliminary account was communicated to the Eastern
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1964. This work was supported in part by the U. S. QfEce of
Naval Research.
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referred to as I. See this paper for further references to the
literature.' J. S. Levinger and C. P. Wang, Phys. Rev. 136, B733 (1964),
referred to as II.

Our basic equations and notations are given in the
Appendix; see I and II for discussions and tests of our
extrapolation techniques.

In this paper, we apply the same extrapolation tech-
niques to measurements of the isovector and isoscalar
nucleon electromagnetic form factors. Ke first use
data, ' compiled June 1964, on the neutron form factors
found from inelastic electron-deuteron scattering and
also from scattering of thermal neutrons. The procedure
is straightforward: We merely combine these neutron
form factors with proton form factors at the same space-
like momentum transfer to find the isovector and iso-
scalar form factors, which we then extrapolate. The

' R. R. Wilson and J. S. Levinger, Ann. Rev. Nucl. Sci. 14, 135
(19m).
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TAnr. E L Input data. v is given by Eq. (A2). The nucleon elec-
tric (E) and magnetic (3E) lsoscalar (5) and 1sovector' (V) forIn
factors are taken from Ref. 3.

Isovector form factors
G~y Error Ggy Error

49—10—10—11—12—14—15—16—20—25—30—35—45—75

—1—4.9—10—10—11—12—14
-15
—16
-20—25—30—35

—75

0.240
0.037—0.101—0.101—0.121—0.138—0.172—0.186—0.206—0.248—0.295—0.333—0.366—0.416—0.512—1.000

0.288
0.160
0.054
0.054
0.037
0.022—0.008—0.020—0.033—0.077—0.123—0.161

-0.195—0.248—0.356

0 ~ ~ ~ ~ 4

1.375 0,065
0.965 0.030

~ ~ ~ 0 ~ ~

0.905 0.060
0.875 0.030
0.780 0.030
0.715 0.050
0.680 0.015
0.520 0.045
0.370 0.040
0340 0.020
0.160 0.080
0.227 0.013
0.080 0.030
0.000 0.030

Isoscalar form factoI's

Gua

~ ~ 0 ~ 1 0

0.315 0.065
0.185 0.030

4 ~ ~ ~ ~

0.165 0.060
0.125 0.030
0.120 0.030
0.125 0.050
0.110 0.015
0.130 0.045
0.130 0.040
0.060 0.020
0.160 0.080
0.013 0.013
0.025 0.030
0.000 0.030

0.430
0.225
0.193
0.133
0.108
0.146
0.135
0.140
0.107
0.085—0.005—0.028—0.068
0.006—0.010
0.000

0.450
0.385
0.243
0.303
0.298
0.240
0.205
0.180
0.190
0.165
0.200
0.183
0.193
0.085
0.050
0.000

0.007
0.020
0.036
0.030
0.090
0.046
0.036
0.080
0.030
0.070
0.080
0.018
0.060
0.036
0.040
0.040

0.007
0.020
0.036
0.030
0.090
0.046
0.036
0.080
0.030
0.070
0.080
0.018
0.060
0.036
0.040
0.040

spcctlal functions determined ln this manner might well
have simple interpretations in terms of resonant inter-
mediate j.—states of dc6nitc isospin: e.g., the isovector
p, and the isoscalar c0 and $. The magnetic isovector
spectral function has been determined by Zciler' in a
similar Inanncr, and we shall compare with his results.

'tA'e then analyze electron-deuteron elastic scattering
(electric form factor Gsq) to determine in a second
manner the electric isoscalar nucleon form factor, Gsq.
Plcvlous wol'k Used thc IQcasurcIQcnts to determine

G~8 for space-like moxnentum transfers and found
values inconsistent with those based on scattering of
thermal neutrons. %C extrapolate the measurements
of Ggg to time-like momentum transfers in the interval
between thc deuteron's anomalous threshold of 1.73 p,

2

and the normal isoscalar threshold of Sir '. (Here p, is
the pion mass. ) We find that our values for Gss in this
region are consistent with values of G@8 for space-like
momentum transfer. Thus, our new method of analyzing
clastic electron-deuteron scattering seems to remove the
inconsistency between G~8 found from elastic and
lnclastlc scattcx'lng IncasuxcIQcnts.

Gsrv= s(Gsr, —Gia ),
Ggv=-', (G~,—Gs„).

%C use as input data the magnetic and electric neutron
form faCtoI'S G~ts and G@ss glVCQ ln Flg. 7 Of IISOn and
Levinger. ' s (Note that these values are as of June 1N4.
Table II of Wilson-Levinger is based on s]ightly later
measurements"; these new data would not substan-
tially alter our results. ) These data from inelastic
electron-deuteron scattering measure (G~„)'and (Ga„)s
and thus do not give the signs of G~„orG~„.Ke assume
the signs as negative for the former and positive for the
latter. Our assumption for the sign of G~„is based on
the measured electron-neutron scattering length, "
which gives

dGs /&q') a=0.021 I". (2)

We also use Eq. (2) to give us a, value for Gs„at
~= —q'= —I F ', namely Gg„——0.02.

The values for proton form factors are taken from
%ilson and I cvinger's compilation, interpolating where
necessary, The errors for G~y and G~y are almost
entirely due to the errors in the neutron form factors;
wc use the errors given by the experimentalists.

Our input data for the isovector form factor is given
in Table I. Note that we use normalizations Gsrv(0)
=2.353, and Gsv(0) =—,'. We also give the value of g

Thai, E II. Goodness of fit versus degree of polynomial. Here
@=gr/(degrees oi freedom), for a polynomial oi degree & with two
constl'a1nts 6tting data of Table I.

@ foI' G~y @ for GEy $ fol' G~8 $ for Gga

2.01
1.37
1.18

1.10
1.18
1.17

2.35
0.77
0.85

1.45
1.08
1.02

II. EXTRAPOLATION OP ISOVECTOR AND
ISOSCALAR FORM FACTORS

Thc lsovcctox' Inaglmtlc and clcctllc fox'IQ factoI's alc
related to the proton (p) and neutron {rs) form factors
in the standard manner:

4 J. ZeQer, Diplomarbeit, Technische Hochschule, Karlsruhe,
Germany, 1963 (unpublished).

~ N. K. Glendenning and G. Kramer, Phys. Rev. Letters 7, 471
(1961) Phys Rev 126 2159 (1962) J I Frerdman H. W.
Kendall, and P. A. M. Gram, i''. 120, 992 (1960).

6D. J. Drickey and L. N. Hand, Phys. Rev. Letters 9, 521
(1962).

'I B. Grossetkte and P. Lehmann, Nuovo Cimento 28, 423
(1963).

SD. Benaksas, D. Drickey, and D. Frhrejacque, Phys. Rev.
Letters D, 353 (1964);and D. Benaksas (privatecommunication).

9 T. A. Gri8y, R. Hofstadter, E. B. Hughes, T. Janssens, and
M. R. Vearian„Dubna Conference (unpublished); C. Akerlof,
K. Berkelman, G. Rouse, and M. Tigner, Phys. Rev. 135, B810
(1964);J.R. Dunning (private communication); p. Stein, R. W.
McAllister, B. D. McDaniel, and YV. M. Woodard, Phys. Rev.
Letters 9, 403 (1962)."J.R. Dunnmg, K. W. Chen, A. A. Cone, G. Hartwig, N. F.
Ramsey, J. K.. Walker, and Richard Wilson, phys. Rev. I.etters
13, 631 (1964).

L. L. I"oldy, Rev. Mod. Phys. 30, 471 (1958)
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TABLE III. CoefBcients u„,and diagonal errors, for polynomial fits to data of Table I.

G~~ (quartic)
u„Error G~y (quiutic)

u„Error Error
Gus

Error Error

1.258
3.097
0.976—1.149—0.285

0.013
0.013
0.124
0.032
0.095

1.305 0.029
3.329 0.130
0.489 0.299—3.227 1.159—0.185 0.110
1.506 0.840

0.229
0.783
0.208—0.352

0.007
0.017
0.026
0.021

0.136
0.662
0.849—0.152—0.476

0.010
0.029
0.144
0.058
0.107

0.241
0.628
0.530—0.158—0.304

0.010
0.042
0.160
0.074
0.123

used in our conformal transformation, for a threshold,
to of 4 squared pion masses, and b=2. LSee Eq. (A2)
for notation. ]We are assuming a nonsubtracted disper-
sion relationship, to good accuracy; that is, we assume
that G~y and G~~ at in6nite space-lik. e momentum
transfer are each zero, and we assign errors for this
"datum" as the same as for the measurements at
t= —75 F '. Table I also gives the input data for
isoscalar form factors.

Table II gives the goodness of fit g for the input data
of Table I, when we fit with a polynomial of degree E
(with two constraints) in the variable r). The quantity
@=X'/(degrees of freedom) should be close to unity.
Using Table II, we choose a quintic fit for the isovector
magnetic form factor G~y, and a cubic fit for the iso-
vector electric form factor G~y. We also include a
quartic fit to G~& for comparison. The isoscalar form
factors G~8 and G+8 are each 6tted by quartics.

TABLE IV. Form factors for real g, using the coefficients of Table III, and the complete error matrix
for the statistical error. See Kqs. (A2) and (A3).

t(F-2)

Isovector
Quartic

G~y Error
Quintic

G~y E1'1'ol
Cubic

Error

0.92
0.80
0.68
0.56
0.44
0.333
0.32
0.20
0.08—0.04—0.16—0.28—0.40—0.52—0.64—0.76—0.88—1.00

0.92
0.80
0.68
0.56
0.44
0.333
0.32
0.20
0.08—0.04—0.16—0.28—0.40—0.52—0.64—0.76—0.88—1.00

1.99
1.90
1.71
1.26
0.79
0.00—0.12—1.56—3.78—7.38—13.2—23.2—41.5—78.1—180—427—1958

4 48
4.28
3.85
2.84
1.78
0.00—0.27—3.51—8.50—16.6—29.7—52.4—93.4—176.—405.—961—4406

3.83
3.66
3.39
3.07
2.70
2.353
2.309
1.91
1.51
1.14
0.79
0.49
0.24
0.05—0.07—0.12—0.10
0.00

0.04
0.04
0.03
0.02
0.01
0.000
0.001
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.02
0.02
0.03

Isoscalar
G~s

1.00
0.94
0.83
0.70
0.56
0.440
0.425
0.30
0.19
0.11
0.05
0.02
0.01
0.01
0.02
0.03
0.03
0.00

3.13
3.05
2.96
2.82
2.61
2.353
2.317
1.96
1.57
1.17
0.80
0.48
0.24
0.09
0.03
0.03
0.05
0.00

Error

0.06
0.05
0.04
0.02
0.01
0.000
0.001
0.01
0.01
0.01
0.01
0.01
0.02
0.03
0.04
0.04
0.03
0.03

0.40
0.34
0.24
0.14
0.05
0.000
0.005
0.03
0.04
0.02
0.01
0.01
0.01
0.03
0.06
0.09
0.08
0.03

Gas

0.93
0.88
0.80
0.70
0.60
0.500
0.488
0.39
0.29
0.22
0.15
0.11
0.08
0.06
0,05
0.04
0.03
0.00

0.85
0.81
0.747
0.671
0.584
0.500
0.4893
0.391
0.293
0.198
0.11
0.03—0.03—0.07—0.09—0.09—0.06
0.01

Error

0.06
0.05
0.04
0.02
0.01
0.000
0.001
0.01
0.01
0.01
0.01
0.02
0.03
0.04
0.05
0.05
0.04
0.04

0.01
0.01
0.007
0.005
0.002
0.000
0.0003
0.003
0.005
0.007
0.01
0.01
0.01
0.01
0.02
0.02
0.03
0.04
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TABLE V. Spectral functions, using coefBcients of Table III,
and the complete error matrix. See Eqs. (A4) and (A5).

Isovector

Mass Quartic
(deg) (MeV) g~y Error

Quintic
g~y Error

Cubic
gzT Error

0.0 280 0.00 0.00
14.9 289 0.21 0.003
25.8 308 0.70 0.03
37.3 337 1.59 0.09
47.5 373 2.61 0.15
58.1 418 3.61 0.18
66.1 459 4.19 0.17
74.6 509 4.53 0.13
83.3 571 4.51 0.05
89.9 622 4.27 0.04
96.1 683 3.85 0.10

104. 757 3.26 0.15
106. 800 2.93 0.18
114 903 2.20 0.20
122 1037 1.46 0.19
126 1120 1.11 0 17
129 1217 078 0.15
134 1333 0.49 0.12
138 1474 0.25 0.09
142 1647 O.OS 0.06
147 1867 —0.11 0.04
151 2154 -0.21 0.03
155 2545 -027 004
160 3111 —0.28 0.04
164 4000 —0.26 0.04
168 5600 —0.21 0.04
180 eo 0.00 0.00

0.00 0.00
0.13 0.04—0.32 0.57—0.77 1.32-0.25 1.61
1.65 1.11
3.84 0.27
6.15 0.91
7.79 1.83
8.07 2.12
7.49 2.04
6.05 1.S6
5.06 1.20
2.81 0.39
0.63 0.50—0.26 0.78—0.94 0.97—1.38 1.06-1.58 1.02-1.55 0.89—1.34 0.69—1.02 0.45-0.67 0.22-0.34 0.05—0.09 0.11
0.05 0.15
0.00 0.00

0.00
0.05
0.16
0.35
0,57
0.81
0.98
1~ 10
1.16
1.14
1.07
0.95
0.87
0.68
0.46
0.34
0.23
0.13
0.04-0.04-0.10—0.15—0.17—0.17—0.16—0.12
0.00

0.00
0.001
0.004
0.01
0.02
0.03
0.04
0.04
0.04
0.03
0.03
0,02
0.02
0.02
0.02
0.03
0.03
0.04
0.04
0.04
0.04
0.04
0.04
0.03
0.03
0.02
0.00

(deg)

0.0
14.9
25.8
37.3
47.5
58.1
66.1
74.6
83.3
89.9
96.1

104.
106.
114
122
126
129
134
138
142
147
151
155
160
164
168
180

Mass
(Mev)

420
434
462
506
560
627
688
764

.856
933

1024
1136
1200
1354
1556
1680
1826
2000
2211
2470
2800
3231
3818
4666
6000
8400

Isoscalar

Quartic
g~g Error

0.00 0.00
0.07 0.01
0.34 0.05
0.83 0.12
1.33 0.18
1.68 0.20
1.76 0.17
1.60 0.11
1.21 0.03
0.84 0.08
0.43 0.15
0.02 0.22—0.16 0.24—0.45 0.25-0.59 0.23—0.60 0.21—0.57 0.18—0.52 0.14—0.43 0.10—0.33 0.06—0.23 0.03—0.13 0.03—0.05 0.05
0.01 0.06
0.05 0.06
0.06 0.05
0.00 0.00

Quartic
g+8 Error

0.00 0.00
0.05 0.01
0.24 0.06
0.58 0.13
0.95 0.20
1.23 0.22
1.32 0.19
1.26 0.12
1.03 0.04
0.80 0.11
0.54 0.19
0.27 0.26
0.14 0.28—0.07 0.30—0.19 0.27—0.22 0.24—0.23 0.20—0.21 0.16—0.18 0.11—0,13 0 07—0.08 0.04—0.03 0.05
0.01 0,06
0.03 0.07
0.05 0.07
0.05 0.06
0.00 0.00

Table III gives the coeKcients u„and diagonal errors
for the polynomials as selected in the above paragraph.
These coefficients, and the complete error matrix, are
used to give the form factors for real values of g pre-
sented in Table IV. Here the values for —75&t(0 are
interpolations of the input data of Table I; while the
remainder of Table IV gives extrapolations. Note that
the extrapolated values for GMy for t( —75 F ' appear
rather diferent for the quartic and quintic fits. How-
ever, the difference is only about two statistical errors,
due to the large error of the quintic 6t, so it should not
be taken seriously. Similarly, the statistical errors given
in Table IV for the quartic 6t to GMT are unrealistically
small in this region of momentum transfer. They
represent the error only if we assume that we must 6t
with a quartic. Since the statistical criterion given in
Table II does not demand a quartic 6t, but in fact

suggests a quintic 6t, the statistical error assumimg a
quartic 6t does not include the main source of error.

Table V gives the spectral functions, and their sta-
tistical errors, for the coeKcients of Table III. We also
compare three diBerent isovector magnetic spectral
functions in Fig. 1: the quartic and quintic from
Table V, and Zeiler's4 third spectral function in his
Fig. 13(b). [This 6t of Zeiler s uses a quartic, with an
unsubtracted dispersion. relation and constraint (A6).
Zeiler here uses b=2.2, very nearly the value of 2.0
that we have taken. ] The figure shows that all three
spectral functions peak in the region of 600 MeV:
namely, 500, 620, and 620 MeV for our quartic, quintic,
and Zeiler's 6ts, respectively. The full width at half-
maximum F is 530, 360, and 620 MeV for the three fits.
It is more meaningful to express the width I' in terms
of the angle in the g plane: namely, 68, 42, and 66',
respectively. Our work in I shows that a very narrow
peak fitted by a polynomial of degree Ã will have a
width of about 180/E in angle $. Since Fig. 1 gives
somewhat larger values, there is a slggestioe that the
true spectral function may have a nonzero width, or
may have structure. The position of the peak is lower,
in each case, than the 750 MeV shown in Fig. 1 for the
center of the p resonance; but it is not clear whether
this difference is signi6cant. It is significant that we
obtain a peak near 750 MeV for the isovector spectral
function without at any time assuming that the spectral
function should have a peak in this region. We used only
knowledge of the isovector threshold and of the zero
slope of the spectral function at threshold. See I for
further discussion and tests of the significance of
spectral function peaks found by our extrapolation
technique.

There is a slight tendency for the magnetic isovector
spectral function to become negative for high values of
the mass of the intermediate state; this tendency is
weak compared to the rather de6nite negative peak
around 1500 MeV for the proton spectral functions

'found in II.
We should make clear that we have selected one of

many extrapolations made by Zeiler. In fact, the main
point that he makes is that this extrapolation procedure
has two arbitrary features. First, he obtains difterent
results for different values of the degree E of the
polynomial chosen; second, he obtains different results
for different choices of the parameter b in Eq. (A2).
We argue that the choice of E is actually not arbitrary
but, in fact, is determined by statistical criteria, as
illustrated in Table II. A possible uncertainty between
neighboring integers for values of E does not cause
great difhculties, particularly when one considers the
large statistical errors in the 6t with the larger value
of X, as is done in Fig. 1. (Zeiler does not use the
original experimental errors in his input data, and does
not make an error analysis of the output spectral
function. ) In 11, we discuss the dependence on the
parameter b, and we justify the choice b=2 for fitting



Fxo. 1. Magnetic isovector spectral
function plotted versus mass in MeV.
The curve marked "Zeiler" is from
Ref. 3, using Zeiler's third spectral
function in his Fig. 13(b). Our quartic
and quintic 6ts, with their statistical
errors, are taken from Table V.

"2-
t I

MASS(MeV)

proton form factors. The value of b is not as definite
for the isovector form factors; but we believe that b

should not be allowed to vary over the m~Qe range used
by Zeiler. Correspondingly, the effect of varying b will
not greatly affect the main features of the spectral
function. t See Fag. 6(b) of II:A change of —', in b changes
the peak energy by less than 100 MeV.]

Table V shows that the isovector electric spectral
function g«behaves similarly to the magnetic g~&.
The peak of the electric spectral function is at 580 MeV,
in the region of the three 6ts discussed. above for g~y.
The width of 600 MeV, or 60' in $ is to be expected for
a cubic 6t to a resonance much narrower than 600 MeV.
There is an indication of a minimum of the electric
spectral function around 2500 MeV.

The isoscalar spectral functions g~8 and gg8 also
given in Table V each peak around 690 MeV, or some-
what lower than the 790-MeV position of co resonance.
+gain a peak in the right region has been found directly
from the data and knowledge of the threshold behavior
alone. There is an indication (3 standard errors) of a
minimum around 1700 MeV. The width of 420 MeV,
or 50' for the main peak is consistent with quartic 6ts
to a narrow resonance.

So far we have neglected the condition used in II

that the complex magnetic and electric form factors
should be equal at t= 4M', where M is the nucleon mass.
Table VI shows that this condition is in fact met,
within statistical errors, by our extrapolations.

TAsLz VI. Values of nucleon form factors at I=4%2. Form
factors and statistical errors using coeAicients of Table III. The
corresponding magnetic arid electric form factors are not incon-
sistent with each other, in a statistical sense, at I=4M .

Magnetic Electric

Real part of isovector:

Real part, isoscalar
Imaginary part, isoscalar

(quartic) —0.96~0.11
(quintic) —0.30+0.39

Imaginary part, isovector: (quartic) —0.11~0.04
(quintic) —1.3 ~0.7

—0.10+0.13 —0.10~0.17
—0.55~0.17 -0.22~0.20

-t, (F')

FIG. 2. The isoscalar electric form factor Ggg versus q' in F~.
The circles from Table I are based on inelastic electron-deuteron
scattering, and on scattering of thermal neutrons; the triangles
from Refs. 6 and 8 are based on elastic electron-deuteron scatter-
ing; the curve from Table IV is our interpolation for the data of
Table I.
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form factor G~a is real. We use the notation

(4)

Fn. 3. Diagrams for elastic electron-deuteron scattering. (a)
is the additive diagram, with anomalous threshold 1.73 iM, , while
(b) and (c} represent two of the infinite number of nonadditive
dlagi ams.

III. ELECTRON-DEUTERON ELASTIC SCATTERING

As we have mentioned brieQy in the Introduction,
previous analyses of electron-deuteron elastic scattering
give results for Ggs for space-like momentum transfers
which are inconsistent with those used in our input data,
Table I.The disagreement is illustrated in Fig. 2, where
we show use of the analysis of Drickey et al. '' as
triangles, compared to circles from Table I and the
solid curve from Table IV. (This disagreement is
usually shown in a more striking manner by comparing
values for the neutron electric form factor G~„.In
either case, the disagreement is statistically significant. )
We note again that the "datum point" for t= —I F '
is based on scattering of thermal neutrons, while we
have assumed a positive sign for G~„for the point at
t= —4.9 F '.

In this paper, we shall instead analyze the region

ig&t&9u. ', 0.865 F '&(&4.5 F '. (3)

Here 4 ——1.73 p,
' is the anomalous threshold for the

deuteron, while 9p 2 is the normal threshold for an
isoscalar intermediate state. In the region of Eq. (3),
we have the special feature that the imaginary part of
the deuteron form factor» is accurately 1nown from
effective-range theory, and that the nucleon isoscalar

'2 F. Gross, Phys. Rev. 134, 8405 (1964); 146, 8140 (1964).

Here G@s is the electric form factor (including quadru-
pole effects) for elastic electron-deuteron scattering. D
is the quantity which in a nonrelativistic theory is the
Fourier transform of the squared wave function of the
deuteron, and therefore, in a relativistic theory, » has
become complex at the anomalous threshold 4 =16M~
=0.865 F '. (Here M is the proton mass and e is the
binding energy of the deuteron. ) E stands for all "non-
additive" terms. Figure 3(a) illustrates the additive
term 2DG~s, Figs. 3(b) and (c) illustrate two of the
many nonadditive terms. Of course, R=O for t=0, from
charge conservation, while for the magnetic analog of
Eq. (4) the nonadditive term may be of significance
even in the static limit. "The usual procedure' 8 is to
assume a value for D, and assume R is zero for the
space-like momentum transfers at which Ggg is
measured.

Our procedure has two main advantages over the
usual procedure of assuming an expression for D and
assuming R=O. First, we treat the problem relativisti-
cally. Second, we make a minimum of assumptions con-
cerning the neutron-proton potential; We use the
deuteron binding energy and the triplet efI'ective range.
In contrast, the usual use' ' of the nonrelativistic
Hamada-Johnston wave function to give D(i) for space-
like t involves the assumption that a static potential
should be used to extrapolate from neutron-proton
scattering to 6nd the o6-energy-shell matrix elements
involved in D. (Of course, properties of the deuteron
ground state are used to constrain the extrapolation. )
But how do we know that the neutron-proton potential
is not velocity-dependent at small distances' Further,
the customary neglect' 8 of nonadditive terms R in
Eq. (4) is justified only by the resulting simpli6cation
of the calculation. Since E. is expected to decrease less

rapidly than D with large space-like increasing q', we
do not see why R should be neglected. Indeed, our
analysis below suggests that E/D is tsoi negligible at
moderate space-like momentum transfers, e.g., t= —5
F '. Here the Hamada-Johnston wave function gives
a=0.204; using R=O and the measured Ggg ——0.125
gives G~q=0.31, which is plotted as a triangle in Fig. 2.
We find from our analysis (Table XII and Fig. 5):
G~8= 0.346, and R= —0.016.Thus R is small compared
to unity, but E is almost 10% of D at this momentum
transfer, if we use D for the Hamada-Johnston wave
function.

We 6t the data for space-like momentum transfer
with the expression

Ggg= JG—F. (5)

We choose a form for J which has an imaginary part

"D.Harrington, Phys. Rev. 133, 8142 (1964); A. Q. parker,
Phys. Rev. Letters 13, 375 (1964) and (private communication);
R. J. Adler and S. D. Drell, Phys. Rev. Letters D, 349 (1964}.
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TABLE VII. Electron-deuteron elastic scattering. The quantities F given in the last four columns are found from (Eq. 5)
using different choices P(ga), (Sb), (7) and related material] for J and G, respectively.

Input data
Ggq Error Ref.

Two-pole G
Hulthen Hamada

One-pole G
Hulthen Ham ada

—0.3—0.6—0.882—1.002—1.334—1.590—2.28—3.0
302—3.96
40—4.93—5.0—6.0

0.265
0.212
0.169
0 153
0.113
0.086
0.024—0.028—0.041—0.083—0.085—0.129—0.131—0.170

0.824 0.006
0.680 0.004
0.599 0.009
0.546 0.004
0.472 0.009
0.429 0.006
0.319 0.010
0.255 0.007
0.219 0.012
0.162 0.009
0.174 0.005
0.148 0.008
0.125 0.003
0.093 0.005

b
a,b
b

a,c

c
c
d
c
d
e

—0.002
0.016
0.007
0.027
0.025
0.019
0.031
0.026
0.044
0.051
0.036
0.018
0.039
0.037

—0.004
0.011—0.001
0.017
0.010
0.003
0.010
0.000
0.018
0.026
0.010—0.009
0.012
0.011

—0.002
0.016
0.007
0.028
0.026
0.021
0.033
0.029
0.047
0.054
0.040
0.023
0.041
0.042

—0.005
0.010—0.001
0.016
0.011
0.005
0.012
0.003
0.020
0.027
0.013—0.006
0.015
0.012

a Drickey and Hand, Ref. 6.
b Grossthte and Lehmann, Ref. 7.
e Friedman et al. , Ref. 5, as analyzed by M. Casper (private communication).

d Benaksas, Drickey, and Frkrejacque, Ref. 8.
& Benaksas (private communication).

equal to ImD in the region of Eq. (3):This means that
J and D should have the same value for the effective
range p( —c,—e), since in this region

Im1= ImD=-,'s. (1—np) '(tg/t)'ls. (6)

[The value given for ImD depends just on the coeffi-
cient of exp( —ur) in the deuteron wave function; and
this coefficient is determined by the values of a and p.j
In this paper, we make two specific choices of J, corre-
sponding to a central Hulthen potential, and corre-
sponding to a Hamada-Johnston potential. ' ' Both use
p=1.76 F and are illustrated for negative t in Fig. 4.
The Hulthen choice for J has a simple analytical
expression:

J(q) = (1.565/q) [cot '(0.9268/q)
+cot '(5.508/q) —2 cot '(3.217/q)]. (7)

Note q=( —t)'" is positive for space-like momentum
transfer.

We choose G to be similar to 2Gg8 in the following
respects: (i) static value of unity; (ii) slope dG/dt
evaluated at t of zero should be 0.09 F ', based on e—p
scattering, and scattering of thermal neutrons; (iii) G
goes to zero as t goes to infinity; (iv) ImG=O for
t&to ——4.5 F '.Ke have used both one-pole and two-pole
Clementel-Villi forms for G, namely,

F—' and b=2, so that 7 has, in general, a nonzero
imaginary part in the region of Eq. (3). Equating the
imaginary parts of Eqs. (4) and (5) and using (6), we

l.o

.8

.6

G =11/(11—t),

Gs ——33.9/(16 —t) —30.2/(27 —t) .
(8a)

(8b)

.2

In the one-pole expression we have no freedom as to
the position of the pole; the position of 11 F ' is below
that of the observed isoscalar resonances. In the two-
pole expression we have chosen the pole positions to
correspond to the co and P resonances.

For each of these choices of J and G, we determine I'
using experimental values of G~~ for negative t. We
make conformal transformation (A2) using ts ——0.865

0
I

5 4
-~ (F-'j

FIG. 4. The deuteron form factor J versus q' in F~. The dashed
curve for a Huithen potential is taken from Eq. (7); whiie the
solid curve for a Hamada-Johnston potential is taken from
Refs. 6 and 8.
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Two-pole G
Hulthbn Hamada-J Johnston

28.5 4.5
1.75 1.75
1.65 1.77
1.79 1.89

One-pole G
Hulthdn Hamada-J Johnston

33.0 5.1
1.84 1.46
1.55 1.55
1.69 1.70

find
Ggs=-', G—ImF/2 ImD. (9)

We used Eq. (5) after several attempts to extrapolate
Gxs into region (3). For example, M. Casper extrapo-
lated Gzz directly, using the anomalous threshold. He
found a spectral function which rose quite rapidly for
t& t~. However, this technique could not give a spectral
function which jumps from zero for t&tz to the value
rrGrrs(t~)(1 np) ' —for t)t~. This jump cannot be
reproduced accurately by a Fourier series truncated
after several terms.

By extrapolating I', defined in Eq. (5), we obviate
this difliculty since ImI'=0 for t&t~ and starts at 0
for t) t@. (Here we assume that Eq. (6) is satisfied and
also that G(f~) =2Gss(f~).]

In other words, by introducing J we are making full
use of our knowledge of the deuteron's spectral func-
tion: We use bo/h the value of the anomalous threshold
aed the value of the jump at that threshold. . We can
then hope to find the value of Girs in region (3).

We use three constraints on the polynomial in p. The
static value F(0)=0 gives

&-a-L(&—1)/(&+1)1"=o (1o)

The condition that fF(t) remain finite for f= —eo gives

Z„(—1)"a =Z (—1)"ea„=0. (11)

The above analysis is applied here only to the electric
form factor G~g for electron-deuteron elastic scattering;
the deuteron has a form factor G, associated with the
electric monopole, and a form factor Gq for the electric
quadrupole. Present measurements for unpolarized

TABLE IX. CoeKcients for its of polynomial (with three con-
straints) .to values of F given in Table VII. Quartic Qts are given
for a Hulthbn choice for J; and cubic its for a Hamada-Johnston
choice for J.

Two-pole G
Hulthen Hamada-J '

Johnston

One-pole G
Hulthbn ' Hamada-J Johnston

0.032—0.055—0.136
0.019
0.069

:0.011—0.011—0.053—0.032

0.034—0.065—0.140
0.053
0.093

0.012—0.012—0.062—0.037

TABLE VIII. Goodness of 6t versus degree of polynomial. The
goodness of fit is given by p=x'/(degrees of freedom). The values
of F given in Table VII are 6tted by polynomials in g with three
constraints.

deuterons determine Gsq= $G,'+ (i'/18M')Go'O'" The
magnetic form factor of the deuteron has been measured
but with less accuracy than the electric form factor, so
in this paper we limit our work to G~~. The input data
for the electric form factor and its statistical error is
given in Table VII. Four values of I' are given, using
choice (8a) or (8b) for G; and with a Hulthen choice,
Eq. (7) for J, or a value of J for a, Hamada-johnston
potential. Of course, the error in F is the same as that
in G~g.

Table VIII is used to determine the degree S of the
extrapolating polynomials, We 6nd that we should use
a cubic for either G for a Hamada-j'ohnston choice for J
and a quartic for a Hulthen choice for J. (Our choice
of a quartic rather than a cubic for Hulthen J is
controversial. )

The coeKcients of Table IX are used to determine
Im 7 in the region of Eq. (3).The complete error matrix
is used to determine the statistical error in ImF. These
values of Iml' are then substituted into Eq. (9) to
determine the isoscalar nucleon form factor G~B in this
region. )The value of G is taken from Eqs. (8a) and
(8b), and ImD from Eq. (6).1 Our results are given in
Table X. It is c/ear that there is some dependence on
the choices made for G and J.The dependence on J is
not far outside the purely statistical errors; the depend-
ence on G is statistically signi6cant for a Hamada-
Johnston choice for J. It would, therefore, be unreal-
istic to have confidence in the very small errors given
in Table X for a Hamada-Johnston choice for J. Also,
the results of this extrapolation depend on the, so far,
arbitrary choice of b. We have examined the dependence
on b for a one-pole G and Hulthen J and Gnd an un-
certainty of order 0.01 in G&z due to an uncertainty of
order unity in b.

Table X shows that our determination of G~8 in our
chosen time-like region is relatively inst, positive to the
choice of J. In fact, Eq. (5) shows that the value of
ImI' in the region of Eq. (3) should be independent of
the choice of J', as long as J obeys Eq. (6). The above
sentence is true in an ideal situation, but is not true in
a practical sense when we extrapolate data with
statistical errors. We have examined this question by
using a J with the same anomalous threshold, and the
same ImJ in region (3). We use a wave function
exp( —ar)/r, normalizing J according to Eq. (6). Then
J(0)= (1—np) ' is far from unity, and also J—1 is large
in the region of negative t where we evaluate F. Thus,
F(t) is large for 1&0 When we ext.rapolate this 1',
allowing it to become complex at t~, it tends to have a
large imaginary part in the region of Eq. (3), even
though its imaginary part should be identical to the
small values for F based on Hulthen or Hamada-
Johnston choices of J'. If we used a Fourier series (A4)
with a eery large number of terms, we could recov@. the
desired small value of ImI'; but we are unsuccessful
with a Fourier series truncated at a small value of E.
We conclude that it is highly desirable to have J(f)= 1
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TABLE X. Output values for isoscalar nucleon form factor. The isoscalar nucleon form factor Ggq is determined from electron-deuteron
elastic scattering using Eq. (9) with different choices for the quantities G and J.See Tables VII and IX.

g (deg)

Two-pole G
Hulthen J Hamada-Johnston

One-pole G
Hulthen J Hamada-Johnston

8
26
47
66
83
90

0.88
1.04
1.54
2.33
3.60
4.27

Ggg Error
0.54 0.01
0.56 0.03
0.62 0.01
0.70 0.02
0.78 0.04
0.81 0.04

Gga Error
0.55 0.001
0.57 0.002
0.60 0.003
0.64 0.002
0.72 0.001
0.77 0.001

Ggg Error
0.54 0.01
0.55 0.02
0.62 0.01
0.72 0.02
0.82 0.04
0.86 0.03

G@g Error
0.55 0.001
0.57 0.002
0.60 0.003
0.65 0.002
0.75 0.001
0.81 0.001

at t=0, so that I' is zero at 3=0, and F is small for
negative t.

A similar discussion applies to our sensitivity to the
choice of G. It is clear that (provided R—=0) the best
possible choices for J and G would be such that J=—D
and G—=2Gz8, so that I' would be identically equal to
zero both for space-like and time-like momentum
transfers. We guess that use of a Hamada-Johnston J
and a two-pole G comes closest to this ideal condition,
so we shall emphasize these values of G~8 below.

IV. ANOTHER EXTRAPOLATION FOR Gga

We now examine two questions: (i) Are the values
of Gga for space-like momentum transfer of Table I
consistent with the values of G~B of Table X in the
time-like region (3) found above from elastic electron-
deuteron scattering? (ii) If they are consistent, what is
the spectral function found by extrapolating the com-
bined data to time-like regions of momentum transfer
above the normal isoscalar threshold'

As shown in Fig. 2, and discussed above, previous
analyses confined to negative t gave a negative answer
to our first question. We here examine the consistency
question by using as input data a combination of the
electric isoscalar nucleon form factors for space-like
momentum transfer from Table I with those given in
Table X for the time-like region (3). We choose the
results in Table X for a two-pole G, with two different
choices for J. For Hulthen J, we use the statistical
errors as given in Table X; for a Hamada-Johnston j,
we arbitrarily take constant errors of 0.01. As above in
our fits to Gz&, we use to ——9 squared pion masses, and
b=2. We use the static value and (A6) as two con-

straints on our least-squares fit with polynomials in p.
Table XI gives the goodness of fit for different degrees
E of the polynomials. The data for negative t only was
fitted well by a quartic (&=1.08, given in Table II),
while now a quartic gives P values of 2.1 and 2.64 for
Hulthen and Hamada-Johnston choices, respectively.
However, if we go to higher S, we can 6t the combined
data with a sextic, obtaining values of 1.28 and 1.22,
respectively, for our two choices of J.We interpret this
behavior shown in Table XI as evidence for consistency
of the two sets of data: It is reasonable to expect to use
a somewhat higher value for the degree E of the
polynomial when we make a substantial increase in the
range of the input data, as we do by including the re-
sults of Table X. If the two sets of data were really
inconsistent, one could still obtain a good 6t with a
polynomial in g, but only by going to a quite high value
of Sso that the polynomial could wiggle in a suKciently
complicated manner to accommodate itself to the in-
consistency. In choosing 17=6 for the combined data,
we argue that we have not gone to a "quite high value":
In particular, the number of degrees of freedom is still
quite large —actually larger for our sextic fit than for
our earlier quartic 6t to the data of Table I.

Table XII gives the coeS.cients, and diagonal errors
for our sextic fit. Figure 5 shows the input data, and
statistical errors, and also shows our sextic 6t for G~B
for real g. The triangles for the data from Table I, and
the circles for the data of Table X, appear not in-
consistent with each other. The relatively high order
of six for our sextic fit seems to be demanded mainly
by the unusually large range in p of our data, rather
than by any marked inconsistency between the data

@ (Hulthen J)
22
4.0
2.1
2.2
1.28

@ (Hamada-Johnston)

39
3.0
2.64
1.8
1.22
1.13

TABLE XI. Goodness of fit versus degree of polynomial. The
goodness of fit is given by p =x'/idegrees of freedom). The data
'of Tables I and X for G~a are fitted by polynomials in g, with
two constraints.

Hulthhn J
u~ Error

0.238 0.011
0.416 0.055
0.699 0.186
2.591 0.707—3.478 0.716—2.633 0.684
2.916 0.681

Hamada-Johnston
.+ss Error

0.240 0.011
0.553 0.041
0.627 0.178
0.901 0.538—1.976 0.391—1.089 0.522
1.473 0.430

TABLE XII. CoefBcients to two-constraint polynomial fits
to Ggg from Tables I and X.
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.8-

4-

ski( i'

)g JE+

Fxo. 5.The electric
isoscalar form factor
GEq versus g. The
triangles show the in-
put data of Table I
for space-like mo-
mentum transfer;
the circles show our
results of Table X
for time-like momen-
tum transfer (Ham-
ada-Johnston, two-
pole 6); and the
curve shows a sextic
1Q g.

-.6 ~2 ~2

TABLE XIII. Another extrapolation for isoscalar spectral function
{spectral functions using the coefhcients of Table XII).

(deg)

0
14.9
25.8
37.3
47.5
58.1
66.1
74.6
83.3
89.9
96.1

104
106
114
122
129
134
138
142
147
151
155
160
164
168
180

Mass
{MeV)

420
434
462
506
560
627
688
764
856
933

1024
1136
1200
1354
1556
1826
2000
22ii
2470
2800
3231
3818
4666
6000
8400

Hulthen J
gag Frror

0.00—0.31—0.93—0.20
2.62
5.85
6.59
4.43—0.61—4.55—7.63—8.62—8.08—4.92—0.04
4.48
5.89
6.48
6.21
5.19
3.66
1.94
0.39—0.70—1.16
0.00

0.00
0.08
0.28
0.25
0.40
1.04
1.18
0.78
0.69
1.38
1.95
2.05
1.87
1.09
0.55
1.34
1.62
1.70
1.58
1.29
0.88
0.45
0.11
0.24
0.33
0.00

Hamada-Johnston

gEg Error

0.00 0.00—0.17 0.04—0.53 0.14—0.15 0.10
1.44 0.29
3.40 0.63
4.07 0.65
3.23 0.40
0.78 0.62—1.30 1.06—3.07 1.35—3.89 1.31—3.80 1.15—2.58 0.59—0.40 0.54
1.76 1.10
2.47 1.25
2.82 1.27
2.77 1.14
2.36 0.91
1.70 0.60
0.94 0.28
0.23 0.08—0.27 0.20—0.50 0.26
0.00 0.00

represented by triangles and circles. We have not shown
the behavior of the sextic fit for q& —0.4: the curve
dips below the axis to a minimum of —0.3, but it is
never more than two standard deviations below the

axis, so this extrapolation giving negative isoscalar form
factors for large space-like momentum transfers is not
really firm.

Our arguments, from Table XI and Fig. 5, for con-
sistency between the two types of data for the electric
isoscalar form factor are clearly not rigorous. However,
we believe we have shown at least that the two sets of
data are not definitely inconsistent with each other:
i.e., it is possible to interpret elastic electron-deuteron
scattering to give isoscalar form factors not inconsistent
with those given in Table I.

The spectral functions g~8 for two different extrapola-
tions (based on our two choices for J) are given in
Table XIII, and the Hamada-Johnston result is shown
in Fig. 6. We see that either choice of J gives the first
peak in the isoscalar spectral function at about 700
MeV. The same peak is seen in the quartic fit (Table V)
to the data of Table I, alone. The peaks for the sextic
are about as narrow (-30') as they could be for fits to
an arbitrarily narrow resonance. The dip at 1150 MeV
shown for the Hamada-Johnston result is only three
standard errors below the axis; the extrapolation using
the results of a Hulthen J show a four-standard-error
dip at the same location. One is tempted to regard this
dip as real and to associate it with the p resonance at
1020 MeV; but the statistical errors are uncomfortably
large. In I, Fig. 11(b), we showed that a spectral
function consisting of two peaks of opposite sign would,
if resolved by a truncated Fourier series, appear as two
peaks spread further apart than their true positions.
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Using our analysis of electron-deuteron elastic
scattering, we 6nd G~q over a much larger range. Our
extrapolation gives an isoscalar spectral function with
a peak and a dip which one can identify with the ~ and

P resonances. The Bronzan-Low selection rule fails to
eliminate the eBect of the co resonance.

The choice of the parameter b is discussed at some
length in I and II; throughout this paper we choose
b= 2.

We fit the values of G(t) =E(g) with a truncated
power series and determine the coefFicients u„and their
error matrix:
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APPENDIX

The form factor G(t) is related to the spectral function
g(t) using a subtracted dispersion relation

00

G(t) =— g(t')dt'/(t' —t)+G(—~) . (A1)
gp

The threshold to is 4 squared pion masses (or 2.0 F ')
for isovector form factors, and 9 squared pion masses
(or 4.5 F ') for isoscalar form factors. We use measure-
ments of G(t) for negative t to find the imaginary part
of the complex G(t) for t) to by making the conformal
transformation

~= Lb—(1—t/to)'"7/Ib+ (1—tlto)'"j (A2)

The order of X of the polynomial chosen is determined
by statistical criteria. We examine the dependence of
&=X'/(degrees of freedom) on N. Usually, P(N) levels
oG rather abruptly at a value near unity. We choose the
degree of polynomial where p is just leveling cff.

The spectral function is determined using the coefE-
cients a:

g(t) = ImG(t) =P a„sinN&(t),
n=1

The complete error matrix is used to determine the
statistical error in g(t); we give the diagonal part of the
error matrix as an indication of the errors in the
coeKcients.

We usually use two constraints on the coefficients:
(i) that we obtain exact agreement with the static form
factor, at t=p; (ii) that the spectral function have zero
slope at threshold, namely,

N

Q ea„=p.
n=o

(A6)

where the angle $(t) in the q plane is given by

cost(t) = (b2+1—t/to)/(b' —1+t/t, ) . (AS)


