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e*.&' 'y-(S—')-'Ey'=yii'P, —E)LJ'y„E)j-'Ey'.
BldetE(X, —E)=0.

where E denotes the channel momenta, and the F's are check that
the jost matrices. The Regge poles are determined from
the relation

The above relation implies that there is a constant (row)
vector a such that at a Regge pole

Now let

aF(X, —E)=0.
S,;= (g~g/l

—n)+r~g.

Using the same technique as in the single-channel
case, ' namely calculating the Kronskian of the wave
function and its first derivative with respect to A. , we
obtain

yFr(X, —E)L'FT(X,E)] 'Eyr

iX dr r —'yfr(X, E, r)f(X,——E) r)yr,
0

where "T" means transpose, and the dot means
differentiation with respect to X; y=aF(X,E)E ' is a
column vector and f is the matrix of the irregular wave
functions defined by

f,, (P, Er) —+ 8,"e—'~~" as r —+~,

k; being the channel momentum in the j channel. At a
Regge pole 1=n, and yf r is a well-behaved function at
the origin. It vanishes like r~' as r —+ 0. One can easily

yeYEyT
~i 7r(h—$) = —iX

Tr(gs)
dr r 'jrf,

where j=fyr is a column vector. If we denote the
residue of the symmetric T matrix by P then g= 2iEP
and we get

where
I=sE/ysTEyT.

(A20)

(A21)

Note that the matrix elements u;; are not necessarily
positive.

~ij
(~)—*r '=

8/ Tr(gs)

where s is the matrix of the cofactors of r and "Tr"
means trace. Thus
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The normalization constants for normal and abnormal solutions of the Bethe-Salpeter equation are ex-
plicitly calculated in the Wick-Cutkosky model. In the case of the vanishing total four-momentum, it is
shown that the abnormal solutions with odd Ig have a negative norm, where Ig is the Wick-Cutkosky quantum
number, and that the corresponding scattering Green's function contains all the normal and abnormal solu-

tions as the residues of poles. It is demonstrated explicitly for «=0, 1, 2, 3 that the first conclusion remains
true also in the case of an in6nitesimally positive mass. As for the case of massless bound states, its special
character is emphasized, and solid harmonics are constructed corresponding to the "little group" for a
massless particle. Non-Cutkosky integral equations are obtained for the weight functions of the integral
representation for the Bethe-Salpeter amplitude.

l. INTRODUCTION
' 'N 1954, Kick' and Cutkosky' obtained a complete
- ~ set of the solutions of the Bethe-Salpeter (B-S)
equation for bound states of two scalar particles ex-

changing massless scalar particles in the ladder approxi-
mation. They discovered that in addition to normal

*This work performed under the auspices of the U. S. Atomic
Energy Commission.' G. C. Wick, Phys. Rev. 96, 1124 (1954).

2 R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).

solutions there exist abnormal solutions which have no
counterparts in the nonrelativistic potential theory.
Th,e appearance of these extra solutions is intimately
related to the additional freedom in a covariant two-

body problem, i.e., "relative time" or "relative energy, "
which leads to the introduction of a new quantum
number K (normal solutions correspond to x= 0).

Scarf and Umezawa' tried to exclude the abnormal

3 F. L. Scarf and H. Umezawa, Phys. Rev. 109, 1848 (1958).
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solutions by the non-normalizability due to the de-
generacy of their eigenvalues at zero binding energy,
but this criterion is not adequate because the degen-
eracy does not occur if the exchanged particles are not
massless. 4 Ohnuki, Takao, and Umezawa4 showed that
the 8-S equation has abnormal solutions even in a
static model and that they do not correspond to the
eigenstates of the original Hamiltonian. If the latter
conclusion is true also in the relativistic case, it forbids
one to interpret f(: as a physically meaningful quantum
number such as the strangeness. ' Mugibayashi' showed
that abnormal solutions appear even in the exact B-S
equation for the static model, but they do not appear
if one considers two first-order equations from which
his exact 8-S equation follows.

In order to distinguish abnormal solutions from
normal ones mathematically, Ida and Maki~ and the
present author'' investigated the analytic properties
of the 8-S amplitude for two scalar particles by using
integral representations, but no appreciable difference
between them was found. Recently, the present
author ~' has exploied whether or not abnormal solu-
tions are related to the high-energy behavior of the
scattering Green's function in the crossed channel, as
was suggested by the Regge-pole theory. It has been
concluded there that in the asymptotic expansion in
powers of a certain invariant, , no abnormal solutions
appear in the forward scattering, but those with even
K only seem to appear in the nonforward scattering.

Now, the purpose of the present paper is to investi-
gate the normalizability of normal and abnormal solu-
tions. The normalization condition for the B-S ampli-
tude was proposed by Nishijima, "Mandelstam, "and
Klein and Zemach. "Their prescription was based on
the assumption of the existence of a conserved current.
Recently, Cutkosky and Leon" have proposed an
elegant derivation of the normalization condition with-
out assuming a conserved current. In the present paper,
we shall use the normalization formula given by
Cutkosky and Leon with a slight but nontrivial modi-
fication. We shall not discuss another normalization
condition, proposed by Sato, '~ which is linear with
respect to the 8-S amplitude.

The next section is devoted to the general considera-

' Y. Ohnuki, Y.Takao, and H. Umezawa, Progr. Theoret. Phys.
(Kyoto) 23, 273 (1960).' S. N. Biswas and H. S. Green, Nucl. Phys. 2, 177 (1956);
Progr. Theoret. Phys. (Kyoto) 18, 121 (1957); S. N. Biswas,
Nuovo Cimento 7, 577 (1958).' N. Mugibayashi, Progr. Theoret. Phys. (Kyoto) 25, 803 (1961).' M. Ida and K. Maki, Progr. Theoret. Phys. 26, 470 (1961).

8 N. Nakanishi, Phys. Rev. 130, 1230 (1963); Erratum, 131,
2841 (1963).' N. Nakanishi, J. Math. Phys. 4, 1235 (1963).

N. Nakanishi, Phys. Rev. 135, 31430 (1964).
"N. Nakanishi, Nuovo Cimento 34, 795 (1964).
~ N. Nakanishi, Phys. Rev. 136, 31830 (1964).
~s K. Nishijima, Progr. Theoret. Phys. (Kyoto) 10, 549 (1953);

12, 279 (1954); 13, 305 (1955).
'4 S. Mandelstam, Proc. Roy. Soc. (London) 233, 248 {1955)."A. Klein and C. Zemach, Phys. Rev. 108, 126 (1957).
~6 R. E. Cutkosky and M. Leon, Phys. Rev. 135, B1445 (1964),
r' L Sato, J. Math. Phys. 4, 24 (1963).

tion of the solid harmonics of Wigner's "little group, '"'
with respect to the total four-momentum of the system,
because some confusion seems to prevail concerning the
solutions for massless bound states. In Sec. 3, we
present a derivation of the normalization condition in a
slightly diferent way from that of Cutkosky and Leon.
In Secs. 4—6, our consideration solely concerns the Wick-
Cutkosky model. In Sec. 4, we consider the case of the
vanishing total four-momentum. We explicitly find a
complete set of solutions and their normalization con-
stants. It is demonstrated that all the solutions appear
in the scattering Green's function as the residues of
poles. In Sec. 5, the normalization condition is analyzed
for the bound states with an infinitesimal but nonzero
mass. Section 6 deals with the special situation in the
case of massless bound states. Our results are summa-
rized in the Anal section.

'JJ~-(p) —=
I & I

'I'~-(0 v ) (I~ I «)
"E.P. Wigner, Ann. Math. 40, 149 (1939).

(2.3)

2. SOLID HARMONICS OF LITTLE GROUP

A bound-state amplitude should have a definite trans-
formation property under the inhomogeneous Lorentz
group. Let x„and 2k„be the center-of-mass coordinate
and the total four-momentum of the system, respec-
tively. Then the 3-S amplitude behaves like e'('~) as
an irreducible representation of the translation group.
After separating this factor, the 8-S amplitude for the
internal freedom should be transformed according to
signer's little group" with respect to k„, which is the
set of all the homogeneous Lorentz transformations
under which k„remains invariant. Its group structure
depends on the property of k„.

(a) ks) 0 (time-like). The little group 8 is isomorphic
to the three-dimensional rotational group.

(b) k'=0 but k„/0 (light-like). 8 is equivalent to
the two-dimensional Euclidean group.

(c) k„=0. Q becomes identical with the homogeneous
Lorentz group itself.

(d) k'(0 (space-like). I is isomorphic to the (2+ I)-
dimensional homogeneous Lorentz group.

Now, we introduce "solid harmonics of little group"
by the following definition. An lth-order solid harmonic
of the little group 8with respect to k„ is a homogeneous
lth-order polynomial Xq(p) of po, pr, ps, ps such that

(~/~p)'&~(p) =o, (2 &)

k (r)/~p )X~(p) =o. (2.2)

Then it is evident that the totality of the 1th-order solid
harmonics of 8 spans a vector space invariant under
the homogeneous Lorentz transformations of p„be-
longing to N.

In the case k') 0, we can take the rest frame (k=0,
ks&0). Then our solid harmonics reduce to the ordinary
solid harmonics. We shall take
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as the basic solid harmonics, where 8 and q are the polar
angles of p.

The Lth-order solid harmonics br, i (pe, p), in the
case k„=0, can be constructed from the four-dimen-
sional spherical harmonics Hr, i~(n, 8,y):

3I,lm(p0&p) =+Lcm( zpey p) y (2.4)

Xi,i (p4, p) =r~Br, i—(u,,8,y), (2.5)

with rz—=p4'+pz and cosn=—p4/r, (0(a&zr for real pq),
and

uzi„(n)8, y) =Ar i(sinn)'Cr, i'+'(cosa) F'i„(8)p),

()ez) & l & 1.), (2.6)

where C,"(x) denotes a Gegenbauer polynomial. The
normalization constant A~~ is determined by the
requirement

sin'ndn sin8d8 d y t Hr i~(o.,8, q&) ['= 1. (2.7)
p . p p

Using the orthogonality relation, of C;"(x),»

ds(1 —s')-~C;" (s)C„"(s)

anal ones are k+p and k —p. The total invariant energy
is s—= (2k)'.

The two-body Green's function G(p, q;k) satisfies
the integral equation

G= E'+7'''IG (3.1)

in the operator notation. Here E ' is a product of two
one-body propagators, I the irreducible kernel, and A. a
parameter, which is identified with the squared coupling
constant if one considers the ladder approximation.
Assuming the existence of G, we can formally solve
(3.1):

(3.2)G= (1—gg —iI)—iQ—i

Differentiation of (3.2) with respect to X yields

(3.3)

Eliminating I from (3.3) by means of (3.1), we haveze

MG/W, = G+GEG. — (3 4)

Now, if there exists a bound state of the two par-
ticles, G will have a pole in the complex g planei4:

G(p, q; k) = A.(p,k)4. (q,k)/L~-~. (~)])
+G(p, q; k), (3.5)

if the bound state ~a) is assumed to have a positive
norm, where G is regular at s=s, (lI,). In (3.5), Q, (p,k)
is a 8-S amplitude with an eigenvalue s =s, (li), and the
"conjugate" P, is dehned in such a way that the ab-
sorptive part of Q, is the Hermitian conjugate of that
of P, (multiplied by y4 if one considers a Dirac spinor),
and its dispersive part is related to its absorptive part
in the same way as in p, . More concretely, if p, (p,k)
has an integral representation

zrI'(2(o+ j)
8;z, (2.8)

2--V.(-+~)«(-»
' '

we obtain

IA»l'=2"+'(I+ 1)(I-—~) '(l )'/~(I+~+ 1) t (2 9)

In the case k'(0, we can choose a Lorentz frame such
that kp= kg= k2= 0, ka/0. Then the solid harmonics, in
this case, are defined by

Si-(p,p.,p)= ~-(p., p., -zp.). (2 1-0)

y. (p,k) = —z dxi dx~
Finally, we consider the case k'= 0 but k„/0. In this

case, our solid harmonics Xi„(p) cannot be expressed
in terms of spherical harmonics. We take the frame in
whicli k= (kp 0,0 kp) (kpQO). Then (2.2) and (2.1)
reduce to

P(x„",xi', p,k)
X , (3.6)

LV(xi, . , xy., p, k) —ie]"

(8/8pe 8/apz)X—i (p) =0,
E(8/8Pi)'+ (8/8Pz)']Xi (P) =o.

Hence
X (p)=A(p+p)' '" (p +zp)" (2 13)

where V is a real function, P being regular in p, and
e~ 0+, then the conjugate is given by

(2.12)

where the double sign corresponds to the sign of m. The
constant A. is undetermined, because we do not have
the orthogonality relation for Xi (p).

[P(x„,x~, p,k)]*A
X (3.7)

[V(xi, , xg, p,k) —ie]"

3. NORMALIZATION CONDITION

We consider an elastic scattering of two particles.
Their initial momenta are k+q and k—

q, while their

"M. Abramowitz and I. A. Stegun, Handbook of 3fathematical
Functions ~th Formulas, Graphs, and Mathematical Tables
(National Bureau of Standards, Washington, D. C., 1964), p. 774.

where A is a possible constant matrix factor. (A = 1 if
F is scalar. )

Substituting (3.5) in (3.4) and comparing the co-

"This kind of nonlinear integral equation was 6rst derived by
Amati et al. , in a special case LD. Amati, A. Stanghellini, and
S. Fubini, Quovo pimento 26,, 896 (1962)j. Extension to the
general case was made by the present author L¹Nakanishi, Phys.
Rev. 133, 31224 {1964lg.
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efficients of the term

Ls—s.P)] ' (3.8) girz, '—= (—1)'(2N —j)!/j!(N —j)!(N L—j —1)—! (4.4)

in both sides, we are immediately led to

+~/, =Xds,/dX, (3.9)

and
Xrr=N(N+1) . (4.5)

or, in terms of the inverse function, X=X,(s), of s=s, (X),

~.Ky.= ()..'/li. )-', (3.10)
where

X,'—=dl, /ds. (3.11)

We have thus obtained the normalization condition for
21

a

Since the B-S equation

K4t4 =X IQ„ (3.12)

psKrt4, =0, for b4a.

4. SOLUTIONS FOR A„=O

(3.15)

We shall hereafter consider the 3-S equation for two
scalar particles with a unit mass exchanging massless
scalar particles in the ladder approximation. In this
section, we explicitly calculate the normalization con-
dition (3.10) for the case k„=0.

The 8-S equation is

ArrLLm(p )

7r'i —(p —p')' —ie

together with its conjugate, leads to

(X,'/X )p,KP,= rti, [BK/Bs X,BI/B—s]P„(3.13)

i3.10) can be rewritten as

ip, [8K/Bs XBI/Bs]qh—,= 1, (3.14)

a result which is equivalent to the normalization condi-
tion of Cutkosky and Leon."We shall prefer to use
(3.10), however, because of the following reasons:

(a) It is generally easier to calculate (3.10) than to
do (3.14).

(b) The Cutko sky-Leon normalization condition
(3.14) sometimes gives a false result, as we shall see in
the next section.

(c) Our formula (3.10) is akin to the orthogonality
relation

The quantum numbers X and L are related to the con-
ventional ones ~ and e through

N=44+r4,

L= 44+ I&N 1. — (4.6)

L&~4-(p)]*=L3f'-«-( —ipo p)]"
= (—1) '&zi-*(—ipo, p),

(4.8)

where we define F*(z)=—Di(z*)]*.
In order to calculate the normalization integral, it is

convenient to rewrite (4.3) in a more compact form. It
is easy to see that f&z, (s) is expressed in terms of
Jacobi's polynomiaP' of the argument (1—s—ie) ', and,
moreover, it can be rewritten in terms of a Gegenbauer
polynomial. "In this way, we find

(2I.+2)!
NL8 Z

(L+1)! (1 s ie)'—+'—

X&sr r. i~I~ ~. (4.9)
&1—s—ie)

Of course, one may verify (4.9) by substituting (4.2)
with (4.9) in (4.1) directly. Since

E—'=
t
—i/(1 —s—ie)]', (4.10)

in our case, the left-hand side of (3.10),with a—= (NLlm),
now becomes

Iver, i= —i~&xii~' d p)&r. im(p—)~'

According to (3.7), the conjugate amplitude of (4.2)
reads

QNi, inc(p) =IIKIl I film(p)] fNL(&) ~ (4 7)

Special care must be taken concerning Lbzi (P)]*.
Since ps is a real quantity, from (2.4) we have

with s—:p'. prom the consideration presented in Sec. 2, The po contour can be rotated into the imaginary axis
Po——iP4, (P4 real). Then noticing (4.8), (2.4)—(2.7), and
(4.9), we obtain

O'NLlm(p) IINLL~Llwa(p) fNL(s), (4.2)

where Bragi is a normalization constant, and frrr, (s) was
explicitly found already":

N—L—1

frrr. (e) = i Q g—rrzr//(I s ie)rr 4+', (4.3)—— —

Irrr, i (—1)~'~Birr, i ~s dr r' ——+s(1+r')'

X [furr (—r')]'

A result similar to (3.10) is found also in the paper of Cutkosky
and Leon.

"Reference 19, p. 77$.
"Reference 19, pp. 777—778.
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with

JprI, = ,' —d—xxs+'(1+x) '~4
0

1—x'I
(4.»)

1+x)

is no longer trivial. In addition to (2.8), we have to use
a formula

ds(1 —s')" is'[C,"(s)7'

With z= (1—x)/(1+x), Eq. (4.13) is transformed into
the normalization integral (2.8) of the Gegenbauer
polynomial, so that

[(L+1)~]'(N+L+1)!
JNL (4.14)

2(2N+1) (V L 1)![(2I.+2) I]'

«(1—") 'K' "(s)]'

j(2pp+ j)+(u—1
(for p~+jg1),

2 (pi+j—1)(a)+j+1)
(for j= 0 and pp = 1), (4.21)

which follows from the recurrence formula of the
Gegenbauer polynomiaP' together with the orthogo-
nality (2.8). The calculation of the integral over r also
requires us to use (4.21). The final result is

Thus (3.10) leads to

—(—1)'-&l f1~„l'
X [(1V+L+1)!/2 (21V+ 1)(N L 1)!]-—

= (Xsr '/!iN) '. (4.15) 4 (2N —1)(2N+ 1)(2N+3) (N —L—1)!
I &~«l ' —(—1)"In the next section, we shall show (»'+L+1) IEN«

(4.22)N(1V+1)+ (N—s)'—1

2 (21V—1)(21V+3)
(4 16) with

2E~si= 3N (tV+ 1—)—(L+1)'—2+l (l+ 1)
+N(N+ 1)l(l+1)/L(L+2) (for LAO), (4.23)
—= -', N(N+1) —3 (for L=l=0) .

The negativeness of A,~„' physically corresponds to the
fact that the bound-state mass monotonically decreases
as A, increases. We are thus led to the conclusion that
the boued states (if we may call them so) correspoedieg
to the abnormal solutions mith odd ~=1.—l have u negative
eorrrpg' since otherwise (4.15) is not self-consistent.
Therefore, we have to introduce an indefinite metric g
such that

It is not difficult to see that (4.22) with (4.23) coincides
with (4.18) only when

s=0 or 1 and N=l+1 or l+2. (4.24)

(ol~= (-1)"(ol (4.17)

but, instead, for simplicity we shall employ a non-
mathematical notation in which

l
B~zil' can become

negative. Thus

4(2N 1)(2N+1) (2N+3) (»r L 1) I

l
&mr. i!'= (—1)"

(1V+I.+1)I[N(1V+1)+ (N —&)P—1]
(4.18)

with ~=1.—l. Especially, for the normal solutions
(s=0), we have

4(2m+1) (2++3)(e—l—1)!
(4.19)

(v+ 1)(n+1+1)!

The calculation of the normalization constant can
also be made by using (3.14). Since

BE/Bs = -,'(1—p'+ 2pp'),

BI/Bs=0,
(4.20)

G(p, q) = —(1 sp ip)——
X[54(p—q)+ p~/s'i) f(t,s,vp)], (4.25)for s=4ko'= 0, the four-dimensional angular integration

In the other cases, the normalization condition of
Cutkosky and Leon gives a false result. The reason is
that (3.13) is no longer true in our case, because our
solutions (4.2) are not, in general, the s~ 0 limits of
the solutions in the case s)0. Rearrangement of solu-
tions due to degeneracy happens, if there are two or
more states having the same N, l, m, and (—1)"[e.g.,
(s=0, m=i+3) and (s=2, n=l+1)] The fo.ur cases
given in (4.24) precisely represent the states for which
such rearrangement cannot occur.

We have shown that the abnormal solutions with odd
~ represent ghost states. One might expect, therefore,
that they would not appear in the corresponding
Green's function as the residues of poles. We shall show
below that this expectation is not true, namely, all the
mortal and abppormal sotutioes do appear iN the Green's

function. Here the negative sign to the residue corre-
sponding to a negative-norm state is automatically
taken into account by our notation (4.18).

The Green's function G(p, q) =G(p, q; 0) is given by

'4 Hereinafter we shall omit the phrase "the bound state cor-
responding to" for simplicity.

"Reference 19, p. 782.

2 (a)+j)sC;"(S)= (j+1)C,+1"(S)+(2+ j—1)C; 1"(z').



where f(t,p, vo) satisfies

(1- )'f(t, , o) = —t—$e

f(t', v', vo)d4P', (4.26)—(P—P')' —io

with t= (p—q)', t'= (P' q)', —v=p', v'=P", and & =q'.
The exact solution to (4.26) was found already":

(1—y) v (y,vp)

f(t,p, pp) =2 dy, (4.27)
L(1—y) (1—p)+y( —t)—ipse

where

o (y, vp)=—F(—v, v+1; 2; —C(1—y)/y(1 —vo—io)j),
(4.28)

Then v„(s)~ v as s -+ 0 independently of i~ because of
the degeneracy at s=p. The residue E. (s) of a pole
at s/0 can be calculated by means of the residue of the
corresponding Regge pole:

R„„(s)= lim Ldti„(s)/dsj '
Is x(rs)~n

XL. .()—jG(P,q»
(4.33)

lim Ldv„(s)/ds]-'
tr x (a)-+Ã

&&L „(s)—&~G(P,q; ».
When s tends to zero, care must be taken because all of
v„(s), (~=0 1 E 1), te—nd to the same limit v. We
6nd

P vp, „' hm Z„, N „(s)=lim (v —X)G(p,q), (4.34)

v=—(X+-')"'—-' (4.29) vxc =dv. (s)/ds~ ~=o, ~=+. (4.35)

x—= (1—y)/y, (4.30)

the integral (4.27) has essentially the same form as that
of the 5-wave solution of Goldstein's B-S equation. '~

According to the calculation in that case, we have

and Ii denotes a hypergeometric function. When the
integr and of (4.27) is more singular than y-',
Hadamard's finite part" should be taken.

In terms of the integration variable

F„(Ã)=AN„'. (4.37)

The continued partial-wave B-S equation, in which X

is a coestant parameter, gives equations

X = v„(s) t v. (s)+1j+F.(v. (s) )s+0(s'), (4.36)

for Regge trajectories, where Ii„ is a certain function.
When v„(s)=S, the right-hand side of (4.36) is nothing
but the eigenvalue formula for Air„(s) of the B-S equa-
tion, so that

f(t, v, vo) =28(—v+1, v+2)(1—o—io) '(1—op—is)-'
XF( v+1, v+2; 2—;

1+$(t+io)/(1 —o—io) (1—vp —io)]), (4.31)

Therefore, (4.36) leads to

vrr„'= —Apt„'/(2%+1) . (4.38)

where 8 stands for Euler's beta function. When v tends
to a positive integer X (or equivalently, v~ F 1——
because of the symmetry with respect to v= —-', ),
G(p, q) becomes infinite. This inhnity corresponds to
the bound-state pole at s= 0 with X=X(X+1).

In order to calculate the residues of the poles, we have
to consider the case s&0. We can avoid the extremely
dificult problem of finding explicitly the Green's func-
tion for s/0 by calculating the residues of the corre-
sponding Regge poles. The Regge trajectories are given
by p. (s)—j—1, (~, j=0, 1, 2, ),"where p. (s) is de-
termined by the continued partial-wave B-S equation.
The Green s function will become infinite when p,„(s) is
equal to a positive integer e. Let

From (438) and (4.16), we see that all Regge trajec-
tories have a positive slope at s=0.

Now, the condition that all the solutions of the B-S
equation appear in the Green's function is written as

n-1 l—iR..(s)= P P y..i (P,k)y„.i (q,k), (4.39)

for s/0. Hence, for k„=0, (4.34) leads to

i hm (v—X)G(p,q)—
v~N

vrr. '4rrr i~(p)@rrr im(q), (4 40)
L=O lM m=—l

v, (s)—=p, (s)+i~.

'6 N. Nakanishi, Phys. Rev. 133, 8214 {1964)."N. Nakanishi, Phys. Rev. 13?, 81352 {1965).The calculation
is given in Appendix A.

'8 We have pointed out in Ref. 12 that the abnormal solutions
with odd a do not appear in the asymptotic expansion of the
Creen's function with vp='Np in powers of {—5—j.+vp). This does
not mean, however, that there are no Regge poles with odd f~ in the
complex / plane in the case vpgzop.

V-1 X-tt-1 N-1 N-7. X-j. L N-I L

Z =E Z=Z Z=Z Z (441)
I,=O «M L x L~ «=0 L~ l=0

The left-hand side of (4.40) is easily evaluated.

4.32)
where the summations have been rearranged in the
following way:
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Since" Substitution of (4.48) and (4.9) in (4.45) leads to

C'"(z) = rP (2~+j)/j!P (2~)]
XF( j,—2 +j; +-', ;-,'(1—z)), (4.42) M (p,q)=—

N (N+1) N—1

z'(1 o—i—o)'(1 o—o i—o)' r -o
( 1)I

with
L Z

XQr, (p, q)f~r, (s)far. (so), (4 45)

Qz(p q)=Z E (—1) '&zi-(p)l:»i-(q)]*
Z=O en=—

Z

L+' ' 2"(L—~)'«')'(2~+»

2x (L+k+ 1)!

x~ (1 a)(p' —po')" "(e'—qo')"

Xc~ i'+'( —~Po/(p' —Po')'*)

XCz &'+'(—oqo/(q' —qo')-'*), (4.«)

lim (v —N)P( —v+1)= (—1)~/(N —1)!, (4.43)
v~N

(4.25) together with (4.31) yields

i—lim (v—N)G(p, q)u~N

2N(N+1)

7r'(1 —o—io)'(1—so—io)o

2t
XC& io"l 1+

l
(444)

(1—s—oo) (1—so—io) I

Our task is, therefore, to evaluate explicitly the right-
hand side of (4.40), which is denoted by Miv(p, q).
From (4.2), together with (4.15) and (4.38), we have

~-i 2N (N+1) (N —L—1)!
Alod(p, q) = Q

(N+L+ 1)!

(L+1)(N L —1)!L—(2L+2)!]'
2'~(N+ L+1)![(L+1) ']'

(4o)"(4so)*'
X

(1—o—io)~(1—oo—oo) ~

1+oxc,'+&l
&1—s—io

, t' 1+'o
IXC, , —:l lc, l. (4.49)

(1—oo—jo] o»oooilo)

Using again (4.47) with &o= zo and j=N—1, we see that
MN(P, q) is exactly equal to (4.44). Thus (4.40) has been
verified. Our explicit demonstration of the equality
(4.40) provides also a beautiful check of the validity of
our normalization condition (3.10) and the normaliza-
tion constant (4.18).

5. SOLUTIONS WITH AN INFINITESIMAL MASS

As was emphasized in Sec. 2, the case s=o needs
special consideration, which will be made in the next
section. In this section, we shall calculate the normal-
ization integral for the case s&0 but infinitesimal. For
simplicity, we confine ourselves to considering the
bound states with m= i+1.

The Cutkosky solutions with vi=1+1 read

where p—=p/l pl. We make use of the addition theorem p„„i~(p,k) =B„„(s)'JJi„(p)
of the Gegenbauer polynomiaP:

C,~ (xy —(x'—1)'i'(y' —1)'i' cosy)

I'(2co —1) ~

P'(~)]' i=o

4'(j—f) ~[F(oo+l)]'(2oi+2/ —1)
X

&(2oi+j+f)
X (x'—1)i'(y' —1)"C; i"+'(x)

XC i +'(y)Ci -**(cosy) . (4.47)

Putting co= 1 and j=L in (4.47) (note Pi=ciils), we find

Qz(p, q) =
o (L+1)~ '( 1)'s"so"Cz'(p—q/s"so")

(4.48)
"Reference 19, p. 779.
"K. T. Whittaker and G. N. Watson, A Course of Modern

Analysis (The Macmillan Company, New York, 1947), p. 335,

where

g„(a1,s) =0, (5.3)

D„(s)=—(1—s') (d/ds)'

+2 (u 1)z (d/dz) ——vi (n, 1) . (5.4—)

(—o)g-(s, ~)
X )P (1+s) (1—o)+-', (1—s) (1—w) —io]"+'

(5 1)

where s= (2k)', s= ik+ p)', m= (k—p)', and B„„(s)is a
normalization constant. The Cutkosky function g,„(z,s)
satisfies'

fD-(z)+! -(s)L1—-'(1—z')~] '}f-(z,~) =o, (5 2)

with
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If we expand g„„(«,s) and X„„(s)in powers of s, which determines X„(").For example, for r= 1 we have

g. («P)=Z ~"g. "(«),
r=0

(5.5) d«P „&'&+-,' (1—«') X„„"&]

X (1—«') "LC,"+'(«)]'=0 (5 17)

X„„(s)=Ps"li„„~'&,
r=o

(5.6) The use of (4.21) yields

then (5.2) with (5.3) leads to

I:D-(«)+l~-"&]g-'"&(«) =FF-'"& («),
with

g„„&'&(a1)=0,
where

(5.7)

(5.8)

with

g-"'( )= (1—«') "C.""() (5.10)

X. &"=(~+a)(~+v+1) . (5.11)

Hence g,„'&(«) can be determined by (5.7) with (5.8)
successively. Since the homogeneous part of (5.7) is
satisfied by g, „@&(«), the function

~.-'"& («)—=g-'"&(«)/g-"& («)

satisfies

(1—«')g "'(«)Lv -'"'(«)]"+2{(1—«') I:g -"'(«)]'
+( —1) g-"'( ))I:~-'"'( )]'=FF-'"'( ) (5 13)

FF '"'(«)—=—Z I:-'(1—«')]"'~ '""g '""(«) (59)

The summation in (5.9) goes over all combinatious of
three nonnegative integers r&, r2, r3 satisfying r3/r and
&i+&2+&3=r

The explicit expression for g„„i'&(«) has already been
presented by Cutkosky':

d««'g &r&(«) . (5.19)

To do this, it is not convenient to employ (5.14).
Rather, we integrate (5.7) directly. Integrations by
parts lead to

d««zI D„(«)+X„"&]g„&"& («)

(~+I) (K+&i+1)+n' 1—
0) — y (o) (5.18)

2 (2~+ 2&i—1)(2~+2m+ 3)

a result which was used in Sec. 4. When ~=0, Eq. (5.18),
of course, coincides with our previous result, " which
was obtained by solving Cutkosky's integral equation
directly. The lower limit of integration in (5.14) is com-
pletely arbitrary because it is related only to the nor-
malization of g„„(«,s). Since the integrand of (5.14) has
real poles for ~&2, the integration path should lie in
the complex 2' plane. We conjecture that there are
double poles only. If so, g„„&"&(«) is a polynomial of «

and independent of the choice of the path. Then
g„„&'&(«), (r) 1), has an (x+1)th-order zero at «= &1,
on account of our choice —1 of the lower limit of
integration.

Our next task is to evaluate the moments

Since (5.13) is a linear differential equation of first
order for

I
z&z„„'"&(«)]', it can be solved by the standard

method. Thus

(&~= j)(&t:+2—n+j +1)G

+j (j 1)Gz„&' ' ". (5.20—)

g -'"'(«) = (1—«') "C ""(«)
z f (r&(«)

d«' —, (5.14)
(1—«")"+'LC."+'(«')]'

with
z

f. &"& («) —= d«'C. "+l(«')FF..&"& («') . (5.15)
—1

Here the lower limit of integration in (5.15) is due to
the boundary condition g„„&'&(—1)=0. The other
boundary condition g„„&'(+1)=0 leads to"

f„„&'(1)= d«C„"+l(«)FF„'&(«)=0, (5.16)

When ~)j, therefore, G„„("&) can be expressed as a
linear combination of

d««z '~FF &'&(«) (0&m&-'j) . (5.21)

From this fact, we obtain an important result

G„„&r '&=0, for 2r+j &z. (5.22)

This formula is evidently true for r=0, because
FF„ io&(«)—=0. Hence we use mathematical induction
with respect to r. Since (5.21) is a linear combination of

G„„i"~& with J=—(j—2m)+2(ri —m'),
(0&m'&ri), (5.23)

the assumption of induction tells us that (5.21) vanishes
because

3' By means of (5.16), it is easy to show that f,„(")(s) is an odd
function of s, and hence the even-oddness of g„„("){s) is the same
as that of g„„(')(s), as it should be.

2r3+ J&2r+j &~

and rs(r 1. Thus (5.—22) is established.

(5.24)
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In the case 2r+j =«, the quantity G„„('&)no longer On account of (5.30), the part of the maximal degree
vanishes, but it is relatively easy to evaluate it because with respect to s and t in the coefficient of s&' in
of (5.22). We find R (n, 1 n,—s) has the form

2r (2«+ 2e 2r+ —1)G
(—1)' Z -( ) ""C' ", [ -( )&o5 (533)

(0) p ( L)r r'G —(r', a—2r') (5 25)
r '=0

In particular,

G„„(' "—'&=l( ('&G„ /8(2«+2e —1), 1

«g-'"'(s) 4 g-'""0)s~"'f " (5 34)where

Expanding g„„(s,s) and g„„(i,s) in powers of s, we see
that the coe%cient of s" is a linear combination of the

(5.26)

2~+»+ie! («+e)!(,+2e)!
(0, a)

(2e)!(2&(+2e+ 1)!
(5.27)

and terms of lower degrees with respect to s and t, where

We are now ready to evaluate the normalization
integral

r =ri+ro+j,
(5.35)

Because of (5.22), Kq. (5.34) vanishes, unless
I..= i d p(—1——v)(1—w)(t„„i (p,k)p„„( (p,k) . (5.28)

2ri+j +re& «,
2ro+j re& «—

r=ri+ro+j &((.

Substituting (5.1) in (5.28) and using the Feynrnan. Hence
parametrization, we can easily carry out the momentum
integration:

(5.36)

(5.37)

(2e+1)!
I„„=—

I B„„(s)l' dx x"+'(1—x)"+'
[(e+1)I]' o

Therefore, the leading term (i.e., lowest order non-
vanishing term) must satisfy

(5.38)
X ds g..(s,s)

namely, I„„/lB„„(s)l' is of order s". When (5.38) holds,
(5.36) and (5.35) yield

di g„„(f',s)R„(n, 1—n, s), (5.29)
8$ if F$

with

where
8 l9

R (n,p,s)—=—i——
(&a (&p

n=-,'(1+s)x+-', (1+i)(1—x),
1—n=-,'(1—z)x+-,'(1—i') (1—x), (5.30)

j& lro —ril,
«&ri+ro+

l
ri —rol =2max(ri, ro) . (5.39)

It is not very cumbersome to evaluate I„„explicitly
for «=0, 1, 2, 3. When «&3, (5.39) leads to ri&1 and
ro&1, and hence we encounter G„„('" '& only, which
is given by (5.26). The explicit expressions for
I„„,(&(=0, 1, 2, 3), are

I 'JJ&-(p) I'
X d'p

[n (1 v)+p (1—w) io]—'~+'— I«/IBo„(s) I
= [or(Go+) /2 "+ (2e+1)]+O(s),

1i 8 8

2'"+'(2n+1) 4&n 4&P

v-(e+1) (e+2)'(e+3)'(Go„)'

2'"+'(2e+1) (2e+3)'(2e+5)

Xs'+O(s'),

Io-/I Bo-(s) I'=—X[(n+P)'—nPs] " '

Expanding R„(n,P,s) in powers of s and putting n+P = 1
after the differentiations are performed, we have

(531), ( +2)'(G )'
I -/IB. (s) I'=+ s+O(s'),

2o-+o (2e+1)(2e+3)

R„(n, 1—n, s) =[v/2'"+'(2e+1)5 P [(e+j)!/ej!!]
j=0

or(e+1) (e+2)'(e+3)'(e+4)'(Go„)'
Io-/I Bo-(s) I'=+

2'~+'3 (2e+ 1)(2e+3) (2e+5)'(2e+ 7)

X[(2e+2j+2)(2e+2j+3)a'(1—a)'

j(2e+j+2)n—i '(1 n)& ']s& —(5.—32)
'—

whe. re G„„is given by (5.27).

Xs'+0 (s4), (5.40)
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The normalization condition (3.10) leads to

I,„=X„„'(s)/X„„(s)= l~„„&'&/I~„„"&+0(s). (5.41)

provided that

A. = (I/4vr) &L(2l+ 1)!]&/2'I!. (6.2)

Since li„„oi/X„„&'& is negative, as was shown in (5.18),
the sign of the norm of p„„i (p,k) is (—1)' for
I~:=0, 1, 2, 3. Thus it is extremely likely that all the ab-
normal solutions with odd z have a negative norm.

Finally, we consider the case s(0. The only diBer-
ences from the above are the solid harmonic (2.10) and
the sign of s. Thus the sign of the norm of a solution is

(—1)' . This is quite analogous to the result in Sec. 4.
Summarizing the three cases s)0, k„=0, and s(0, we
can say that the si grl, of the rjorm of any sotutiori is ideriti
ca/ with its "po parity" (positive for an even function of

po and negative for an odd. one).

In this case, our solutions are nothing but the s —& 0
limits of the Cutkosky solutions apart from the normal-
ization constants. This corresponds to the well-known
fact that a massless particle has orily two polorisatioris
imdependeetiy of its spiri l(NO). The norms of our II-S
amplitudes with v=i+1 are, therefore, positive for
~=0 and sero for ~&1, according to the result given in
Sec. 5 LB„„(0)is undefined for z) 1"].

Now, our main task in this section is to seek for solu-
tions other than the above. For simplicity, we consider
the solutions with rb = i+ 1 only, but i is no longer a good
quantum number, in our case. We introduce a quantum
number

6. SOLUTIONS FOR MASSLESS BOUND STATES
M= t f—m/ —=I /mj ——1 (6.3)

We discuss the case s=0 but k„&0 in this section.
Since we cannot take the rest frame of a massless par-
ticle, no correct discussion, in this case, has been made
so far, at least within the present author's knowledge.

We have found the solid harmonics Xi (p) in (2.13).
Contrary to the other cases, Xi (p) is not self-reproduc-

ing in the momentum integration appearing in the 3-S
equation, except for the case m= +L. When m= + /, we

see

(6.1)

and consider a B-S amplitude

(p k) p (p +p )M—r(p ~ip )n,—M—i

( i)h„—„~"(s)
X (6.4)

P, (1+s)(1—v)+-,'(I—s)(1—w) —ie]" "+'

where the double sign corresponds to the sign of m, and
a normalization constant is omitted. When the B-S
kernel operates on (6.4), we encounter the integrals

X2i

s—r+2

7r2i

(p,'+p, ')I (p, 'a-ip, ')" "i--
dx(1—x)" "+' d p' . (6 5)

Lp' —xp+ (1—x)s'k]'+ (1—x)Li —xp' —2xs'pk] —i~}"—~'

The change of the integration variables into

p„"=p„' xp„+ (1—x)s'k„—

h„„sr"(s) should satisfy the integral equations

(M-r')! (ri—r+1)!
(6.6) h„„(s)=

2(e—r) "o (M r)!(n —r'+1—)!
leads to

p3'+po'=pa"+po"+x(pa+po) 2(1 x)s'ko (6 7)

The appearance of the last term is the essential dif-
ference from the case s)0. It is easy to see, by means of
rotation po" —+ip4", that the part pa"+po" vanishes
when integrated. Thus after carrying out the mo-
mentum integration, (6.5) is a linear combination of the
terms proportional to (p3+po)&', (j=0, 1, , M r). —
Our calculation is formally quite analogous to
Cutkosky's' for the general case (0&i&m —1).Hence,
we write here the final result only. The weight functions

1

X ds'( —2s'ko)

XLR(sp')]" "h„~"'(s'), (6.8)
with

R(s,s') —= (its)/(1as'), for s~~s'.

For r=0, we have

(6 9)

h„„~'(s)= ds'LR(s, s')]"h.„pro(s'), (6.10)
2s

~ We have shown that B„„(s)~s&" as s —+ 0. If k„—+ 0, too,
then the z integral in (5.1) also tends to zero, and qb„.„~ (p,k) has
a definite limit. In the present case (k„&0),however, the z integral
does not vanish.




