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where K denotes the channel momenta, and the F’s are
the Jost matrices. The Regge poles are determined from

the relation
detF(\, —K)=0.

The above relation implies that there is a constant (row)
vector ¢ such that at a Regge pole

aF(\, —K)=0.

Using the same technique as in the single-channel
case,’ namely calculating the Wronskian of the wave
function and its first derivative with respect to A, we
obtain

yFT(\, —K)[FT(\,K) ] Ky"
= —iA/w dr r_2yfT(>‘) _Kr 1’)f()\, _Ka r>yT7
0

where “T” means transpose, and the dot means
differentiation with respect to A; y=aF (\K)K™' is a
column vector and f is the matrix of the irregular wave
functions defined by

fiiQ\, =K, 1) = dijei*ir,
k; being the channel momentum in the j channel. At a

Regge pole I=qa, and yfT is a well-behaved function at
the origin. It vanishes like 7¢*! as » — 0. One can easily

as r—ow,
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check that

a .
i Dy (STIKYT=HITO, — K)LHTOLK) IRy

Now let

Sij= (gii/l—a)+74;.
Then

8(5) . 245

ol " _Tr(gz)’

where z is the matrix of the cofactors of » and “Tr”’
means trace. Thus

zTKyT

Yz Ky *
eiTO—d) = -—1')\/ dr r2fTf,
0

Tr(gz)

where f=/yT is a column vector. If we denote the
residue of the symmetric 7" matrix by 8 then g=2iK8
and we get

Tr(Be*mou)= (2)\/00 dr 7‘2)51‘]?)* , (A20)
0

where
u=2K/yzTKyT. (A21)

Note that the matrix elements ;; are not necessarily
positive.
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The normalization constants for normal and abnormal solutions of the Bethe-Salpeter equation are ex-
plicitly calculated in the Wick-Cutkosky model. In the case of the vanishing total four-momentum, it is
shown that the abnormal solutions with odd « have a negative norm, where « is the Wick-Cutkosky quantum
number, and that the corresponding scattering Green’s function contains all the normal and abnormal solu-
tions as the residues of poles. It is demonstrated explicitly for k=0, 1, 2, 3 that the first conclusion remains
true also in the case of an infinitesimally positive mass. As for the case of massless bound states, its special
character is emphasized, and solid harmonics are constructed corresponding to the “little group” for a
massless particle. Non-Cutkosky integral equations are obtained for the weight functions of the integral

representation for the Bethe-Salpeter amplitude.

1. INTRODUCTION

N 1954, Wick! and Cutkosky? obtained a complete
set of the solutions of the Bethe-Salpeter (B-S)
equation for bound states of two scalar particles ex-
changing massless scalar particles in the ladder approxi-
mation. They discovered that in addition to normal

* This work performed under the auspices of the U. S. Atomic

Energy Commission.
1G. C. Wick, Phys. Rev. 96, 1124 (1954).
2 R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).

solutions there exist abnormal solutions which have no
counterparts in the nonrelativistic potential theory.
The appearance of these extra solutions is intimately
related to the additional freedom in a covariant two-
body problem, i.e., “‘relative time” or “relative energy,”
which leads to the introduction of a new quantum
number k (normal solutions correspond to x=0).

Scarf and Umezawa?® tried to exclude the abnormal

3F. L. Scarf and H. Umezawa, Phys. Rev. 109, 1848 (1958).
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solutions by the non-normalizability due to the de-
generacy of their eigenvalues at zero binding energy,
but this criterion is not adequate because the degen-
eracy does not occur if the exchanged particles are not
massless.* Ohnuki, Takao, and Umezawa* showed that
the B-S equation has abnormal solutions even in a
static model and that they do not correspond to the
eigenstates of the original Hamiltonian. If the latter
conclusion is true also in the relativistic case, it forbids
one to interpret « as a physically meaningful quantum
number such as the strangeness.’ Mugibayashi® showed
that abnormal solutions appear even in the exact B-S
equation for the static model, but they do not appear
if one considers two first-order equations from which
his exact B-S equation follows.

In order to distinguish abnormal solutions from
normal ones mathematically, Ida and Maki’” and the
present author®? investigated the analytic properties
of the B-S amplitude for two scalar particles by using
integral representations, but no appreciable difference
between them was found. Recently, the present
author'®? has explored whether or not abnormal solu-
tions are related to the high-energy behavior of the
scattering Green’s function in the crossed channel, as
was suggested by the Regge-pole theory. It has been
concluded there that in the asymptotic expansion in
powers of a certain invariant, no abnormal solutions
appear in the forward scattering, but those with even
«x only seem to appear in the nonforward scattering.

Now, the purpose of the present paper is to investi-
gate the normalizability of normal and abnormal solu-
tions. The normalization condition for the B-S ampli-
tude was proposed by Nishijima,’® Mandelstam,** and
Klein and Zemach.!d Their prescription was based on
the assumption of the existence of a conserved current.
Recently, Cutkosky and Leon!® have proposed an
elegant derivation of the normalization condition with-
out assuming a conserved current. In the present paper,
we shall use the normalization formula given by
Cutkosky and Leon with a slight but nontrivial modi-
fication. We shall not discuss another normalization
condition, proposed by Sato,'” which is linear with
respect to the B-S amplitude.

The next section is devoted to the general considera-
Ty, Ohnuki, Y. Takao, and H. Umezawa, Progr. Theoret. Phys.
(Kyoto) 23, 273 (1960).

5S. N. Biswas and H. S. Green, Nucl. Phys. 2, 177 (1956);
Progr. Theoret. Phys. (Kyoto) 18, 121 (1957); S. N. Biswas,
Nuovo Cimento 7, 577 (1958).

6 N. Mugibayashi, Progr. Theoret. Phys. (Kyoto) 25, 803 (1961).

7M. Ida and K. Maki, Progr. Theoret. Phys. 26, 470 (1961).

8 N. Nakanishi, Phys. Rev. 130, 1230 (1963); Erratum, 131,
2841 (1963).

9 N. Nakanishi, J. Math. Phys. 4, 1235 (1963).

10 N, Nakanishi, Phys. Rev. 135, B1430 (1964).

11 N, Nakanishi, Nuovo Cimento 34, 795 (1964).

2 N, Nakanishi, Phys. Rev. 136, B1830 (1964).

18 K. Nishijima, Progr. Theoret. Phys. (Kyoto) 10, 549 (1953);
12, 279 (1954); 13, 305 (1955).

14 S, Mandelstam, Proc. Roy. Soc. (London) 233, 248 (1955).

15 A, Klein and C. Zemach, Phys. Rev. 108, 126 (1957).

16 R, E. Cutkosky and M. Leon, Phys. Rev. 135, B1445 (1964).
1771, Sato, J. Math. Phys. 4, 24 (1963).

SALPETER EQUATION B 1183
tion of the solid harmonics of Wigner’s “little group,'®”
with respect to the total four-momentum of the system,
because some confusion seems to prevail concerning the
solutions for massless bound states. In Sec. 3, we
present a derivation of the normalization condition in a
slightly different way from that of Cutkosky and Leon.
In Secs. 4-6, our consideration solely concerns the Wick-
Cutkosky model. In Sec. 4, we consider the case of the
vanishing total four-momentum. We explicitly find a
complete set of solutions and their normalization con-
stants. It is demonstrated that all the solutions appear
in the scattering Green’s function as the residues of
poles. In Sec. 5, the normalization condition is analyzed
for the bound states with an infinitesimal but nonzero
mass. Section 6 deals with the special situation in the
case of massless bound states. Our results are summa-
rized in the final section.

2. SOLID HARMONICS OF LITTLE GROUP

A bound-state amplitude should have a definite trans-
formation property under the inhomogeneous Lorentz
group. Let x, and 2%, be the center-of-mass coordinate
and the total four-momentum of the system, respec-
tively. Then the B-S amplitude behaves like ¢!@= ag
an irreducible representation of the translation group.
After separating this factor, the B-S amplitude for the
internal freedom should be transformed according to
Wigner’s little group'® with respect to k,, which is the
set of all the homogeneous Lorentz transformations
under which %, remains invariant. Its group structure
depends on the property of &,.

(a) k>0 (time-like). The little group @ is isomorphic
to the three-dimensional rotational group.

(b) =0 but k,#0 (light-like). © is equivalent to
the two-dimensional Euclidean group.

(c) k,=0. & becomes identical with the homogeneous
Lorentz group itself.

(d) 22<0 (space-like). @ is isomorphic to the (241)-
dimensional homogeneous Lorentz group.

Now, we introduce ‘“‘solid harmonics of little group”
by the following definition. An /th-order solid harmonic
of the little group ® with respect to %, is a homogeneous
Ith-order polynomial X;(p) of po, p1, P2, p3 such that

(0/0p)X1(p)=0, 2.1
ku(0/0pw)X1(p)=0. (2.2)

Then it is evident that the totality of the lth-order solid
harmonics of & spans a vector space invariant under
the homogeneous Lorentz transformations of p, be-
longing to .

In the case £2>0, we can take the rest frame (k=0,
ko7#0). Then our solid harmonics reduce to the ordinary
solid harmonics. We shall take

Yim(@)=[p|Vin(b,0) , (|m|<L])
18 E. P. Wigner, Ann. Math. 40, 149 (1939).

(2.3)
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as the basic solid harmonics, where 6 and ¢ are the polar
angles of p.

The Lth-order solid harmonics 3rum(po,p), in the
case k,=0, can be constructed from the four-dimen-
sional spherical harmonics H rim(a,0,¢) :

Lim(po,p) =3 rim(—ipo, D) , (24)
chlm (P47p) = rLHle (a:ay ‘P) ) (25)

with 7=p24-p? and cosa= ps/r, (0La<w for real ps),
and

H pim(e0,0)=A4 1i(sina) Cr_i* (cosa) Vim0, ¢) ,
(Im]|<ISL), (2.6)

where C;°(x) denotes a Gegenbauer polynomial. The
normalization constant Ajz; is determined by the
requirement

L [ 27
/ Sinzada/ Sinﬁd()/ do|Hpm(af,e)|2=1. (2.7)
0 0 0
Using the orthogonality relation of Cj*(x),%

/ dz(1—22)1C;# (2)Ci* (2)

7' Qw47
- Cotd . s
) 2215 (w4 )[T (w) P
we obtain
|4 1a|2=221(L+1) (L—D) 10/ w (L+1+1)1. (2.9)

In the case k<0, we can choose a Lorentz frame such
that ko=/k1="%ks=0, k370. Then the solid harmonics, in
this case, are defined by

Yim(p0,p1,02) = Yim(p1, p2, —ipo) . (2.10)

Finally, we consider the case #*=0 but £,5<0. In this
case, our solid harmonics X;.(p) cannot be expressed
in terms of spherical harmonics. We take the frame in
which k= (k,0,0,k0), (ko#%0). Then (2.2) and (2.1)
reduce to

(9/0po—9/0ps)Xum(p)=0, (2.11)
L(3/0p1)*+ (8/3p2)*TXim(p)=0. (2.12)

Hence
Xim(p)=A (potpa) "1™ (przkipy)ml,  (2.13)

where the double sign corresponds to the sign of . The
constant A is undetermined, because we do not have
the orthogonality relation for X (p).

3. NORMALIZATION CONDITION

We consider an elastic scattering of two particles.
Their initial momenta are k¢ and k—g¢, while their

¥ M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables
(National Bureau of Standards, Washington, D. C., 1964), p. 774.
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final ones are k+p and £— p. The total invariant energy
is s= (2k)%

The two-body Green’s function G(p,q;k) satisfies
the integral equation

G=K-4\K-IG (3.1)

in the operator notation. Here K~ is a product of two
one-body propagators, / the irreducible kernel, and A a
parameter, which is identified with the squared coupling
constant if one considers the ladder approximation.
Assuming the existence of G, we can formally solve
3.1):

G= (1— K1)~k (3.2)
Differentiation of (3.2) with respect to A yields
0G/on=GIG. (3.3)

Eliminating I from (3.3) by means of (3.1), we have?
NG/IN=—G+GKG. (3.4)

Now, if there exists a bound state of the two par-
ticles, G will have a pole in the complex s plane'*:

G(p,g; k)= {ida(p:;k)$a(g,k)/[s—5.(N\) 1}
+G(p,g; k), (3.5)

if the bound state |a) is assumed to have a positive
norm, where G is regular at s=s,(\). In (3.5), ¢.(p,k)
is a B-S amplitude with an eigenvalue s=s,(\), and the
“conjugate” &, is defined in such a way that the ab-
sorptive part of ¢, is the Hermitian conjugate of that
of ¢, (multiplied by ~v4 if one considers a Dirac spinor),
and its dispersive part is related to its absorptive part
in the same way as in ¢,. More concretely, if ¢.(p,k)
has an integral representation

¢a(p,k)=—i/dx1---/dx1v

x F(xly"'ny;?7k)
[V(xl)‘ Ty XN Prk)_“]m ’

(3.6)

where V is a real function, F being regular in p, and
¢— 0*, then the conjugate is given by

Gu(p) = —i / drse - / d

[F<x17' *y AN P,k)]*A
[V (x1,- -, xx5; p,k)—ie]™ ’

where A is a possible constant matrix factor. (4=1 if
F is scalar.)
Substituting (3.5) in (3.4) and comparing the co-

3.7

2 This kind of nonlinear integral equation was first derived by
Amati ef al., in a special case [D. Amati, A. Stanghellini, and
S. Fubini, Nuovo Cimento 26, 896 (1962)]. Extension to the
general case was made by the present author [N. Nakanishi, Phys.
Rev. 133, B1224 (1964) ].
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efficients of the term
Ls—sa(N) I
in both sides, we are immediately led to
iPaKda=Nds,/d\, (3.9)

or, in terms of the inverse function, A=2,(s), of s=s5,(7),

(3.8)

iGaKda= (\o'/Na)", (3.10)
where
N/=d\/ds. (3.11)
Weﬂhave thus obtained the normalization condition for
¢’a.Since the B-S equation
K¢o=Nulta, (3.12)
together with its conjugate, leads to
(Aa'/Aa)$uKda=G[0K/ds— N0l /05 kba, (3.13)
(3.10) can be rewritten as
10 0K/0s—NadI /05 Jpa=1, (3.14)

a result which is equivalent to the normalization condi-
tion of Cutkosky and Leon.!® We shall prefer to use
(3.10), however, because of the following reasons:

(a) It is generally easier to calculate (3.10) than to
do (3.14).

(b) The Cutkosky-Leon normalization condition
(3.14) sometimes gives a false result, as we shall see in
the next section.

(c) Our formula (3.10) is akin to the orthogonality
relation

$:Kpo=0, for b#a. (3.15)

4. SOLUTIONS FOR %,=0

We shall hereafter consider the B-S equation for two
scalar particles with a unit mass exchanging massless
scalar particles in the ladder approximation. In this
section, we explicitly calculate the normalization con-
dition (3.10) for the case k,=0.

The B-S equation is
AN

diy! OnLim(P)
T —(p—p')—1ie

with v=?2. From the consideration presented in Sec. 2,
we can write

OnLim(P)=BnridLim(p) far () , 4.2)

where By, is a normalization constant, and fyz(v) was
explicitly found already™:

(1—0)*pxLim(p)= , 4.1)

N—-L-1

fNL(v)=—-i Z gNLj/(l—v—ie)N_f+2, (43)

2L A result similar to (3.10) is found also in the paper of Cutkosky
and Leon.
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with
gvi’=(—1)I2N— )/ jIIN=HIN—L—j—1)! (44)
and

Av=N{N+1) . (4.5)

The quantum numbers N and L are related to the con-
ventional ones k and # through

N=x+mn,
L=¢+I<N-—1.

According to (3.7), the conjugate amplitude of (4.2)
reads

(4.6)

OxLim(P) =By [31im(p) T* fur(v) . 4.7

Special care must be taken concerning [Frim(p)]*.
Since po is a real quantity, from (2.4) we have

[3Lim(p) T*=[3CLim(—ipo, p) I*
= (= D)ICrin*(—ipo, D) ,

where we define F*(z)=[F (z*)]*.

In order to calculate the normalization integral, it is
convenient to rewrite (4.3) in a more compact form. It
is easy to see that fy.(v) is expressed in terms of
Jacobi’s polynomial? of the argument (1—v—7¢)~%, and,
moreover, it can be rewritten in terms of a Gegenbauer
polynomial.® In this way, we find

(2L+2)! 1
T (1—v—ie) i3

(4.8)

far(v)=—

1+
XCN—L—J’H( - ) . (4.9
1—v—1ie

Of course, one may verify (4.9) by substituting (4.2)
with (4.9) in (4.1) directly. Since

K-=[—i/(1—v—ie)F, (4.10)

in our case, the left-hand side of (3.10), with a= (N Llm),
now becomes

Inn= —ilBNLz|2/d4p| dLm(p)|?
X (=o)L fyr(v) .

The po contour can be rotated into the imaginary axis
Ppo=1p4, (ps real). Then noticing (4.8), (2.4)-(2.7), and
(4.9), we obtain

(4.11)

Inpi= (—1)L_’|BNL1[2/°° dr IS (1472)2
X[ fur(—=m)F

=—(=1)| By
XLQLA2) Y/ (LA D) PT L,

2 Reference 19, p. 775.
23 Reference 19, pp. 777-778.

(4.12)
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with

JNLE%/ dx xT (14-2)2 1
0

X[CN~L_1L+%(1—;—z>]2. (4.13)

With z= (1—x)/(1+4x), Eq. (4.13) is transformed into
the normalization integral (2.8) of the Gegenbauer
polynomial, so that

LZADIFV+L+1)!

NL= . 14)
202N+1) (V= L—1) [ (2L+2)1F
Thus (3.10) leads to
. (__ l)L_lIBNLllz
XLIN+L+1)Y/22N+1) (N—L—1)!]
=(\n/An)t.  (4.15)
In the next section, we shall show
NWN+1)+(V—«k)y—1
And/Av=— ( anCn) . (4.16)

2(2N—1)(2N+3)

The negativeness of Ay, physically corresponds to the
fact that the bound-state mass monotonically decreases
as \ increases. We are thus led to the conclusion that
the bound states (if we may call them so) corresponding
to the abnormal solutions with odd k= L—1 have a negative
norm,?* since otherwise (4.15) is not self-consistent.
Therefore, we have to introduce an indefinite metric 7

such that
(a|n=(—1)Xal|, (4.17)

but, instead, for simplicity we shall employ a non-
mathematical notation in which |Bxz;|? can become
negative. Thus

4(2N— 12N+ 1) (2N—|—3) (N—L— !
(N+L+1)IN (V1) + (N —)2—1]
(4.18)

| Byri|?=(—1)*

with k=L—1]. Especially, for the normal solutions
(k=0), we have

4(2n+1) (2n+3) (n—1—1)!
4+ 1)1+

The calculation of the normalization constant can
also be made by using (3.14). Since

0K /ds=3(1—p*+2p¢) ,
3I/9s=0,

for s=4k#=0, the four-dimensional angular integration

| Bni|2= (4.19)

(4.20)

% Hereinafter we shall omit the phrase “the bound state cor-
responding to” for simplicity.
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is no longer trivial. In addition to (2.8), we have to use
a formula

[ sty

X { / (- )0

-1

_ JQetg)Fe—1
2(w+j—1) (0+5+1)
=1 (for j=0and w=1),

(for w+751),

(4.21)

which follows from the recurrence formula of the
Gegenbauer polynomial?® together with the orthogo-
nality (2.8). The calculation of the integral over 7 also
requires us to use (4.21). The final result is

4N —1)(2N+1) 2N+3)(V—L—1)!

| Byri|?=(—1) ,
(N+L+1)Exp
(4.22)
with
2Eni=3N(N+1)— (L+1)2—241(+1)
S N(NADIAF1)/LI42) (for L0), (4.23)

=IN(N+1)—3 (for L=1=0).

It is not difficult to see that (4.22) with (4.23) coincides
with (4.18) only when

k=0 or 1 and #n=Il4+1 or I4+2. (4.24)

In the other cases, the normalization condition of
Cutkosky and Leon gives a false result. The reason is
that (3.13) is no longer true in our case, because our
solutions (4.2) are #of, in general, the s — 0 limits of
the solutions in the case s>0. Rearrangement of solu-
tions due to degeneracy happens, if there are two or
more states having the same N, I, m, and (—1)*[e.g.,
(k=0, n=1+3) and (x=2, n=1I4+1)]. The four cases
given in (4.24) precisely represent the states for which
such rearrangement cannot occur.

We have shown that the abnormal solutions with odd
k represent ghost states. One might expect, therefore,
that they would not appear in the corresponding
Green’s function as the residues of poles. We shall show
below that this expectation is not true, namely, all the
normal and abnormal solutions do appear in the Greew's
function. Here the negative sign to the residue corre-
sponding to a negative-norm state is automatically
taken into account by our notation (4.18).

The Green’s function G(p,q)=G(p,q; 0) is given by

G(p,9)=—(1—v—ie)*
X[84 (P_Q)_I_ 0‘/7"21:)](077)77"0)] )

28 Reference 19, p. 782.
2(w+7)2C# () = (7+1)Ci1* @)+ (2w+5—1) Cir® (2.

(4.25)
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where f(i,9,00) satisfies

A
+—

—t—ie 7%

(1~ 'l))zf(t,ﬂ,'l)0> =

, f t’,v’,vo)
X/d‘ip —— TRy (4.26)

with t= (p—q)%, t'= (p'—q)?, v=7?, v'=9", and v,=¢"
The exact solution to (4.26) was found already:

! (A=) e (¥,2%0)
(ty ) ‘0)=2 dy ’ 4.27
T /oy[<1~y><1—v>+y<~t>—ie]3 20
where
e(ywo)=F(—v»,v+1;2; —[(1—y)/y(1—v—ie)]),
(4.28)
with
y=(\+1)2—1 (4.29)

and F denotes a hypergeometric function. When the
integrand of (4.27) is more singular than v,
Hadamard’s finite part?¢ should be taken.

In terms of the integration variable

v=(1-9)/y,

the integral (4.27) has essentially the same form as that
of the S-wave solution of Goldstein’s B-S equation.”
According to the calculation in that case, we have

F(@v,00)=2B(—v+1, v+2)(1—v—1€) 3 (1 —vo—1e) ™
XF(—v+1,v+2;2;
1+ (t41e)/ (1—v—1ie) (1—vo—1i€) ]) ,

where B stands for Euler’s beta function. When » tends
to a positive integer N (or equivalently, » >—N—1
because of the symmetry with respect to »=—3%),
G(p,g) becomes infinite. This infinity corresponds to
the bound-state pole at s=0 with A=N(N+1).

In order to calculate the residues of the poles, we have
to consider the case s#20. We can avoid the extremely
difficult problem of finding explicitly the Green’s func-
tion for s#0 by calculating the residues of the corre-
sponding Regge poles. The Regge trajectories are given
by ue(s)—7—1, (k, 7=0, 1, 2,---),?® where u,(s) is de-
termined by the continued partial-wave B-S equation.?
The Green’s function will become infinite when p,(s) is
equal to a positive integer #. Let

ve(8)=pe(s)+x.

26 N. Nakanishi, Phys. Rev. 133, B214 (1964).

27 N. Nakanishi, Phys. Rev. 137, B1352 (1965). The calculation
is given in Appendix A.

28 We have pointed out in Ref. 12 that the abnormal solutions
with odd « do not appear in the asymptotic expansion of the
Green’s function with 2=, in powers of (—¢—1--vo). This does
not mean, however, that there are no Regge poles with odd « in the
complex / plane in the case v7wy.

(4.30)

(4.31)

(4.32)
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Then ».(s) — » as s — 0 independently of x because of
the degeneracy at s=0. The residue R,.(s) of a pole
at s3£0 can be calculated by means of the residue of the
corresponding Regge pole:

R, (s)= ,ulé‘fl . [dux(s)/dsT™
X[uc(s)—n]G(pyq; k)

= lim [dv(s)/dsT™
X[ve(s)—N1G(pyg; k)

When s tends to zero, care must be taken because all of

(4.33)

ve(s), (k=0,1,---, N—1), tend to the same limit ». We
find
N—1
> v im Ry, y—k(s)=lim (v—N)G(p,q), (4.34)
k=0 8—0 »—>N
with

VN,"EdVK(S)/dS[ §=0, y=N« (4'35)

The continued partial-wave B-S equation, in which A
is a comstant parameter, gives equations

A= (8)[vi()+ 1]+ Fc(ve(s) )s+0(s2) ,

for Regge trajectories, where F, is a certain function.
When v,(s)=N, the right-hand side of (4.36) is nothing
but the eigenvalue formula for Ay.(s) of the B-S equa-
tion, so that

(4.36)

F.(N)=Mn.. (4.37)
Therefore, (4.36) leads to
v ==/ (2N+1) . (4.38)

From (4.38) and (4.16), we see that all Regge trajec-
tories have a positive slope at s=0.

Now, the condition that all the solutions of the B-S
equation appear in the Green’s function is written as

n—1 1

—'inn(S)=lZ Z ¢xnlm(?,k)$xnl'rn(q;k);

(4.39)

for s£0. Hence, for k,=0, (4.34) leads to
—i lim (v—N)G(p,9)
N-1 L l

= Z Z Z . VN/‘#NLIm(?)d;NLZm(Q) ) (440)

L=0 1=0 m——

where the summations have been rearranged in the
following way :

N—-1 N—x—1 N-1N-1 N-1 L N—-1 L
2 X=X X=X X=X X (44
k=0 =0 k=0 L=k L=0 «k=0 L=0 =0

The left-hand side of (4.40) is easily evaluated.
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Since?

Ci#*(®)=[T(o+7)/j T (20)]

XF(""]} 2w+]’w+%;%(1-z)) ’ (442)

and
li_r)rzxv (r—N)L(—v+1)=(—1)V/(N—1)!, (4.43)
(4.25) together with (4.31) yields
~i lim (7= NG (p,9)
2N (N+1)

w2(1—v—ie)}(1—vo—ie)?

Cy—2?( 1+ # 4.44)
KOt ( K (1—v~ie)(1—v0—ie))' @

Our task is, therefore, to evaluate explicitly the right-
hand side of (4.40), which is denoted by Mx(p,q).
From (4.2), together with (4.15) and (4.38), we have

o )_zvz—lzN(N+1)(N—L—1)1
Ve (N+L+1)!

XQu($,9) fwr(v) fwr (o) ,

4.45)
with (

QD=L T (1 oum(P3um@T

L+1 » 22(L—D1(1)2(2041)
B (L+1+1)!
XPy(-) (0°— pH) D (@ —go?) D
XCr it (—ipo/ (B*—pP)?)

XCrit (—igo/ (@—q¢)?) ,

where p=p/|p|. We make use of the addition theorem
of the Gegenbauer polynomial®:

Ci (wy— (22— 1)12(y2—1)172 cosp)

p|tq|®
P> |*]ql

(4.46)

_I‘(Zw—l)zi( !
M@ i
LGOI P Gt 2—1)

T'(20+4j+1)
X (= 1) (2= 1)¥C; o+ ()
XCitH(y)Cr(cosgp) . (4.47)
Putting w=1and j=L in (4.47) (note P;=C}”?), we find

01(p.0) = (L+Dr2(— 1)2eb et C 11 (g /0 ).
(4.48)

2 Reference 19, p. 779.
® E. T. Whittaker and G. N. Watson, A Course of Modern
Amnalysis (The Macmillan Company, New York, 1947), p. 335.
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Substitution of (4.48) and (4.9) in (4.45) leads to

N(N+1) S
(1= v— i)} (1— vg—ie)* 1o
(LA+1)(N—L—1) [ (2L+2)
PN+ L)L+
(40) £ (4vo) it

(1—v—ie)E(1—vy—ie)E

14
XCN—L—1L+§( )
1—ov—1ie

MN(Pa(I)=—

1+ q
- )cg( P ) (4.49)
1—vp—1e 1/l /2

Using again (4.47) with w=% and j=N—1, we see that
Mu(p,q) is exactly equal to (4.44). Thus (4.40) has been
verified. Our explicit demonstration of the equality
(4.40) provides also a beautiful check of the validity of
our normalization condition (3.10) and the normaliza-
tion constant (4.18).

XCy—r1F %(

5. SOLUTIONS WITH AN INFINITESIMAL MASS

As was emphasized in Sec. 2, the case s=0 needs
special consideration, which will be made in the next
section. In this section, we shall calculate the normal-
ization integral for the case s>0 but infinitesimal. For
simplicity, we confine ourselves to considering the
bound states with #=17-41.

The Cutkosky solutions with #=17-41 read

1

¢xnlm<P’k)=Bkn(S)cylm(p) dZ

« (—8)gen(2,5)
[R(14+2)(1—0)+1(1—2) (1—w)—ie ]t
(5.1)

where s= (2k)2, v=(k+ )%, w= (k—p)?, and B.(s) is a
normalization constant. The Cutkosky function gy, (z,s)
satisfies?

{Dn(@HMen(H[1—5(1—2)5T"}gen(2,5)=0, (5.2)
with
gen(£1,5)=0, (5.3)
where
D, (z)=(1—2")(d/dz)?
+2(n—1)z(d/dz)—n(n—1) . (5.4)
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If we expand gya(3,5) and A, (s) in powers of s,

Zen(2,5) =2 58" (2)

r=0

(5.5)

Aen(8)=3" SAen®, (5.6)
r=0

then (5.2) with (5.3) leads to

[D(2)+Mn@Jgen () =H P (3) (5.7)
with
gn ™ (£1)=0, (5.8)

where
Ho@=—% 1= ().

The summation in (5.9) goes over all combinations of
three nonnegative integers 1, 72, 73 satisfying 7357 and
r1+retr3=r.

The explicit expression for g.,® (2) has already been
presented by Cutkosky?:

8@ ()= (1=2)"C,"(z) ,

(5.9

(5.10)
with

Men©® = (-2) (k1) (5.11)
Hence g4.”(2) can be determined by (5.7) with (5.8)

successively. Since the homogeneous part of (5.7) is
satisfied by g.,® (), the function

0 (D) =gen (2)/8en® (2) (5.12)

satisfies
(1=2)8en® (@D 0ea® (2) 1"+ 2{ (1—2)[gea® (&) I

+ (= D2gen® (@D} een @) I =Hea(3) . (5.13)
Since (5.13) is a linear differential equation of first

order for [ ¢, (2)7, it can be solved by the standard
method. Thus

B ()= (1=32)7C,H(3)

: fen (&)
% / i . (5.14)
L (1=g)r[C (5 ]
with
fenP (2)= dz'C "t (2NH ., (2) . (5.15)

-1

Here the lower limit of integration in (5.15) is due to
the boundary condition g, (—1)=0. The other
boundary condition g,,™ (+1)=0 leads to*

1
fan® ()= / dz CoH () H o (2)=0, (5.16)
—1

31 By means of (5.16), it is easy to show that f,,®(z) is an odd
function of z, and hence the even-oddness of g.,™ (z) is the same
as that of g,,® (), as it should be.
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which determines A,(”. For example, for r=1 we have

1
/ A An V11— 2N @]
-1

X (1—=2)"[C"ti(z) P=0. (5.17)
The use of (4.21) yields
A A @ (k+n) (k+n+1)+n*—1 (5.18)

2(2+2n—1) 26+ 20+3)

a result which was used in Sec. 4. When k=0, Eq. (5.18),
of course, coincides with our previous result,”” which
was obtained by solving Cutkosky’s integral equation
directly. The lower limit of integration in (5.14) is com-
pletely arbitrary because it is related only to the nor-
malization of g,.(2,5). Since the integrand of (5.14) has
real poles for k>2, the integration path should lie in
the complex z’ plane. We conjecture that there are
double poles only. If so, g«n(”(2) is a polynomial of z
and independent of the choice of the path. Then
2" (2), (r>1), has an (n-+1)th-order zero at z==£1,
on account of our choice —1 of the lower limit of
integration.
Our next task is to evaluate the moments

1
Gm(f'f)E/ 4z 298, (2) . (5.19)
-1

To do this, it is not convenient to employ (5.14).
Rather, we integrate (5.7) directly. Integrations by
parts lead to

1
/ ds Zj[Dn(Z)‘l"‘}\xn(o)]g;‘n(r) (Z)

-1
(k=—7) (k+2n+74+1)Gn D
+7 (= 1)Ge 2.

When «>j, therefore, G,,"'? can be expressed as a
linear combination of

(5.20)

1
/ dz z772H,, " (z), (0<m<}j). (5.21)
-1
From this fact, we obtain an important result
Gn"?=0, for 2r4+j<«. (5.22)

This formula is evidently true for r=0, because
H,,®(2)=0. Hence we use mathematical induction
with respect to 7. Since (5.21) is a linear combination of

Gl with  J=(j—2m)+2(n—m')
0<m'<ry), (5.23)

the assumption of induction tells us that (5.21) vanishes
because
2rs+JT<2r+ <k

and 73<7r—1. Thus (5.22) is established.

(5.24)
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In the case 2r+4j=k«, the quantity G, no longer
vanishes, but it is relatively easy to evaluate it because
of (5.22). We find

2r (2k42n—2r+1)Gn (7 ¥721)

r—1
= —)\xn(o) Z (_%>T—T’G‘m(r’, k=2r') (525)
r'=0
In particular,
G:m(l’ *—2) =>\,m(0)G,m/8 (2K+ 21’1/— 1) ) (5.26)
where
282ty | (k1) (k4 2m) |
GnnEGxn(o'K):‘ (527)

(2n)!1(2k+2n4-1)!
We are now ready to evaluate the normalization
integral

Tn=—1i f d*p(1=9) (1—=w)Punim (P, k) benim(p k) . (5.28)

Substituting (5.1) in (5.28) and using the Feynman
parametrization, we can easily carry out the momentum
integration:

7 lB ()lz <2n+1)!/1d +1(1 )+
kn = kn\S) |0 x %" — )t
1 [(n4+1)1T7J o *
xf dz gen(2,5)
X/ A gun (&) R (e, 1—a, 5),  (5.29)
with )
l—a=3(1—2x+31-)(1—x),  (530)
where
i)
Rn(aiﬂrg)z _i_— A
da 98
I‘ylm(p){z
X/d4ﬁt (1= o) +8(1—w)—ie P
—9 —w)—1e 27 2
@ o ! (5.31)

B 227+ (2n4-1) da :9—6
X[ (a+B)*—afs .

Expanding R.(a,8,s) in powers of s and putting a48=1
after the differentiations are performed, we have

Ro(a, 1—a, 5)= /2% (20+1)] i:i [(nt7)/nt51]

X[ (2n42542) 20427+ 3)ai(1—a)i
— i @n+ j+2)e(1—a)i 57, (5.32)
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On account of (5.30), the part of the maximal degree
with respect to z and { in the coefficient of s’ in
R.(a, 1—a, 5) has the form

i
(=17 X an(x)z#mem, [an(x)>0]. (5.33)
m=—j
Expanding g..(2,5) and g,.(¢,s) in powers of s, we see
that the coefficient of s” is a linear combination of the
terms

1 1
/ 0z g (@) [ df gt ©)aFtmpim (5.34)

-1 -1

and terms of lower degrees with respect to zand ¢, where

r=ri+rs+ ] ,
|m|<j. (5.35)
Because of (5.22), Eq. (5.34) vanishes, unless
2r+j+m>x,
2ot j—m>k. (5.36)
Hence
I’=7’1+7’2+j21€. (537)

Therefore, the leading term (i.e., lowest order non-
vanishing term) must satisfy

r=«k, (5.38)

namely, I,n/| Bn(s) |2 is of order s¥. When (5.38) holds,
(5.36) and (5.35) yield

m=ry—r1,

jizlrn—nl,

k> ritret | 11— 72| =2 max(r1,rs) . (5.39)

It is not very cumbersome to evaluate /, explicitly
for k=0, 1, 2, 3. When x<3, (5.39) leads to ;<1 and
79<1, and hence we encounter G, *2 only, which
is given by (5.26). The explicit expressions for
In,(k=0,1,2,3), are

Io./| Bon(s) |2=—[m(Gon)?/ 22 2n+1)]+0(s) ,
m(n+2)*(G1a)?

2 (2t 1) (2n+-3)

m(n+1) (n+2)* (n+3)*(G2a)*

22145 (234-1) (20-+3)2 (2n4+-5)
Xs?+0(s%) ,

7 (n+1) (n42)* (n+3)* (n+4)*(Gs)?

220413 (204+1) 204+ 3) (20 5)2 (2n+7)
Xs*H0(sY), (5.40)

lln/lBln(s>’2=+ +O(SZ) )

I,/ |Boa(s)|2=—

ISn/|B3n(3)]2=+

where Gy, is given by (5.27).
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The normalization condition (3.10) leads to

Lin=Nen’ (8)/Men(8) =MD /N @ 40(s) . (5.41)

Since Aen® /A @ is negative, as was shown in (5.18),
the sign of the norm of ¢eum(p,k) is (—1)¢ for
k=0, 1, 2, 3. Thus it is extremely likely that all the ab-
normal solutions with odd « have a negative norm.

Finally, we consider the case s<0. The only differ-
ences from the above are the solid harmonic (2.10) and
the sign of s. Thus the sign of the norm of a solution is
(—1)¥. This is quite analogous to the result in Sec. 4.
Summarizing the three cases s>0, k,=0, and s<0, we
can say that the sign of the norm of awy solution is identi-
cal with its “po parity” (positive for an even function of
2o and negative for an odd one).

6. SOLUTIONS FOR MASSLESS BOUND STATES

We discuss the case s=0 but k,#0 in this section.
Since we cannot take the rest frame of a massless par-
ticle, no correct discussion, in this case, has been made
so far, at least within the present author’s knowledge.

We have found the solid harmonics Xym(p) in (2.13).
Contrary to the other cases, X;.(p) is not self-reproduc-
ing in the momentum integration appearing in the B-S
equation, except for the case m= 1. When m=-£1l, we
see
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provided that

A= (1/4r)}[ (2+1) J/241. (6.2)

In this case, our solutions are nothing but the s— 0
limits of the Cutkosky solutions apart from the normal-
ization constants. This corresponds to the well-known
fact that a massless particle has only two polarizations
independently of its spin 1(£0). The norms of our B-S
amplitudes with n=1I-41 are, therefore, positive for
k=0 and zero for k>1, according to the result given in
Sec. 5 [ By, (0) is undefined for x>1%7].

Now, our main task in this section is to seek for solu-
tions other than the above. For simplicity, we consider
the solutions with #= 141 only, but /is no longer a good
quantum number, in our case. We introduce a quantum
number

M=l—|m|=n—|m|—1 (6.3)
and consider a B-S amplitude
M 1
¢“"M’"(1”k)=zo (?3+P0)M—T(P1ﬂ:if’2)"_M_1/ dz
= —~1
—1 hxn 4
(=) henu"(2) 64

X )
[3(1+2) 1—0)+}(1—2) (1—w)—i—r?

where the double sign corresponds to the sign of m, and
a normalization constant is omitted. When the B-S

X1 21(p)= Y1 1(p) , (6.1) kernel operates on (6.4), we encounter the integrals
i P (b oV (i i)
L —(p—p')—ie [3(1+2)(1—v)+3(1—2)(1—w)—ie] "
n—r+2 (ps'+po )= (P iy )M
- / (1 —x)r—rtt / iy , — . (65)
% J {(—[p'—2p+ A=)k P+ (1—2)[1 —xp>— 2wz pk ]—ie} n—r+3
The change of the integration variables into henae" (%) should satisfy the integral equations
M (M=) (n—r+1)!
b= pu' —xput (1—x)2'k, (6.6)  henu"(2)=
2(n—r) r'=0 (M —7)!(n—7'+1)!
leads to 1
X [ de (—2k)
B 9= 4 (ot p)—2(A—)ee. (6.) F(E2h)
. X[R(Z)Z,)]n_rhngr' (ZI) ’ (68)
The appearance of the last term is the essential dif- Wwith
ference from the case s>0. It is easy to see, by means of R(z2)=(F2)/(1F7), forz=s'.  (6.9)

rotation po”’ — ips”’, that the part ps/’+py”’ vanishes
when integrated. Thus after carrying out the mo-
mentum integration, (6.5) is a linear combination of the
terms proportional to (ps+po)?, (=0, 1,---, M—r).
Our calculation is formally quite analogous to
Cutkosky’s® for the general case (0<I<#n—1). Hence,
we write here the final result only. The weight functions

For =0, we have

)\xn 1
Franal®(2) = E— dZ[R(2,2) " hena®(Z') , (6.10)
nJ 1

# We have shown that B, (s)~s~¥* as s = 0. If £, — 0, too,
then the z integral in (5.1) also tends to zero, and ¢.nim (p,k) has
a definite limit. In the present case (k,>40), however, the z integral
does not vanish.
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which has the same form with the corresponding
Cutkosky equation. Hence /,.2°(2) and A, are given
by (5.10) and (5.11), respectively. Forr=1, (n>M>1),
(6.8) becomes

() (4410 M/“
dz’
20—1)  Lnt1

X (—22'ko)[R(2,2") " hent® (")

hngl (Z) =

-1

1

+ dz'[R(z,z'n"—mel(zf>]. (6.11)

-1

We expect that (6.11) will have no nonsingular solu-
tion, because its homogeneous part is satisfied by
Zet1, n—1© (2). For example, consider

1
ﬁnME/ dz zhony'(3) . (6.12)
Since -
1 2(n—1)
[ dz z[R(z,d) " 1=—, (6.13)
-1 n(n+1)
(6.11) with k=0 leads to
. 2Mko ! .
Pnpr=— / dz 22(1—22)"+har. (614)
n—l-l -1

Hence ﬁnM cannot be finite. The situation is quite
analogous to that of the Cutkosky equation for n=14-3,
(k=0).1012 In that case, we have found a double-Regge-
pole behavior in the high-energy asymptotic expan-
sion.”? Correspondingly, it is expected that there exists
a double pole at s=0in the Green’s function. In general,
we conjecture that there will be multiple poles at s=0
for both (n>143, m==l) and (w>1+1, |m|<l). If
so, and if the B-S amplitudes are well defined also for
such cases, then their normalization integrals should
vanish on account of (3.4).

7. SUMMARY AND DISCUSSION

In this paper, we have explicitly calculated the nor-
malization constants of the B-S amplitudes in the cases
k,=0 and s infinitesimal. The most remarkable result
is that the abnormal solutions with odd « have a negative
norm. Furthermore, we have shown, in the case k,=0,
that all the normal and abnormal solutions appear in
the corresponding scattering Green’s function as the
residues of poles. It is very likely, because of continuity,
that our conclusions remain valid for all 0<s<4. If so,
we are led to the following important results.

(a) Since the appearance of ghost states may be in-
consistent with an axiom of the conventional quantum-
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field theory, an upper bound on the coupling constant
should be imposed in order to avoid it.® In the present
model, we have!:?

A= (4m)1(g%/4m) <%. (7.1)

(b) Ohnuki, Takao, and Umezawa! inferred, by a
crude argument, that the scattering Feynman ampli-
tude would, in general, contain no abnormal solutions
of the B-S equation as the residues of poles. Our result
may provide a counterexample to their statement.

(c) Since it is likely*¢ that abnormal solutions do not
correspond to the eigenstates of the total Hamiltonian,
we might have to conclude that the Green’s function
will contain some unphysical poles characteristic to the
off-the-mass-shell amplitude.

It is therefore very desirable to check our conjecture
by explicitly calculating the normalization integral in
the case of an infinitesimal binding energy s~4. Of
course, one might suspect that the ladder approximation
would be doubtful. That will be the case guantitatively,
but we believe that its gualitative conclusions will be
true. For example, our results in the case k,=0 are
essentially based on the Minkowski metric property of
the solid harmonics, so that they will not be affected
by the inclusion of higher order kernels.?

Our second emphasis is the speciality of the case of
massless bound states (s=0but £,£0). Only the normal
solutions with m= -1 are the limits of the solutions for
s>0. We have pointed out that all the abnormal solu-
tions with m=21 (and #=1[4-1) have a zero norm. For
the values of m other than ==/, we have obtained a set
of non-Cutkosky integral equations for weight func-
tions, but they seem to have no nonsingular solution in
exact analogy to the Cutkosky equations for the mass-
less bound states with #>14-3. It is extremely likely
that, in these cases, the Green’s function has a multiple
pole at s=0. This is quite an interesting problem and
subject to future investigation.

Note added in proof. The conjecture that the sign of
the norm is (—1)* for 0<s<4 has been verified ex-
plicitly for the following solutions with n=I+1: (1)
k arbitrary, s infinitesimal : (2) k=0, 0<s<2; (3) k=1,
0<s<2+ (n+2)': (4) k=0, 4—s infinitesimal. De-
tailed accounts will appear in a forthcoming paper.

3 Qur bound is qualitatively different from the bound in the
S-matrix theory, because in the latter it is derived under the
assumption that the number of stable one-particle states is
assigned a priori (or in a self-consistent way), so that even if the
coupling constant exceeds the bound, we can modify the theory
by changing the number of stable states without violating
unitarity.

3 Indeed, this property can be proved even in the exact B-S
equation (the exchanged meson may not be massless) if we
assume A,/ <0, because to see the sign of Inxz; we need only the
fact that both [Ar'(v) ]! and fy1(v) have spectral representations
with real spectral functions [see (4.11)].



