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BIPIN R. DESAI

Department of Physics, UNiversity of Califortua, I.os Angeles, Ccl~formu

(Received 18 January 1965}

It is shown, on the basis of potential theory, that for a Regge pole with position e(t}&-, the reduced residue
p(i)/v &'& behaves essentially as [n'(f)/E])F' &'& near threshold (v&0), where 2 is the effective radius inter-
action. The quantity 7 (t) = (mvv/v) p (i) which occurs in the asymptotic term y (t) (s/2»&v')» can therefore be
considered as a slowly varying function of t only if one takes m0=E '. Assuming that our threshold expres-
sion gives a qualitative description in the relativistic case, we note that if 3M&1, where ~ is the nucleon
mass, then the normalization mD=M used in high-energy phenomenology will give rise to an exponential
falloff of v(t) with (width) '=2n'(0) ln(MR). The values of Kin the i channel of 7r&r, sF, and fttf N, estimated
from the knowledge of the nearest left-hand branch points or factorization, occur in increasing order, and
for each of them MR&1. Our results for the Pomeranchuk trajectory roughly reproduce the exponential
diffraction shape and indicate that a larger total cross section implies a sharper falloff of the amplitude in
the diffraction region. A connection between f and the diffraction width is discussed, as well as the question
of zeros in P/v .

L INTRODUCTION

ECENTLY the properties of the residues of Regge
poles have attracted a good deal of interest. It has

been known for some time that at zero momentum
transfer, the reduced residue of the Pomeranchuk pole
(P) should be proportional to the total cross section. ' It
is now realized that it must, in addition, contribute
substantially to the di6'raction width. The u residue, it
turns out, must have a zero at a small value of the
momentum transfer in order to explain the difference
between pp (E p) and pp (E+p) differential cross
sections.

Consider ww scattering. Let dr(s, f) be the scattering
amplitude, where s is the square of the center-of-mass
energy, —t the square of the transfer momentum,
and I the isospin index. A r(s, t) can be represented as a
sum of the contributions of the Regge poles in the
crossed channel. Writing explicitly the contribution of
the leading pole P with position n(t), we obtain

& r(v& w(& +&)v=(~&—v te(&+.
2p

dlmenslonless quantity (ms /v) P, where ms ls an arbi-
trary mass, is called the reduced residue. Note that one
can write

I pI =v(f)I I, (3)
E2v v i &2m, ' &2m, si

V(&)= (mo'/v) p(&).

rr (2n+1)2
—'&r&i'I'(-'+rr) y (t)

V(&) =pr
I'(1+~)

(4)

where we take ms ——M. The reduced residue y(t) can be
written Lsee (A20)7 as'

One generally takes mo to be a suKciently large mass,
such as the nucleon mass Jtj/I. However, it is important to
realize that the behavior of y(t) depends sensitively on
the choice of the scaling factor mss. The quantity y(f)
introduced in I is given by

A (s,f) -. —y(f) (s/2Ãs) a((1+s—' )/sinwn),

p(f) =7(0)ss '&,1+e—iva

+other poles, (1)
2 sine+ dt'

~.(i'), f'(f'-f) (6)
2a &tsP (r+~):—prw(2~+1) P(f)

/~GO I'(1+n) We shall call rf'(0) the (width) —' of y(t) at i=0 In case.
rf'(0) turns out to be non-negligible for ms ——M then the
form (5) would be quite convenient, since it would show,
in a natural way, a sharp exponential fallo6 indicated by
the experiments. ' From the optical theorem,

s) 1+a '
I, (2)

2vi 2 sinwn i
where pr is the crossing matrtx, k=4(v+mv'), rr(0) =1,
and p(f) is the residue. The quantity p/va or the (s(s—4m '))»'

ImAr(s, D) = o„r(s),

where o r(s) is the total cross section. A comparison of

' B.R Desai, Phys. Rev. 135, 8180 (1964).

B 11'l4

* Supported in part by the National Science Foundation.' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(1961}.' T. Q. Binford and B. R. Desai, preceding paper, Phys. Rev.
138, B1167 {1965};hereafter referred to as I. References to the
earlier experimental and theoretical work are given.
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(2) and (7) shows that y(0) is proportional to the total
cross section at infinity.

In Sec. II we derive an expression for P/v on the basis
of potential theory. It is shown that as long as 0.&-'„ the
quantity p/v» for v&0 is essentially = (rs'/R. )Rs», where
R is the radius of interaction in the t channel. Thus if vre

take the scaling factor m()s to be equal to R ', then 7(t)
can be considered as a slowly varying function of t.
Alternatively if one takes neo=A, the normalization
commonly used in high-energy phenomenology, then
y(t) is essentially (MsR') and. its behavior then de-
pends sensitively on the value of R. If MR&1, then it
will fall off exponentially in the diffraction region. The
asymptotic behavior of the amplitude is (sRs)». This
has two important consequences in the relativistic case,
for I' in particular, where ca= 1 near threshold. It shovrs
that the shape of the diffraction pattern depends on the
radius R, which can be different for different reactions.
Secondly, it shows that a larger total cross section im-
plies a larger R and therefore a sharper falloff in the
amplitude for negative t. Applications to ~~ as well as
m-N scattering, etc., vrhere multichannel effects are im-
portant (with the 7'- intermediate state dominating),
are discussed. Typically, the t-channel forces arise from

p exchange in xm- scattering, N exchange in mN scatter-
ing, etc. Our estimates show that the order of increasing
R is m.x, ~N, NN, and for each of them MR&1. In all
these cases the diffraction vridths are roughly reproduced.

In Sec. III a relation between the fe parameters, the
total cross section, and the diffraction width is estab-
lished and it is shovrn that the value of the mm width is
consistent with the value deduced from factorization. 4

It is also shown that a larger value of the total cross
section implies a sharper falloff. This work is along the
line of Ref. 3, but in view of the recent numerical
results of I, it is noI necessary to assume that the phase
of the reduced residue is 2s- at f' Asmall p. hase con-
sistent with the potential-theory results is sufhcient to
give a sharp enough falloff.

In Sec. IV we discuss the question of the zeros in P/v»
for v&0. It is shovrn, on the basis of potential theory,
that short-range repulsion together with long-range
attraction can give rise to such zeros. For the single-
channel as well as multichannel case simple zeros can
occur only when the pole recedes into the left half-plane
(t( —st). These results are derived for spin-zero par-
ticles only. In the relativistic case, however, it is pos-
sible for n(~) to lie in the right half-plane, between
l= ——,

' and l = 1.' In that case the zeros may occur when
the pole is in the right half-plane. As mentioned earlier,
the existence of such zeros may be of interest for the
particular case of u exchange. We also show that the
residues of the higher rank trajectories, in general, de-
velop zeros; the higher the rank, the larger the number
of zeros.

4M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962); V. N.
Gribov and I. Ya. Pomeranchuk, iNd. 8, 343 (1962).' G. F. Chew and C. K. Jones, Phys. Rev. 135, B208 (1964).

In the Appendix we summarize some useful results
about the residues obtained from potential scattering or
from the lovr-energy effective-range theory.

II. THRESHOLD EXPRESSION FOR g/v» ON THE
BASIS OF POTENTIAL THEORY

From (A1) and (A2) it follows that for Imn=p, and
v=k'&0

do( (p=e'- —
]

« f'((s, —k, r) (, k=i(k)
p (g)

dv(
' ' )

where f satisfies the boundary condition'

f(o( —k, r):e'"'

Let r=RO be the distance beyond vrhich the potential
vanishes. We can then write

dr f'=
Rp

dr f'+ dr f'.

dr f

and

I'(n+-,') 2s-
dr fs-&aa» dxx '~

vr(n+-', )s k

I'((t+-ss) 2' (kR())-'~'—g27I'A

w(n+-,')s k 2n —1

w(2n —1) 1 d Rs')
plv=, , ——

I
~

rs(n+-', ) R() dv 2 )

(12)

Because (13) is an expression valid near threshold, we
may expect it to give a reasonable description in the
relativistic case also. The magnitude of Ro then should
presumably be somewhere between the pion and nucleon
brompton wavelengths.

' R. G. Newton, J. Math. Phys. 3, 867 (1962).
'H)(»(s) = (i/sinews)[e ' "J)(s)—J z(s)g= J„(s)+i/Vt, (s), where

1)/), is the Neumann function and J„(s)= ((s/2) "/P(1+X) )X[1—(I+)) '(s/2)'+ "3

On a Regge pole the wave function f behaves as r +' at
the origin. Hence the integrand in the first term above is
a well-behaved function of r and k. For -r&RO, the
potential vanishes, and therefore f in that region is the
free wave function'

f((s k r) —e((m'/2) (»+1) (ts kr)1 2/+ (1) (kr) (11)

where H +(~~2)~" is the Hankel function of the 6rst
kind. ' It depends on k and r only through the product
kr=x. At infinity it vanishes, consistent with the
boundary condition (9), and for 0&~

~
x/2

~
(1,

f=e'-"I'(~+s)/w"'(~+ ') (*/2)-
Thus when @0=MD is small in absolute value and
a) ts, the second term in (10) is dominant. In that case
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This result is valid for 0 &~s ~
vRs'

~
(1 and n(t})i. The

result for n(t) &~-, is discussed in the Appendix. It is
shown that in that case P/v increases as v decreases
from threshold. ' If we assume Eo to be small enough to
allow us to use (14) near 1=0, then for sRss/4))1 the
term (sRss/4)a gives rise to a sharp exponential failo6'
with (width) '=n'(0) ln(sRs'/4). s An application of
(14) to irir scattering is discussed later in this section.

Expression (13) is valid for the single-channel case.
For the multichannel problem, consider the situation
where the channels are not very close together. Of
course, we have in mind xÃ, EE, EE, etc., scattering
where, in the t channel, the lowest threshold is ~m, which
is well below the EE and ÃX thresholds. The ampli-
tudes involved will each have their nearest right-hand.
branch point at the threshold of the first channel. The
reduced partial-wave amplitude for scattering from
channel 1 to channel I for a given / is

Al„, i(v) =Bi., i(v)

oo

B,„ i(v') ImD», i(v') Dii, i(v), (15)
g o V V

where ImD» i= —pinVii i tile quantities X» and Dii
bclng the usual nuIQclatol and denoIQlnRtol fUnctions of
Aii, and B has the left-hand cut of A. The reduced
residue at l=a is

pi 1 "dv'
Bin, a(v )piaiVtl, a(v )

(viv„) l' rr s v' —v

Ol

8—Dii, i(v)
N

Substituting (13) in (2) we obtain for the P pole

(2n+ 1)(2n —1)
A r (s,t):—pla. @s

I'(a+ 1)l'(a+ s)

2a'(t) sRs'~ t1+e—'-~
X I i l (14)

Rs 4 ) k slnila

For pii/vi' one can safely assume (13) to be true. How-
ever, for the other channels Pi„/(viv ) I' depends on the
relative behavior of B~„and B~~. An indication of this
behavior can be obtained if we consider the Born
RInplltudes

gin. (Pin + v+ivn)
Q-l

2(viv )'+'&la 4 2(viv )'i' )
where gg„and pg„' are the usual strength and range
parameters. Thc v s Rlc thc chRnncl momcnta.

Clearly, if the strength and the range of Bl„are large
compared to Bii, then so is Pi~/(viv~) "compared to
P»/vl . Roughly speaking, for small vl(&0),

Pi- P» gi.

(19b)

where R is thc effective radius ' and v~ and v~' denote
the positions of the nearest left-hand. branch points of
B~y and Bl„, respectively. These positions, of course,
depend inversely on the range of interaction. The 0.
dependence above is determined by the distance of the
left-hand branch point to the first threshold as well as by
the separation between the thresholds. Comparing (19)
with {13)we see that for a fixed separation between the
thresholds, the closer the branch point of B~„ to v~=0,
the larger the eBectlve radius of pi~/{viv~) '. Once p»
and pi„are known, all the remaining residues can be
obtained from the factorization theorem. Thus if pi„has
a larger effective radius than Pii, then the radius for P„„
will be even larger.

Consider some applications of (13}and (19) to the
relativistic case. As mentioned earlier, these expressions
should give a qualitative description of the relativistic
phenomena. For irir scattering we use (13). The scat-
tering here presumably proceeds through a single p
exchange. Roughly speaking the range of interaction
should be inversely proportional to the distance of the
left-hand branch point from the origin. The p exchange
gives rise to a branch point at v = —m, '/4 and therefore
we expect Es'= (m, '/4) '. This value of Jls yields the
total cross section o at inanity Lsee (7)] to be

p» " dv'Pi
Bi-,-(v') pi-&it..(v')

(viv~) I vi e v v—
tEV

Bii, (v')pi, Nil, (v'). (17)
o

8 The difference in the behavior above and below a= ~ arises
because of the centrifugal barrier which tends to push the domi-
nant part of the wave function away from the origin for higher
partial waves. The most sensitive dependence of

pj's"

is on the
range of the potential. However, it also depends on the strength of
the potential through thea-dependent terms in (13).' In general, n' is a decreasing function, and therefore it gives an
additional positive contribution to the di8raction width.

where a'(0) is taken to be 0.4 (BeV/o) ' on the basis of
the numerical 6ts of I. According to the factori7ation
theorem, 4 o should be about 15 mb. The (width) ' of
y, from (4) and (14), is found to be Lin units of
(BeV/c) 'j

I' .=Ld in'(t)/dhj~ g s
——1.4+2.5a"(0).

The value of rr" (0) is not known from experiments as
yet, but we expect it to be positive and quite small

"Note that it is the range of forces in the t channel that appears
here.
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L&n'(0) in magnitude]. "The above result should be
compared with the value of 1.27 (BeV/e) ' obtained in I
through factorization.

For mÃ scattering, the ] channel involves xx —+ EE
where the Born amplitude corresponds to a single
nucleon exchange. The left-hand branch point in this
case is at —m '/4M' where M is the nucleon mass.
Therefore in (19),

vr, t'= —m '/4M'
and

vr, '= nz 4/—4M' Ms+—m, s= M'. —

We have already mentioned above that vr, r= tn, s/—4.
The quantity

then is greater than unity. Therefore, the effective
radius in xE appears to be larger than in mm. In a more
accurate treatment of the xE problem, which would
include spins, etc., there may be deviations from ex-
pression (19). However, the above feature, namely, a
larger radius in ~Ã, should survive, since it is based on
rather general grounds, depending primarily on the
distance of the nearest branch point. Expressions (19)
and (20) should reasonably well approximate the actual
diffraction shape even though the total cross section
would depend on the details of the interaction and not
fust on thc radius. Therefore~ lt would bc lntclcstlng to
see the diffraction shape predicted by (19). The
(width) ' of y in units of (BeV/e) ' is then given by

I',st ——Ld in'(h)/dh] i, s
——2.7+2.5u" (0).

From I the experimental value for this quantity is
3.47 (BeV/e) '. For EX scattering the width can be
obtained from factorization. %e find

I's ~=4.0+2.5n" (0),
The experimental value is 5.67 (BeV/e) '.

The xE problem within thc relativistic framework is
being investigated.

Even though one may not expect (13)and (19) to give
quantitatively accurate results, they nevertheless con-
tain information which, we believe, will be carried over
into the relativistic case. For one thing it is clear that
the most sensitive dependence of P/u" comes from the
term R'~, where Ih. is the effective radius (in either the
single- or the multichannel case). If one takes the scaling
factor mes to be equal to R ' (see (3)) then the resulting
reduced residue y(h) is a slowly varying or, more pre-
cisely, a nonexponential function of t. On the other
hand, if one takes the normalization no= M, the nucleon
mass used in high-energy phenomenology, then y(h) and

y(h) are (MsR') Lsee (4)]and fall off exponentially if

"G.F. Chew and V. L. Teplitz, Phys. Rev. 136, 81154 (1964),
have obtained reasonable agreement with the 7171 total cross
section and the diGraction width within the strip approximation.
Their q; should be roughly inversely proportional to our R0. They
take the magnitude of a"(0} to be equal to that of n'(0}.

3M&1. The value of Jh'. will be di6erent for different
reactions. A larger value of E implies a sharper fallofI'.

Our previous estimates showed, for instance, that the
value of E. for xE is greater than for mm. , and for both
cases ME.&1. In the earlier work on the Regge hy-
pothesis, such a dependence on the radius was not
realized, and neither was the fact that E can vary from
one reaction to another. This led some to approximate
y(h) by a constant. Our results show that y may in fact
fall OG exponentially for negative t.

Whatever value we choose for mo, the contribution of
P to the scattering amplitude behaves as (sRs)~. A
larger total cross section implies a larger R and, there-
fore, a sharper falloff in the diffraction region. This
result is borne out quite well by the experiments. Some
further amusing consequences follow from (13) and (19)
that would be interesting to check experimentally once
high enough energy becomes available. It appears that
the diffraction shapes of two different reactions are the
same at energies that are inversely proportional to their
total cross sections. Also, as we noted earlier, (14) is
true only for 0&~4~ vRes~ &1. Thus the range within
which the di6raction pattern is exponential decreases
with increasing total cross section.

IIL CONNECTION BETWEEN f', THE TOTAL CROSS
SECTION, AND THE DIFFRACTION WIDTH

It was pointed out in Ref. 3 that useful information
about the width of y(h) at h=0 can be obtained if one
notes that f' lies on the P trajectory. Unitarity tells us
that at the position of f' the residue of I' should be
proportional to the width of f' Since the w. idth is a real
quantity, the imaginary part of the residue must be
quite small. Therefore, the phase of the residue at fs
must be 2ms+8, where 0 is a small number and
v=0, 1, 2 . Two assumptions regarding the experi-
mental values of the Regge parameters were made in
Ref. 3, which, as we shall point out in the next para-
graph, have turned out to be erroneous. It was assumed
on the basis of the fits of Foley eh al.rs on mP scattering
(with I' alone) that n'&0. 2 (BeV/e) ' and therefore is
negligible as far as the evaluation of the diQraction
width was concerned. Secondly, the (width) —' of y'(h)
was taken to be the same as the experimental value of
the (width)

—' ( 10 (BeV/e) ') of do/dh of s X and &E
scattering. Since n' was considered negligible the
(width) ' of y(h) would be the same as that of 7(h) and,
therefore, r/(0) would be about 5 (BeV/e) '. A phase
representation of the type (5) with me Mwas written——
with the following expression for gl ..

rhr(h) = es ((h—4ns~s/h+c) ) '+"s, h)4m, ', (21)

where ns(= 1) is the threshold value of rr. This form was
taken tn order to g1ve the correct threshold power rre+ s
and satisfy the behavior at infinity suggested by the

~ K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.
Russell, and L. C. L.Yuan, Phys. Rev. Letters 10, 376, 543 (1963}.
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strip approximation. " A knowledge of y(0) ( 0'),

uzi(tz) ( width of f'), and z1z(tz) would enable one to
determine the two parameters e and c from which the
value of z)'(0) can be determined. As pointed out earlier,
rlz at f' could be either a very small number or essen-
tially 2z-, 4z-, etc. It was shown in Ref. 3 that rz'(0) =5
was impossible to achieve unless z1z(tz) was about 2z., the
point being that to obtain a large value of g'(0) requires
a sharp increase in qq above threshold which is provided
only if the value of zlz at f' is large. The choice 2', how-
ever, as pointed out if Ref. 3, is in contradiction with the
potential-theory results. According to potential scat-
tering the phase at a resonance should remain small
instead of being 2m.

In view of the results in I, the assumptions about a'
and i)'(0) have to be modifmd. In I it is found that n' is
about 0.4 (BeV/c) ' and therefore non-negligible.
Secondly, even though one may find (in the region
below 20 BeV/c) the widths of do/dt for 7rzz, 7rN, and NN
to be essentially the same, this does not necessarily
mean that the widths of y(t) of I' at t=0 are also the
same. In fact, in I it is shown that the (width) ' of y'
at t=0 for mm- should, on the basis of factorization, be
only about 2.54 instead of the previously assumed value
of 10 (BeV/c) '. Taking n' to be 0.4 it is found that the
(width) ' of ys with ms =M is even smaller. It turns out
that i1'(0) should only be about 0.87, a factor of about 6
smaller than the previously assumed value.

We shall show below that the value

i1'(0) =0.87 (BeV/c) '

is consistent with the phase z1z(tz) at fe being small and,
therefore, consistent with the prediction of potential
theory, Now

nz(~f) =~z»(~'/r5)+t)(~f) (22)

're (tf)=y (0)e""~'z& cos(z)z (tz)), (23)

where, as mentioned earlier, 0, the phase of the residue,
is assumed. tobe small. If, for a given angular momentum,
l and for all energies a single Regge pole were to satisfy
unitarity exactly then 0 would be zero identically. How-
ever, this is highly unlikely to occur, since secondary
trajectories do play an important role. '& The magnitude
of 0, in general, would depend on the contribution of the
secondary trajectories. In our case of the I' pole it
would depend on the behavior of I" near f', but one
should expect 8 to be between zero (Pz——0) and
z/4 (Pz= Pzz). In Table I we give the values of i1'(0) with
0 = 15 mb for the above two cases. We observe that
the experimentally predicted value is somewhere be-
tween the two extremes. This provides us with some
justification for saying that the predicted width of p(t)
at t=0 is consistent with the potential-theory results
and with the f' parameters.

If by g(t) we denote the ratio 7(t)/7 (0) then we 6nd
numerically that for fixed i1z a smaller value of gzi(tz)

"G. F. Chew, Phys. Rev. 129, 2363 (1963).
'4 A. Ahmadzadeh, Phys. Rev. 133, 81074 (1964).

TABLE I.The values of q'(0) in (BeVjc) ' for different values of
the phase 8 at f . For comparison the experimentally predicted
values are given.

0.55
0.71
0.87

e=~/4

1.64
2.83
4.02

Exp

1.27
3.47
5.67

implies a larger i1'(0). This means that the larger the
value of the total cross section, the sharper the falloff of
y(1) at 3= 0. As mentioned earlier, such a relationship is
observed in the high-energy experiments. The fact that
do/dt sho.uld fall off more sharply as the total cross
section increases is a well-known consequence of s-
channel unitarity for large s."Here it appears to be the
consequence of t-channel unitarity. Our result also
means that a smaller width of f' implies a sharper
fall oG.

We have used the expression (5) for z.N scattering
neglecting the nucleon spin and with i1z given by (21),
(22) and uzi by (23). This is done primarily to illustrate
the eRect of increasing the total cross section. Our re-
sults for mE should not be considered, in any sense, as
quantitative estimates. For xE scattering 0 ~——25 mb.
Here the t channel involves 7f7f. —+E/, but the cut
starts from 3=4m '. We assumed f'NN coupling to be
the same as f'~decoupling. . Since y(0) in z.N is larger
than in mz, we obtained a larger value of q'(0) (see
Table I). However, it is not so large as to accomodate
the experimentally observed value. This might well
mean that f'NN coupling is smaller than fezzzz, which
will have the effect of increasing r/(0) further. The
values for EX scattering obtained from factorization
are also given in Table I.

with

r V (r) = Ch'p(t') exp( —1'&""r)

(24)

It is known from (A7) and (A8) that for the leading pole

~(~)= —s —e, s&e&0,

and
p/'~ —Co, z&e&o, (25a)

(25b)

» R. Glauber, Lecturesin I'hysics (Interscience Publishers, Inc. ,
New Pork, 1958), p. 315,

IV. THE ZEROS OF THE RESIDUES IN
POTENTIAL SCATTERING

In the Appendix it is shown that if at threshold
~)—iz, then p/i is positive there. For a general super-
position of Vukawa potentials
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where Co has the same sign as po. Clearly the value of
P/v at infinity depends more on the strength than on
the range of the potential.

In what follows we shall take s ~&0. Consider the
situation where one has a long-range attraction followed
by a strong short-range repulsion. It is known that if
the attraction range is sufBciently long then the
threshold value of o. must be )—~~ and consequently at
threshold P/v must be positive. If, in addition, the
short-range repulsion is sufBciently strong, i.e., if p is
large and positive at infinity, then (25a) and (25b) can
be negative. Thus in this case P/v~ is positive at
threshold and negative at infinity. Hence, if we ignore
the possibility of cuts, it must have at least one zero in
between. We know from (A1) that

Pe ' ~= (2u+1) drr 'f'(u —k
—r)

0

u) —
2 (26)

where f(u, —k, r) is real. Therefore, Pe '~~ and P/vl are
positive if n) ——,'. Hence the zero cannot occur as long
as the pole is in the right half-plane. However, zeros can
occur when the pole is in the left half-plane. The position
where the residue vanishes can be determined from the
relation'

e"f(l, k)f( t —1, k)——
+e ' 'f(l, k)f( t 1, —k)—=2—cossl, (27)

Such a circumstance would be in contradiction with
(28). Hence, zeros cannot occur for u) ——,'.

our results are obtained on the basis of potential
theory. In the relativistic case, however, it is possible
for a(~) to be in the right half-plane, between i= —-,'
and /= 1. In that case the zeros may also occur in the
right half-plane.

For the co case, therefore, it is quite possible for zeros
to exist if there is a strong short-range repulsion.

We also note that the secondary trajectories, in
general, have zeros even though the leading trajectories
may not. It is shown in Appendix (v) that for a single
attractive Vukawa potential ge l'" with g&0,

p/va ~ i
yves

1—
A phase representation of y(v) of the type (A16) can be
written which satisfies the threshold behavior and has a
vanishing phase at infinity. However, in order to satisfy
the above condition, (A16) must be multiplied by a
polynomial of e—1 degree. Hence P/v (and P) of the
eth-rank trajectory has m —1 zeros. This can be gener-
alized to a superposition of Yukawa potentials and it
can be shown that whenever P/v~ goes to infinity as v"
it implies the existence of at least p zeros.

Note added in proof. It may be of interest to note that
the relation p/v (R'/4)~&'& can be made plausible
also from the following consideration. A partial-wave
amplitude Ai(t) can be reasonably well given by the
Khuri-representation

where the S matrix is given by

S=f(l,k)/f(l, —k).
where

a, (t)=p(t)e-«--&~/t —u(t),

$= lnL1+ (ti2/2v)+ (ti2/v+ /4/4v~)»2j

At a Regge pole, I=a and f(l, —k) =0. It is easy to see
from (27) that the residue can vanish either at negative
half-integral values of a or at the fixed poles of f(t, &k).'
The fixed poles of f are known to be at negative integral
a and. , at a= n/2 —ewher—e ri=1, 2

For the multichannel case, in place of (26), we have
the relation (see A20)

Tr(Pe '~~e) = (2u+1) drr 'jrj, (28)

where the u's are not necessarily positive. It can be
shown, as in the single-channel case, that the residues
p;; can be negative if the potential V;; has a strong
short-range repulsion. Thus the residues in this case can
also change sign.

At first sight it appears that since the N's in (28) are
not necessarily positive, the residues can change sign
even when cx) —~. However, from factorization, it is
known that

U 4s N.

and p
—' is the range parameter. In analogy with the

Breit-Wigner form we expect

p(t)e-&' &s=cv'

near threshold, where c is a slowly varying (non-
exponential) function of v. From this it immediately
follows that for

~
v/ti'~ (1

p/va~ (g2/4)a(t)

where the usual identification between R and the
nearest left-hand singularity, namely E'= (p'/4) ', is
made.

APPENDIX

Here we summarize some of the useful results about
the residues. The results given are based on potential
scattering or on low-energy effective-range theory. Most
of them are contained either explicitly or implicitly in
the published literature. Whenever necessary, explicit
derivations are given.

(i) An expression for the residue valid. for v=k'(0
and u) —~~(Ima=0) is the following6:

Therefore, as long as we insist on simple zeros and no
left-hand branch points, a zero in one of the residues
implies a zero in all the residues at the same position.

Pe
—'~~= (2u+1) dr r 'f'(u —k) r), (A1)

0
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then one gets

P(v) —~ ( R—/2v)[1 i—(g/2+v) ln(4v/&i')],

n(v) —+ 1—i—(g/2Q )v,

(A10)

imaginary parts of Pc ' ~ for v&0. Such oscillations are,
of course, not surprising, as they are necessary to ensure
the vanishing of Pc '~" at threshold in the manner indi-
cated by (A15). Again this result can be generalized to a
superposition of Vukawa potentials.

Following (A13) we can write for the reduced residue

&/" ~ (—g/2)+i(g'/4V'v)»(4/& ') (A11)

Thus if 8(v) is the phase of P, then at infinity

tan8= —(g/2+v)» (4v/&a') ~ 0. (A12)

Hence 8(~)=n&r, N=O, 1, 2 ~ . This result can be
easily generalized to the superposition of Vukawa po-
tential. The important thing to note is that the sign of
the short-range coupling plays an important role. Thus
if the potential is everywhere attractive then g is nega-
tive and 8(eo )=0. On the other hand if there is a strong
short-range repulsion then presumably 8{)=s.

Finally it can be easily checked that the higher rank
trajectories satisfy the same phase relation (A12).

(v) Phase represev&tatiotss of Pe ' aed P/v~. Consider
first the quantity Pe ' ~. It has a right-hand cut starting
at v=o and is real along the negative real axis. '"Let
8(v) be the phase of P. From (ii) it can be deduced that

8(v): v~~&'"& lnv,

where ns is the threshold value of n(v). In (iv) it is shown
that 0 in general approaches a multiple of m at infinity.
Consider for a moment the case where the potential is
attractive throughout. In that case the phase at infinity
vanishes. One can write the following phase repre-
sentation for Pe '

Pc-ice= - (~/v)c~(vi

and C is a positive constant. It can be easily verified that

where C' has the same sign as C. Therefore, it exhibits
the correct threshold and infinity behaviors. We expect
0 to be a smoothly varying function, but not the
quantity es(v)+1, because

P "dv'ng (v')
~&~ (v)+1=—

7l 0 P —P

is a principal-part integral. It decreases very rapidly in
the region where o.l is near its maximum. This rapid
decrease will cause wild oscillations in the real and

J. R. Taylor, Phys. Rev. 127, 632 (1962).

v dv
n(v) =- n. (v'),

P P P

where an explicit subtraction at v= 0 is made. Also"

»z(v) ~ v~'+&'&'& Inv
v-+0

The phase at infinity here also goes to a multiple of m

{see (A11)). The representation (A16) Las well as
(A13)] is arbitrary up to a polynomial. A polynomial of
Nth degree would imply n zeros of y(v). If it turns out
that for a given potential, y(v) of the leading trajectory
has n zeros, then qy must approach ex at infinity in
order to ensure the constancy of y(v) at infinity Lsee
(A7) and (AS)].

(vi) Higher raNk trajectories. For superposition of
Yukawa potentials (A4), the behavior at infinity of P
for higher rank trajectories depends on the nature of the
higher terms in the expansion (AS) of the weight
function p(t). If the higher powers in (A5) are separated
by exactly one unit, then it can be easily shown that for
the eth rank trajectory

pe ~ pn-1 (A18)

S(X Z) = c'-&'-'&P-'{&, —Z)P (X E)

20 As long as n0&~~, the logarithmic factor should not be im-
portant. This assumption is implicit in the expression (21).

2' L. I avella and M. T. Reineri, Nuovo Cimento 23, 616 (1962).
~ ~ ~

~
~

~ ~ ~.M. Charap and K. J.Squires, Ann. Phys. (N. Y.) 20, 145 (1962);
1, 8 (1963);25, 143 (1963).I R. G. Newton, J. Math. Phys. 2, 188 (1961).

For a single Yukawa potential gc ""/r, cs„(~)= —I, we
have

P(v) ~ —g/2

P/va ~ g/2v ii-i

Thus the reduced residues, in general, go to infinity.
Moreover, if the potential is attractive (g(0), then as in
(A12) we can show that the phase of y(v) is zero at
infinity. In the case that the higher powers in the ex-
pression (A5) are not separated by one unit then P/v
for some of the higher rank trajectories wiQ @ok go to
infinity but will rather approach a constant.

(vii) Multichaene1 case. The formalism for the multi-
channel case has been developed by various authors. "
%e follow the notation and normalization of Ref. 22
appropriately generalized to complex 1. The 8 matrix
can be written as
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e*.&' 'y-(S—')-'Ey'=yii'P, —E)LJ'y„E)j-'Ey'.
BldetE(X, —E)=0.

where E denotes the channel momenta, and the F's are check that
the jost matrices. The Regge poles are determined from
the relation

The above relation implies that there is a constant (row)
vector a such that at a Regge pole

Now let

aF(X, —E)=0.
S,;= (g~g/l

—n)+r~g.

Using the same technique as in the single-channel
case, ' namely calculating the Kronskian of the wave
function and its first derivative with respect to A. , we
obtain

yFr(X, —E)L'FT(X,E)] 'Eyr

iX dr r —'yfr(X, E, r)f(X,——E) r)yr,
0

where "T" means transpose, and the dot means
differentiation with respect to X; y=aF(X,E)E ' is a
column vector and f is the matrix of the irregular wave
functions defined by

f,, (P, Er) —+ 8,"e—'~~" as r —+~,

k; being the channel momentum in the j channel. At a
Regge pole 1=n, and yf r is a well-behaved function at
the origin. It vanishes like r~' as r —+ 0. One can easily

yeYEyT
~i 7r(h—$) = —iX

Tr(gs)
dr r 'jrf,

where j=fyr is a column vector. If we denote the
residue of the symmetric T matrix by P then g= 2iEP
and we get

where
I=sE/ysTEyT.

(A20)

(A21)

Note that the matrix elements u;; are not necessarily
positive.

~ij
(~)—*r '=

8/ Tr(gs)

where s is the matrix of the cofactors of r and "Tr"
means trace. Thus
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The normalization constants for normal and abnormal solutions of the Bethe-Salpeter equation are ex-
plicitly calculated in the Wick-Cutkosky model. In the case of the vanishing total four-momentum, it is
shown that the abnormal solutions with odd Ig have a negative norm, where Ig is the Wick-Cutkosky quantum
number, and that the corresponding scattering Green's function contains all the normal and abnormal solu-

tions as the residues of poles. It is demonstrated explicitly for «=0, 1, 2, 3 that the first conclusion remains
true also in the case of an in6nitesimally positive mass. As for the case of massless bound states, its special
character is emphasized, and solid harmonics are constructed corresponding to the "little group" for a
massless particle. Non-Cutkosky integral equations are obtained for the weight functions of the integral
representation for the Bethe-Salpeter amplitude.

l. INTRODUCTION
' 'N 1954, Kick' and Cutkosky' obtained a complete
- ~ set of the solutions of the Bethe-Salpeter (B-S)
equation for bound states of two scalar particles ex-

changing massless scalar particles in the ladder approxi-
mation. They discovered that in addition to normal

*This work performed under the auspices of the U. S. Atomic
Energy Commission.' G. C. Wick, Phys. Rev. 96, 1124 (1954).

2 R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).

solutions there exist abnormal solutions which have no
counterparts in the nonrelativistic potential theory.
Th,e appearance of these extra solutions is intimately
related to the additional freedom in a covariant two-

body problem, i.e., "relative time" or "relative energy, "
which leads to the introduction of a new quantum
number K (normal solutions correspond to x= 0).

Scarf and Umezawa' tried to exclude the abnormal

3 F. L. Scarf and H. Umezawa, Phys. Rev. 109, 1848 (1958).


