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a1t, i = 2, 3, X, in some order, acting on C'0,

(A7)
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where the numbers o.@'&' remain to be determined.
Using Eqs. (A6) and (A7),
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where we have used the property of the group sum Po
and the definition of 4)v I'), Eq. (Ai), to reach the
second line. We determine the o.@ &j& using the para-Bose
rules:

ale)v Lalyar j+c)v—1 aI al@)r 1y—
for j=1.For j)1,
a)@')v(') = La),as j+as a; aI a,+I aN c'o

~2 ~1~3 ' ' ' ~j ~1 ~j+1 ' ' ' ~N C'0

Q (i i+i ' ' ' J)as ' ' aI'I a—( a(+I '''as as+It' aNt'~'o

~2 ' '~l—1 ~1+1 ' '~j ~l ~j+1 ' ' '~X C'0 ~

This completes the calculation of o.@
t'j&:

oQ "'= (—)'(2—p) Q'= &

=2(—)' Q'=Q'(~, i+~ " .7)

=0, otherwise.

Then the sum of interest is

Z &o ~Q "'= 2 (—)' '2( —)'+ (—)'(2—p)
L=2

= (—)'(2(j—l)—p),

which completes the demonstration of Eq. (A4), and
the result Eq. (A5).
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The E+p, w+p, pp, and pp data in the laboratory-energy region between 7 and 20 BeV and momentum
transfer squared, t, less than 0.5 (—BeV/c)' are analyzed in terms of the P, P', and ao Regge poles. A linear
approximation to the trajectories is made with slopes n' assumed to be equal. The reduced residues of P
and P' are taken to be of the form (1—5;t) ",i =P, P'(b;) 0). In order to explain the difference between the
antiparticle (X p and pp) and particle (X+p and pp) differential cross sections, the c0 residue should have a
zero at a negative value of t. Hence, the reduced residue for co is taken to be of the form (1+t/to) (1—b„t) '~,
where to is the position of the zero. We choose cg= e~.=2.5 and e„=3.5 in order to conform to the high-
momentum-transfer behavior (do/dt~t ') observed in pp scattering. The t =0 values of the residues and the
trajectory intercepts are known from other considerations. Covering the above range of energy and mo-
mentum transfer, we thus have five parameters for each of the antiparticle-particle sets, E+p and pp —pp,
and three parameters for ~+p, of which af' and (from factorization) the to's should be the same between the
different sets. The a' values turn out to be the same (=0.4I (BeV/c) ') for each set, while the te values are
reasonably close: 0.061 (BeV/c)' for E+p and 0.074 (BeV/c)' for 7)p —pp. It is found that the residues of P
contribute substantially to the di6'raction widths. A crude estimate of the contribution of branch cuts indi-
cates that they will not be important compared to P in the above region of energy and momentum transfer.

I. INTRODUCTION

ECENT experiments in the region of 7—20 BeV
have shown certain characteristic differences

between K+P, Ir+P, PP, and pP scattering. ' ' For
*Supported in part by the U. S. Atomic Energy Commission

and the Wisconsin Alumni Research Foundation.
f Supported in part by the National Science Foundation.
'A. N. Diddens, E. Lillethun, G. Manning, A. E. Taylor,

T. G. Walker, and A. M. Wetherell, Phys. Rev. Letters 9, 108
(1962).

instance, it is found that the pp diffraction pattern
shows a considerable amount of shrinkage, and Ir+p
shows very little, while the shrinkage in K+p is inter-

' S. Srandt, V. T. Cocconi, D. R. O. Morrison, A. Wroblewski,
P. Fleury, G. Kayas, F. Mueller, and C. Pelletier, Phys. Rev.
Letters 10, 413 (1963).

'K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.
Russell, and L. C. L. Yuan, Phys. Rev. Letters 10, 376, 543
(1963).

4 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.
Russell, and L. C. L. Yuan, Phys. Rev. Letters 11,425, 503 (1963).



T. O. B INFORD AND B. R. DESAI

mediate between the two. The antiparticle differential
cross sections E p, or p, and pp have higher values in
the forward direction than the corresponding particle
cross sections but fall off more sharply. In the case of
E pa-nd pp the differential cross sections go below the
particle values at very small momentum transfers. The
diffraction patterns of E p and pp do not appear to
shrink but show a tendency to expand as the incident
energy is increased. 'The only strong feature shared by
all of them is that their cross sections fall o6 expo-
nentially near the forward direction. Even then, it is
found thatat10BeV the (width) 'ofE+Pis 6(BeV/c) '
while that for pp is almost twice as great. 4

In view of the vast differences mentioned above, it is
clear that at least up to 20 BeV, a single universal
function of energy squared (s) and momentum transfer
squared (—f) cannot possibly describe all the different
reactions. If one takes the Regge-pole hypothesis
seriously, then this means that a single pole cannot
describe all the different experimental data and, as
will be clear below, the reduced residues cannot be
considered as slowly varying functions of —t.

In the pole approximation for large s and small —t,
the crossed-channel Regge poles with positions rr, (f)
dominate. The differential cross section do/dt and the
total cross section o-z are then given by' '

d /dk= ~g, (,p;(t)(s/2mo')' "'&" 'i~', (1)

or (4'——-)g; T,p, (f) (s/2m ') in*(o) ri (2)

where f; is the signature factor given by

&,= —(1+T;e '~ ')/sins. u;,

and T; is + or —depending on whether one has even
or odd signature. For antiparticle cross sections the
odd-signature trajectories such as p and ~ occur with

opposite sign. y;(f) is the reduced residue times certain
kinematical factors, ' and mo is the scaling factor usually
taken as 3f, the nucleon mass. The leading pole is
assumed to be the Pomeranchuk pole with ni (0)=1
and even signature. All other poles such as P', co, p, Q,
etc. , have n, (0)(1. In the physical region of the s
channel, n (f) is positive, t is negative, and y(f) is real.
Separating out the Pomeranchuk part we have for small
—t and mo=M,

da/df= ~)iyi (0)exp[fo. 'i (0)ln(s/2M')]
+P,&,p, (f)g, (s)exp[fn', (0)ln(s/2M')]

~

', (4)

~ From now on we shall take BeV as the unit of mass.' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(1961).

7B. M. Udgaonkar, Phys. Rev. Letters 8, 142 (1962); F.
Hadjioannou, R.J. N. Phillips, and W. Rarita, ibid. 9, 183 (1962).

8 S. D. Drell, Proceedings of the Internutionul Conference on
High-Energy 1Vucleur Physics, Genenu, 196Z (CERN Scientific
Information Service, Geneva, Switzerland, 1962), p. 897.

' If P is the residue and if we denote (M'/v)~P by q, where M
is the nucleon mass, then

y =p(2 'I'(2cx+1) j. (~~+cL)/r (1+m) )y,
where p is the appropriate crossing matrix.

o s
——(4+w) [yp(0)+g, T,p, (0)g,(s)], (5)

' B. R. Desai, Phys. Rev. Letters 11, 59 (1.963)."S. j.Lindenbaum, W'. A. Love, J. A. Niederer, S. Ozaki, J. J.
Russell, and L. C. L. Yuan, Phys. Rev. Letters 7, 185 (1961).

where g, (s) =exp[(n, (0)—1)ln (s/2M')].
If one were to neglect the second term in (4) then

the first term by itself would give an identical behavior
as a function of s for the different reactions. Inparticular,
a plot of ln(do/dh) versus ln(s/2M') for Axed t would

give the same slope, namely 2ni '(0)f. In other words,

the amount of shrinkage would be the same for all the
different reactions, a result in contradiction with the
experimental data. If, in addition, one approximates

yp(f) by a constant in the diAraction region, then one

obtains an identical behavior as a function of t as well.

In particular, this would mean that the (width) ' of
the diffraction pattern has the magnitude 2''(0)
)&1n(s/2M') and is the same for all the different reac-

tions, a result again in contradiction with the experi-
ments. Thus if the pole hypothesis is to succeed then
the second term in (4) must play an important role.
Furthermore, the y's must have a sensitive t dependence
and must play a crucial part in determining the diffrac-

tion width. These points were erst noted by Desai" in
connection with the m. +p and pp data. The pp data were

fitted in terms of P, P', and ar, while the s p data were

fitted in terms of P alone. For wp scattering, the its to
1n(do/dt) versus ln(s/2M') by Foley et aL' on the basis
of P had shown that nr'(0) should be less than 0.2
(BeV/c) '. With this as the upper limit it was found

that the exponent in the first term of (4) was negligible

in the energy range of 10—20 BeV and for —t up to
0.5 (BeV/c)'. Therefore, to explain the exponential
falloff for small f, the fun—ction yi (t) was approximated

by e'~ instead of a constant. Thus by the assumption of
a small slope ni '(0) and a sharp falloff for yr (1), the
absence of shrinkage as well as the exponential falloff

in s-p was explained. For the P pole, a should roughly
be proportional to the width of the diffraction pattern.
Unlike nr (f), which is the same for different reactions,

yi (t) would be different for different reactions and

would, therefore, partially explain the differences in the
widths. The presence of shrinkage in pp was then shown

to be due to the strong energy dependence of the
second term in (4). It is known that both gp (s) and

g (s) are proportional to the difference, o„-s—o», of

the total cross sections. '~ This difference is found

experimentally to be quite large at 10 BeV but it
decreases very rapidly" as a function of energy in the

region of 10—20 BeV. For the residues of I" and ~, the
function yr ~(f) was taken to be equal to y (f). At t=0
this assumption automatically guarantees' ' the con-

stancy of a» above 10 BeU. For small negative t, the
y's were approximated by e'I~. %ith an appropriate
value of b, a good fit to the experimental data was

obtained. It was further shown in Ref. 10 that because

(ox-s—ox+„) is not as strongly energy-dependent, the
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shrinkage in E+p should be less than in pp, a prediction
confirmed by recent data. 4 Subsequently, two further
calculations were done, essentially along the same line
as Ref. 10, one for z.+p by Ahmadzadeh and Sakmar"
and the other for pp-pp by Rarita and Teplitz. "In both
works an exponential form for the y's was taken but
the value of np'(0), was not fixed a priori on the basis
of the analysis of Foley et al.' Ahmadzadeh and Sakmar
added the con.tribution of I" in rrp scattering to that
of Ref. 10, the magnitude of I" already being known
from the work of Igi."For the magnitude of ni '(0) they
took the result of their earlier calculation based on the
dispersion relations satisfied by 0.." They made a
subtraction at infinity, however, and took n(~) to be
—1, a result true only for a single Yukawa potential.
It is known that for a general superposition of Yukawa
potentials, the trajectory end point can be arbitrarily
close to l= ——„""and in the relativistic case it may
even be to the right of /= —~."Therefore, it is quite
conceivable that their results would change if a more
realistic value of n(~) were taken. Rarita and Teplitz
took the three-pole I', I", and or approximation in their
fits to the pp-7ip data. They noted that since the io term
occurs with opposite signs in particle and antiparticle
scattering, the sign change in (do~„/d1 do». /dh) —for.
negative t, mentioned earlier, can be explained if y„(1)
has a form (1+ge"')—ge"' with as(ai, rather than a
single exponential. This form would enable y„(t) to
change sign for negative t.

The following considerations prompt us to make a
further phenomenological fit to the elastic-scattering
data.

(i) Since the work of Refs. 10, 12, and 13, consider-

ably more data have become available at very small.

momentum transfers. ' Previously, the experiments' —'
were, in general, confined to —1)0.2 (BeV/c)'. The
diffraction widths, however, are supposed to be about
0.1 (BeV/c)' ( 4iiz '), and therefore the previous fits
were made to the data outside the diffraction region.
Since the pole hypothesis is supposed to work best for
small —I, the new data within the diftraction region
should determine its accuracy better.

(ii) Because of the good statistics that is now

available, we have confined our fits to the data with
—1(0.5 (BeV/c)'. This way we can with good con-
fidence (a) make a linear approximation to u(t), (b)
avoid the difhculty of encountering helicity-Qip ampli-
tudes which are likely to be important for —t of the
order of nucleon mass ( t=1), and (c) neglect —the

"A. Amadzadehh and I. A. Sakmar, Phys. Rev. Letters 11,
439 (1963).

"W. Rarita and V. L. Teplitz, Phys. Rev. Letters 12, 206
(1964).' K. Igi, Phys. Rev. 130, 820 (1963).

"A. Ahmadzadeh and I. A. Sakmar, Phys. Letters 5, 14S
(1963).The value of n' was found to be 0.34.

"R.G. Newton, J. Math. Phys. 3, 867 (1962)."See B.R. Desai, following paper, Phys. Rev. 138,81174(1965).
"G.F. Chew and C. E. Jones, Phys. Rev. 135, 3208 (1964).

cuts which may become important at high momentum
transfers. "

(iii) In addition to the z.+p, pp, and pp data we also
include the recently published E+p data. 4 This should
give a more conclusive test of the pole hypothesis and
pin down the Regge parameters more accurately.

(iv) It was pointed out in Ref. 20 that instead of a
pure exponential approximation e" for the y's, a much
better approximation (valid for negative 1) would be
(1—b[) '. Since y is supposed to satisfy simple analy-
ticity properties, it would not be correct to approximate
it by a function that has an essential singularity. On the
other hand, (1—b1) ' is in the spirit of the usual pole
approximation, with t=b ' being roughly the position
where the spectral function of y(t) is peaked. " It
behaves as e'" for small —t, while for large —t it falls
off as (—1) '. Serber has pointed out that for fixed s,
the quantity do/dt for pp scattering behaves as ~1~

' for
large —t."Since do/dt is proportional to y', and rr(t)
for large —t presumably goes to a constant, the value of
e should be =2.5. With this as the estimate of e, and
fi about 2, the expression (1—bt) ' would give the
characteristic exponential falloff with a width of the
right order of magnitude. ~

(v) In Ref. 13 it was remarked that the sign change
in the co residue is hard to understand in view of the
fact that it satisfies dispersion relations with only a
right-hand cut. In the following paper it is shown, on
the basis of potential theory, that if there is a strong
short-range repulsion in addition to a long-range
attraction, then the residues can change sign. '" The
zero in the residue would occur when the trajectory is in
the left half-plane, at least for the spin-zero (single- or
multichannel) nonrelativistic case. '7 Thus in analogy
to potential scattering we assume that y has a simple
zero for negative t. In the relativistic case which we are
considering, however, we leave open the question
whether the sign change occurs when the co trajectory
is in the right or the left half-plane.

We shall fit the E+p, pp, a,nd 7ip data in terms of p,I", and ~. There are a few poles which we have not
included, such as p, P, and the recently discovered 8,
A, and X' mesons. "The contribution of p is known to
be small from other considerations. The spins of some
of the other resonances are not yet determined, while the
remaining ones are known to have spin less than or

'9 S. Mandelstam, Nnovo Cimento 30, 1127 and 1148 (1963).
~' B.R. Desai, Phys. Rev. 135, 3180 (1964}.
2' p has only the right-hand cut.
z' R. Serber, Phys. Rev. Letters 10, 337 (1963).
~3 @le do not consider the form, in terms of transverse momen-

tum, suggested~zby D. S. Narayan and K. V. L. Sarma, Phys.I.etters 5, 365 (1963), and J. Orear, Phys. Rev. Letters 12, 112
(1964) since they correspond to an essential singularity in the
scattering amplitude.

2'For a summary of the resonances see A. H. Rosenfeld, A.
Barbaro-Galtieri, W. H. Barkas, P. L. Bastien, J. Kirz, and
M. Roos, Rev. Mod. Phys. 36, 977 (1964).On the e6ect of trajec-
tories other than P,P', and co see A. Pignotti, Phys. Rev. 134,
B630 (1964), and A. Ahmadzadeh, iNd 134, 3633 (1964). .
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equal to the spin of co. However, their masses are larger
than the co mass. Therefore, it is reasonable to expect
that their intercepts at t=0 are smaller than the ~
intercept and consequently for large energies their
contribution in (4) is expected to be small. One can, in
principle, include all these poles. However, in so doing
one is faced with far too many parameters whose values
would be hard to determine unambiguously from the
present data. The higher the energy is, the better our
three-pole approximation should work.

BIO

fIt

.2 ,4

I

K p

= 7.2

II. NUMERICAL RESULTS

We shall use the expression (4) for our fits to the
elastic-scattering data. We shall take the conventional

FIG. 2. Fits to the E-p data at lab energies of 7.2 and 9.0 BeV.
Differential cross section dg/dt in mb/(BeV/c)2 is plotted versus
momentum transfer squared t in—(BeV/c)' up to t abo—ut 0.5.
The data are from Ref. 4.

20

IO

I I

about 2.5, while e should be about 3.5 because of the
extra linear factor in (8). We shall take

op= ep =2.5 and e„=3.5.

For s-+p we have three parameters n', bp, and br For.
K+p and pp pp we ha-ve five parameters n', br, bP,
b„, and to. Among these parameters e', of course, must
be the same in each case. Prom factorization theorem"

4cr
4t

.5—

PKN PX~NN

it is clear that y„ for EN inherits the zeros of EE and
EX channels. Thus one shouM expect the to's to be the
same for K+P and PP-7iP. For the purpose of the present
fits, however, we shall not take the ts for pp-pp and
K+p to be the same. For each particle-antiparticle set
we shall keep both n' and to arbitrary. A measure of

.2.

FIG. 1.Pits to the E+p data at lab energies of 9.8 and 14.8 BeV.
Differential cross section do/Ct in mb/(BeV/c)' is plotted versus
momentum transfer squared t in (BeV—/c)s up to t about 0.5. —
The data are from Ref. 4. The two plots are separated in order to
avoid considerable overlap.

IO

values
n, (0)=1, n, (0)=e„(0)=05.
.~ (0)=~& '(o) =~„'(0)=~'.

The values of yi (0), yp (0), and y„(0) are known for
each case from other considerations such as the total-
cross-section data. ""For K+p and pp-pp we take

yi (0)=7„(0).As mentioned earlier we shall take
I

.2
I

,4

7;(])=y;(0)(1—b;t) ", s=P, I" (7)

and for ~, in order to ensure a zero for negative t, we

take

FIG. 3. Fits to the ~+p data at lab energies of 6.8 and 16.7 BeV.
Differential cross section do/dt in mb/(BeV/c)' is plotted versus
momentum transfer squared —t in (BeV/c)2 up to —t about 0.5.
The data are from Ref. 4.

7-(f) =7-(0) (1+fifo) (1—b-f) '" (8)
25M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962); V. N.

The Serber result means that ep and apl shouM be Gribov and I. Pomeranchuk, ~bg. 3, 343 (1962').
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40 TAsxz I. The Regge parameters which give the best 6t to the
E+p, ~+p and pp-pp data of Ref. 4. The x~ parameters are
obtained from the factorization theorem. a' and the b's are in
units of (BeV/c) ', while tp is in units of (BeV/c)'.

dt

lo
Exp

Qkp
x'P
pp-pp

0.41
0.41
0.41
0.41

1.10
1.39
2.27
0.51

bp.

3.76
2.84
3.71
1.97

2.71

3.24

fp

0.061
~ ~ ~

0.074

.5
0

I

:2
I

.4

contributions to the imaginary part of the amplitude
can be of opposite sign, in the pp case they all occur with
positive sign, and since yh (0) is quite large, an addition
of another pole can give rise to a strong interference
term with I' and change the result significantly. Since
the imaginary part of the amplitude is supposed to
dominate for small —t, a similar effect will occur in
do/dt. .

Fro. 4. Fits to the x-p data at lab energies of 7.0 and 17.0 BeV.
Differential cross section der/Ch in mb/(BeV/c)' is plotted versus
momentum transfer squared —II in (BeV/c)~ up to —t about 0.5.
The data are from Ref. 4. The 18.9-BeV data are not plotted
because they do not have points below —1=0.1.

good fit would be that n' and $0 obtained from different
sets are essentially the same.

In Figs. i to 6 are shown the hts to the elastic-scatter-
ing data. Our fits to E+p, E p, and pp are quite good.
The fits to tr+p become better as the energy is increased.
In the pp case it should be noted that, unlike the pp
and a +p cases, data are available for energies less than
i2 BeV. For these energies it is very possible that the
three-pole approximation is inadequate. It should be
further noted that, unlike the pp case where the pole

100

Fio. 6. Fits to the
pp data at lab energy
of 7.2 BeV. Difteren-
tial cross section do/
dt in mb/(BeV/c)' is
plotted versus mo- d

mentum transfer dt
squared —E in (BeV/
c)' up to —5 about
0.5. At higher en-
ergies the its become
poor. The data, from
Ref. 4, are available
only up to 12 BeV.

50-

IO—

0
I

.2

PP

I

~4

In Table I are given, for each set, the values of the
Regge parameters which give rise to the least x'.
Interestingly enough the best value we obtain for n' is
the same in each set, namely 0.41 (BeV/c) '. The values
of tp foi E+p and. pp-pp ar'e 0.061 and 0.074 (BeV/c)'
and are not too diferent. The behavior of the co and P'
terms relative to the I' term is roughly the same in each
set. For fixed s, both co and I" fall off faster than I' as

t is increased. The log—arithmic derivative of yh (t) at
3=0 increases with the value of the total cross section.
In Table I we have given the values of the mm. parameters
obtained from the factorization theorem. "We have also
fitted the data with n' and t p IUted a priori. The values of
the Regge parameters are given in Table II.

The value 0.4i we have obtained for n' is comparable
to some of the recent theoretical estimates. ' ' It is

50-

10—
der

dt

Ii
.2

I

,4 "H. Bransden, P. G. Burke, J. W. Mofat, R. G. Moorhouse,
and D. Morgan, Nuovo Cimento 20, 206 (1963).The value of a'
was found to be 0.30."H. Cheng and D. Sharp, Phys. Rev. 132, 1854 (1963) obtained
ct'~0.1.Here the eGect of inelastic scattering was not included.

8 K. Igi, Phys. Rev. 136, B773 (1964). The value of n' was
between 0.91 and 0.67 depending on the choice of the strip width.

Fro. 5. Fits to the pp data at lab energies of 8.8 and 16.7 BeV.
Differential cross section da/Ch in mb/(BeV/c)s is plotted versus
momentum transfer squared t in (BeV/c)' up to— t about 0.5. —
The data are from Ref. 4. The 19.6-BeV data are not plotted
because they do not have points below —If=0.1.



8 1172 T. O. 8 INFORD AND B. R. DESAI

Txsx,z II. The values of the Regge parameters obtained when
a' and t0 are 6xed at values diQ'erent from those in Table I. These
parameters give rise to larger g'. The its become poorer as ~' is
decreased and as t0 is increased. n' and the b's are in units of
(BeVjc) 2 and t0 is in units of (BeVjc)2.

0.41
0.20
0.20
0
0
0.20
0
0.41
0.20
0.20
0
0

1.13
1.40
1.40
1.75
1.71
1.72
2.09
2.20
2.69
2.59
3.12
3.00

2.69
2.65
2.26
1.86
1.96
2.56
2.38
3.27
3.14
2 94
2.87
2.78

1.10
3,14
1.44
3.15
1.88

~ ~ ~

2.22
3.76
2.84
4.52
3.85

0.15
0.061
0.15
0.061
0.15

~ ~ ~

0.15
0.075
0.15
0.075
0.15

a factor of two larger than the upper limit of Foley ef, a3.
based on ~+p scattering with E alone, ' while it is about
a factor of two smaller than the earlier estimate of
Chem and Frautschi. ' It roughly corresponds to having
the square of the radius of interaction equal to m, '/4,
where m, is the mass of the p meson. For the P trajectory
the behavior of ni (t) may be determined following the
prescription of Ref. 15 but with a subtraction at 1=0
L~~(0) = 1j,

a~(t) =1+— Ima„(t') .
,„.t'(t'-t)

Instead of n(~), the value of n' we have obtained can
be used to determine one of the parameters in the
expression for Imo. and thus avoid the possible critical
dependence on n(~).

As mentioned earlier we have assumed the slopes of
all the trajectories P, P', and ~ to be the same. This was
done primarily to avoid having too many parameters.
Experience with potential scattering also shows that as
long as the threshoM value of n is &~~, the slopes are not
too different. In order to determine the slopes more
accurately one must await the experiments at higher
energies on both the total and differential cross sections.

Finally, let us compare our results with those of
Refs. 12 and 13. Recall that

d in';(t)yCt( g O=c;fi;, i=&, &', ~,

where c;=2.5 for i=P,P, and =3.5 fo1 b=e. If we
denote by I"; the total (width) —' contributed by pole i
in (1), then

d in';(t) s
r;=2 +n' ln

S 0

The values of bz and bz for s.+p obtained in Ref. 12 are
0.g1 and 1.43 (BeV/c) —', respectively. In Ref. 13 for
pp-pp the values of bi, bp. , and b„are found to be 1.46,

3.37 (BeV/g) ) i'espectlvely. Tlie above
values are generally smaller than the results given in

Table I, presumably because the fits in Refs. 12 and. 13
were confined to —t&0.2 (BeV/c)' where do/dt does
not fall o6 as sharply as it does for —tg0.2.

III. AN ESTIMATE OF THE CUT CONTRIBUTION

In the following we give a crude estimate of the cut
contribution. """A typical cut term obtained from e
iterations of the P pole is"

v '"'(t)(~/ )'"'"-"
Dn(s/so) j~

where n, &"&(0)=n&(0) = 1, 0(n, 'i"'(0) (nz'(0). Pre-
sumably p, &"'(t) are bounded so that for all e and for
ail negate«, lp. t-i(t) I(v„a f ed number. As an
extreme case we take n, &"&'(0)=0 and y, &"& (t) =y„ for
all e. Then the sum of the above terms from v=1 to

ls

In(s/so) —1

At some negative t, (10) will dominate the P term,

v~(t)(~/~o)""' ". (11)

Now consider n.p scattering and take so ——2M' as before,
so that s/so ——E, the lab momentum in BeV/c. In place
of P' consider the contribution (10). For sufliciently
high energy, the P term will dominate as far as the
total cross section is concerned (t=0). The experimental
data on the harp total cross section indicates that at
E= 10 BeV, the term (10) is 20% of (11) at t=0 and,
therefore, y./yi (0) is about ~. The value of t at which—
(10) and (11) become comparable is given by

t, = (1/u+n' inE)l—nLyi (0) (lnE —1)/y, ], (12)

where a is the logarithmic derivative of yz(t) s,t t= 0.
In the previous section the values of u and n' were
found to be about 5 and 0.4 (BeV/c) ', respectively.
In the region of 8 about 10 to 20 BeV the value of—t, then turns out to be about 0.3, larger than the
width of the diBraction pattern. The cut contribution
(10), of course, is highly overestimated. It would not be
surprising, therefore, if a more correct estimate showed
that the cut dominates well beyond the region, 0~&—t
&~0.5, in which we are interested. Note also that as

QO
~

t,= (1/n' lnE)ln(lnE),

"Here we take the specific form of the cut contribution sug-
gested by D. Amati, S. Fubini, and A. Staghelini, Phys. Letters
1, 29 (1962).Even though Mandelstam has shown that such cuts
do not exist, the position of the branch points of the new cuts
(see Ref. 19) is unchanged."We are grateful to K. Igi for discussions on this subject.

» We consider only the contribution of the imaginary part for
the purpose of the present crude calculation.
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Recently Gribov et a/. 32 have claimed that when

proper account is taken of the existence of cuts and
multiparticle unitarity, then the amplitude has the
form

where (=lnE, T= tn', a—nd &0 is a universal function,
of $T but $1, in general, is not. Accordingly when $»1,
T(1 and $T 1, the amplitudes of all the reactions
have the same behavior. If one considers the region
above 8=10 BeV to be essentially asymptotic, then
experiments have now been done which also satisfy the
criterion T(1 and )T 1.3' It turns out that the
experimental results do not agree with the prediction of
Gribov et al. The behavior of the diferent amplitudes
is not universal in character.

As pointed out in the beginning of Sec. I, three facts,
namely, (i) a strong difference in the shrinkage proper-
ties (e.g. , between sp and pp), (ii) a strong difference
between the diffraction widths (e.g. , between E+p and'
pp), and (iii) a sharp exponential falloff shared by all,
are hard to understand within the framework of a
universal function. It is quite conceivable that the
dominance of the cut contribution near —t=0, as well

as a universal character of all the amplitudes, can be
achieved if E is large enough so that Lsee expression

OII tile basis of olll' estllllate of a (~5.0) and Q (~0.4)q
this would be above E= j.06 BeV, well beyond the
highest energies of present-day accelerators.

One way to determine whether the cuts dominate or
not would be to proceed as we have done, namely, to
assume only the poles and see whether consistent 6ts
are obtained. Our results, as given in Sec. II, show that
there is no reason to abandon the pole approximation at
least up to E=20 BeV, and —t(0.5 (BeV/c)'.

IV. CONCLUSIONS

Our results indicate that if the pole hypothesis is
adequate then the Regge parameters must satisfy the
following properties:

(i) The slope n' must be small, about 0.41 (BeV/c) '.
(ii) More than one pole shouM play an important

role, at least in the energy region up to 20 BeV. The
shrinkage or absence of it can be understood if one
considers P' and co in addition to P.

32 V. N. Gribov, I. Va. Pomeranchuk, and K. A. Ter-Martio-
rosyan (to be published).

(iii) The I" and co terms must fall O8 faster than the
E term as —t increases for 6xed s.

(iv) The sharp exponential falloff of do/dt should
come mainly from the reduced residue yl (t). The
logarithmic derivative of yl (t) at t=0 must be larger
the larger the value of yl (0), the total cross section.

(v) The quantities (do»/dt do—»/dt) and (dox ~/dt—«x"«» change»gn « —t about 0.07 (BeV/c)'.
Since y„(t) occurs with opposite signs, positive for
antiparticle and negative for particle cross sections, it
should have a zero at the same point.

The property (i) is quite reasonable. Our value is in
good agreement with some of the recent theoretical
estimates. The fact that more than one pole must play
an important role is not surprising. It is known that
in fitting the total cross section f~(do/dt)" at t=0,
essentially), P' and ~ make an important contribution.
Therefore, for t&0 they should continue to play a
useful role. Property (iii) does not seem in contradiction
with the results of potential theory. In the following
paper properties (iv) and (v) are discussed. "

Pote added in proof. A number of calculations have
recently been done to obtain partial wave amplitudes
for a given channel, e.g., the s channel, from the knowl-
edge of the Born terms corresponding to the resonances
in the crossed. -channel, e.g. , the t channel. These Born
terms, in general, do not have zeros as a function of t.
Now for the case of the ~ pole we have seen that one
is forced to have a zero in the residue for negative $. It
is, therefore, of interest to know the e8ect of these
zeroes in the above calculations. For negative t, a
single pole contribution is given by Py(t, —t) which
near a zero at t= ta(&0) can be written as

where P is the residue and t„ is the position of a reso-
nance. Thus we see the effect would be only to change
the 5 wave amplitude in the s channel. In the calcula-
tions mentioned above, the 5 waves are normally
always substracted out and, therefore, the presence of
zeroes will not alter their results.
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