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Selection Rules for Parafields and the Absence of Para Particles in Nature
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Green's para6eld quantization is reviewed. It is shown, both for a single 6eld and for sets of fields, that all
Fock-like representations of Green's trilinear commutation rules are realized by Green's ansatz with anti-
commuting (commuting) Bose (Fermi) component 6elds for para-Bose (para-Fermi) 6elds. Restrictions
on the form of the interaction Hamiltonian density Hl(x) are derived from the requirement that III(x) be
a paralocal operator. From these restrictions on III, selection rules on the S matrix are proved to all orders
of perturbation theory. The most important such rule prohibits all reactions in which the total number of
para particles of order p )1 in the initial and final states is one. This last selection rule, together with experi-
mental information, leads to the conclusion that no presently known particle can be para.

electrons and the rotational spectra of homonuclear
diatomic molecules (among other arguments) establish
that the electron and nucleon are fermions. Blackbody
radiation and the quantitative success of quantum
electrodynamics show that photons are bosons. The
suppression of the decays E2' —+2'. and K+~2+
relative to Ei' —+ 2x give evidence that pions are bosons.
We did not 6nd direct evidence for the statistics of E,
A, Z, , or p, . We proposed feasible tests for the statistics
of E and of those hyperons which have an asymmetric
decay.

1. INTRODUCTION AND RESULTS

Resume of Earlier Payer
' "N an earlier paper, ' we studied the symmetrization
& ~ postulate (SP) that states of more than one identical
particle must be either symmetric or antisymmetric
under permutations, from both the theoretical and
experimental points of view, within the framework of
particle quantum mechanics. We did not 6nd any a
priori argument against the existence of particles other
than bosons and fermions in nature. However, we did
find that there are absolute selection rules concerning
the reactions of such particles. Our argument, based on
the precise formulation of the requirement of the
indistinguishability of identical particles in quantum
mechanics together with certain other assumptions' led
to the conclusion that if particles other than bosons and
fermions could be produced, they would not be produced
in any experiment which at present can be carried out.
From this point of view, present tests of SP appear
really as tests of quantum mechanics, and experiments
of a new kind, involving two or more of the unstable
particles whose statistics is being questioned in the
initial state, would lead to new information. We also
made a direct phenomenological analysis of particle-
physics experiments, carried out with as few theoretical
assumptions as possible, to see if experiments rule out
the possibility of statistics other than Bose or Fermi
for each particle separately. The Pauli principle for

Conclusions of Present Payer

* Supported in part by the U. S. Air Force OfEce of Scienti6c
Research under Contract AFOSR 500-64 and by the National
Science Foundation under Contract GP 3221.

'A. M. L. Messiah and O. %'. Greenberg, Phys. Rev. 136,
8248 (1964).

'The other assumptions are time-reversal or TCP invariance
of the laws of motion, and full coherence of each superselecting
sector Fqgg, where 5* is the subspace of states in Fock space
which have at most one particle whose permutation character
might be questioned, and the subscripts Q, 8, and I. specify a
sector with definite 6xed values of the electric, baryonic, and lep-
tonic charges. s H. S. Green, Phys. Rev. 90, 270 itN31.
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In this paper, we study parafields, ' which are certain
kinds of second quantized fields for which the particles
are neither bosons nor fermions, together with Bose and
Fermi fields. Our main interests are to find the selection
rules for para and ordinary particles which follow from
the requirement that the interaction Hamiltonian
density be a paralocal operator, i.e., commute with
itself at space-like separation in the Hilbert space,
called S in Sec. 2, of the Green component helds, and
to find the implications of these rules, together with
with experimental evidence, for the existence of para
particles in nature. The selection rules which we find
are absolute selection rules. These rules are: (1) the
total number of Fermi and para-Fermi particles
(counting both particles and antiparticles as positive)
on both sides of a reaction must be even, i.e., the total
number of such particles is conserved, modulo 2; (2) for
para particles of each even order p, the total number on
both sides of a reaction must be even; and, (3) for ea,ch
odd order p, the total number on both sides of a, reaction
can be any even number or any odd number )p. From
(2) and (3) the important conclusion follows that for
each order p at least two para particles must enter into
every reaction. Finally, from this result, together with
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experimental information, we conclude that no presently
kllown pal tlcles al'e para.

Section 2 starts with a review of Green's work' on
parafields, and then proves that all representations of
Green's trilinear commutation rules which are analogous
to the Fock representation of the Bose and Fermi
commutation rules are realized by Green's ansatz.
This proof is given both for a single held and for sets of
6elds with ordinary or para relative commutation rules,
and with any assortment of "normal" or "anomalous"
rules between each pair of 6elds. The importance of this
demonstration is that it allows the Green component
fields to be used in the analysis of interactions containing
para6elds. Section 3 derives the selection rules following
from the paralocality of Hr(x). As we point out in
Sec. 3, we do not know whether or not locality of Hr(x)
implies paralocality. If not, then our selection rules
might be too restrictive; however, it is possible that
our selection rules could hoM even if paralocality of
Hr(x) is not implied by locality. The analysis is valid
both for the "normal" case and for the most general
"8,nomalous" case. First the restrictions on HI itself
are found, and then selection rules for the 5 matrix are
proved to all orders of perturbation theory. Illustrative
examples are given for all allowed interactions. %'e also
give explicit counterexamples to show that the modulo-
two selection rule stated earlier under the name "con-
servation of statistics" by Kamefuchi and Strathdee' is
incorrect. In Sec. 4, we draw the conclusion that no
presently known particle can be para.

2. PARAFIELD QUANTIZATION

In this section, we study Green's theory of para6eld
quantization. ' ' This theory generalizes the usual
method of second quantization, and allows particles not
obeying the symmetrization postulate. In general,
trilinear commutation relations replace the usual
bilinear ones for the para6elds; however, Bose and
Fermi quantization still occur as special cases. %e first
review Green's work, and then prove that Green found
all the solutions of his trilinear commutation relations

& S. Kamefuchi and J. Strathdee NucL Phys. 42, 166 (1963).' E. P. Wigner, Phys. Rev. 77, 11 (1950); D. V. Volkov, Zh.
Eksperim. i Teor. Fiz. 36, 15—60 (1959); 38, 518 (1960) PEngjish
transls. : Soviet Phys. —JETP 9, 1107 (1959); j.l, 3'H {1960)g;
G. P. Dell' Antonio, 0. %. Greenberg, and E. C. G. Sudarshan,
in Group Theoretical Concepts and Methods in Elementary I'article
Physks, edited by Feza Giirsey (Gordon and Breach Pubhshers,
Inc., New York, 1964); H. Scharfstein, New York University,
thesis, 1962 (unpublished) L. O'Raiieartaigh and C. Ryan,
Proc. Royal Irish Acad. 62, 93 (1963); C. Ryan and E. C. G.
Sudarshan, Nucl. Phys. 47, 207 (1963);T.F.Jordan, N. Mukunda&
and S. V. Pepper, J.Math. Phys. 4, 1089 (1963);D. G. Boulware
and S.Deser, Nuovo Cimento 30, 230 (1963);A. Galindo and F.J.
Yndurain, ibid. 30, 1040 (1963); I. Bialynicki-Birula, Nucl.
Phys. 49, 605 (1963};0. W. Greenberg and A. M. L. Messiah,
J. Math. Phys. 6, 500 (1965).

which correspond to the Fock representations of the
Bose and Fermi commutation relations. This discussion
considers both the para commutation relations of a
field with itself and the relative para commutation
relations of 6elds with other fields. %e conclude this
section by indicating how to carry out para quantization
in a manner consistent with internal symmetries.

(A) Review of Green's Worlr

Green' studied a quantum theory of free particles not
obeying the symmetrization postulate, and chose as
his basic requirement that the free Hamiltonian, i.e.,
the generator of time translations for freely moving
particles, be bilinear and properly symmetrized in
annihilation and creation operators. Green s require-
n1ent ls

[He, a&t5 =o»e&t,

Ho= s Zs ~s$~s', tea)~ (2)

is the free Hamiltonian, uj, and uj,t are the annihilation
and creation operators, mJ, is the energy of a free particle
in quantum state k, and Ho is symmetrized or antisym-
metrized for parabosons (upper sign) or parafermions
(lower sign), respectively. Green replaced Eqs. (1) and
(2) by the stronger conditions'

LL&rs &@&jg& &sm$—= —24m&r&
& (3)

LL&,,&&]„a 3 =o, (&)

p[+»&+l]+& &st& j- 25&»&u»+2'4N&&rl

follows by Jacobi's identity

LL~,f~j„~] +LL(:,~l„fI1-+Kf,cj„~1 =o,

from which still other relations follow by taking the
adjoint of both sides of the above equations. From
Kqs. (1) and (2) it follows that there ts a commutative
set of operators mA, , dehned up to a constant by

rs»= z fats &s»fy+const&

where, as usual, the upper sign is for parabosons and
the lower one for parafermions, which have the property
of number operators

Llk&&r& j- 5»lul

Green found an in6nite set of solutions, labeled by
the integers p& 1, for each case. His solutions for p= 1
are the usual Bose and Fermi operators. His solutions
for p&1, which for reasons described below we call
"para-Bose" or '-'para-Fermi" operators, can be exhib-

' Bialynicki-Birula (Ref. 5), showed that Eqs. (3) and (4) follow
from the requirement that Eqs. (1) and (2) be invariant under
unitary transformations of the u7,,'s.
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ited in terms of a canonical ansatz. ' The para-Bose
operator of order p can be represented by

~a=+ 4",
where for a given value of 0, the bI, & & and b~& )t operators
obey thc Bose commutation relations

Lba(ai g&(a)t] —
ba& Lba(~) b&(~)] —0

and for nWP all the operators anticommute

p, ( ) f, ,(tot] =[g„& i y, y&] —0 ( ~p)
The para-Fermi operator of order p can be represented
by the same formulas, but the roles of commutation and
anticommutation relations for the operators are
reversed. At this point, the reader should verify that
these two ansatzes satisfy Green's conditions.

Since the b and b~ operators have many inequivalent
irreducible representations in Hilbert space, we specify
a unique representation (up to unitary equivalence) by
requiring the existence of a unique no-particle vector C 0,

The Hibbert space S on which the b and b~ act is the
closure of vectors of the form (P(bt)C'o, where (P is an
arbitrary polynomial. Thc rcprcscntRtlol1 of thc 8 Mld
u~ on which is dehned by Green's ansatz is reducible,
even for a finite number of degrees of freedom. %C will
show below that there is a representation of the a and
u~ on the Hilbert space 6 which is the closure of vectors
of the form (P{at)Co, and that this representation is
irreducible. Fol this I'cplcscntRtlon Cao ls tI1c unique
no-particle vector for the u's,

aI,CO=0, for alI k,

&a&itc'o= p4tC'o, fo»11 &, &. (6)

Using Eqs. (5) and (6) we can complete the definition
of the number operator,

+a= o Loa &oa]~+op.
The representation specified by Eqs. (5) and (6) plays
the same role for the theory of parabosons and parafer-
mions that the usual Fock representation which has a
no-particle state plays for bosons or fermions. '

7 Some readers may suspect that the equation for the aI, in
terms of the bI, & & may introduce (a) some composite structure or
(b) degeneracy into the description of the iedzeiduu/ particles
annihilated by the uz (or created by the ef,t). That (a) does not
occur should be clear since Green's ansatz is linear, while in con-
trast a compound structure would require a multiplicative rela-
tion. Neither does (b) occur since the state uf,t46 is nondegenerate,
in contrast to a particle with a hidden degree of freedom. %e
emphasize that Green's ansatz is only a mathematical device, and
that the bI, (~& and by&")t by themselves have no physical signi6-
cancc. Later in this section we discuss para6elds without using
Green's ansatz.

'L. Garding and A. S. Vhghtman, Proc. Nat. Acad. Sci. U. S.
40, 617, 622 (f954).

The E-particle states (S)1) have properties which

justify calling the field quanta parabosons and parafer-
mions. All the S-particle states corresponding to a
given set of single quantum states (ki,ko, ~ .k„) can be
expressed as bnear combinations of the Et vectors
obtained by permuting the order of the creation
operators in uitaot .a~tCo (here a;t denotes aa,.t for
short). Although the number of such states which are
linearly independent is generally greater than one, a
certain number of these linear combinations may
vanish. Consider in particular the "symmetric" and
"antisymmetric" states'

@~(8&=Q o tg t ~ g icyo

Q

+& '=2 4o~itoi ot' ' ' o~z~C'»

where Q is the permutation taking (1,2, S) into
(pi,po, ai~), 8o is the signature of Q, and the sum
runs over all X!permutations. For order p parafermions,
4'&&'~=0 if E&p; similarly for order p parabosons,
%~'&=0 if E)p. In other words, p is the maximum
number of identical parafermions (parabosons), of order

p, which can occur in a "symmetric" ("antisymmetric")
state. ln particular, there can be any number of para-
bosons, but at most p parafermions of order p in the
same quantum state. All this is easily proved by using
Green's ansatz. For example, from the fact that each b

is a Fermi operator in the case of parafermions, one
readily deduces

(@a&)ng&o—p tga0)&ba(&)&. . .$ (u)tg& ~

hence, (aat) ~'4 o
——0, which proves the very last

property stated above about parafermions.

(8) Proof That All Fock Reyresentations of
Eqs. (3) and (5) Are Given by

Green's Ansatz

For the Bose and Fermi commutation relations there
are continuum-many unitarily-inequivalcnt irreducible
representations in a Hilbcrt space. This is a large
number indeed; however, among these the one used in
quantum physics, the Fock representation, is singled
out up to unitary equivalence by the no-particle condi-
tions that there exist a unique vector Co which is
annihilated by all the aa LEq. (5)]. We expect that

9%hereas, the relation between the Bose and Fermi 6eld-
theory Hilbert spaces and the corresponding quantum-mechanicaj.
Hilbert spaces (Fock space) with symmetric and antisymmetric
many-particle states is well known, the relation, if any, between
the para6eld-theory Hilbert spaces and quantum-mechanical
Hilbert spaces is open. In particular, although permutations of
the ut's correspond to permutations of particles in quantum-
mechanical states for the Bose and Fermi theories, permutations
of the gt s do not have this slgni6cance fol the pMa6eld theories.
The difBculties which Galindo and Yndurain found in para6eld
theories are due to a misinterpretation of the signi6cance of
permutations of the et's (cf., footnote 4, p. 104j., in the article of
Galindo and Yndurain cited in Ref. 5).
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there are also very many representations of Green's two
kinds of trilinear commutation relations, Eqs. (3) and

(4), which we call the para-Bose and para-Fermi com-
mutation relations, respectively. In this subsection, we
investigate the representations in a Hilbert space of
these relations which are analogous to the Fock rep-
resentation of the Bose and Fermi rules. We find:

Theorem: All irreducible representations in a Hilbert
space of the para-Bose and para-Fermi commutation
relations, Eqs. (3) and (4), which have a unique no-
particle state obeying Eq. (5), also satisfy Eq, (6), in
which p is a positive integer, and are characterized up
to unitary equivalence by Eqs. (5) and (6). These
representations are included in the reducible representa-
tions given by Green's ansatz.

Proof: Equation (3) acting on Co gives

a„(aiakt)Co ——0 for all Io, I, m. (10)

Since 40 is unique, this implies

«&k @o=cikC'o (cik a number).

From Eq. (3) again, we find"

[[ak,&ijy& Om+o g =2(6i—oOmok~ 4mOio—o ) ~ (12)

Letting both sides of Eq. (12) act on Co and using
Eq. (11),we find

0= 2(8i„c~k 5k~ci~)C'o j—
hence,

8i„c k=8k ci„ for all k, I, m, rk, (13)

which obviously implies &ma ——0 if mAk, and &mm c$)

Thus,
Ckl P8kl

p= [(aktco))'&0 independent of k.

Finally, p has to be integral to avoid vectors having
negative norm. For the para-Fermi case, the calculation
of a relevant norm is particularly simple; for

Xk = (ok') "C'o,

the norm squared, is g„ i r(P+1 r), which assumes—
negative values for X&p+1 unless p is integral. We
give this calculation in the Appendix. For the para-Bose
case, the square of the norm of the vector %z( ',
Eq. (9), is +„Pr'(p+1 r) provided that all —X
momenta are different. Again the square of the norm
becomes negative for X&p+1 unless p is integral.
This calculation is also in the Appendix. )The square
of the norm of the vector %~&', Eq. (8), can be cal-
culated for the para-Fermi case in a similar way, when

all the momenta are different, and yields exactly the
same result. f This completes the proof that Eq. (6)
holds with p a positive integer.

' This argument that p is independent of k is due to D. W.
Robinson. We thank Dr. Robinson for allowing us to quote his
argument.

With p a positive integer, the (reducible) Green
ansatz actually gives an irreducible representation of a
and ut on the space 8 of the para-Bose (or para-Fermi)
commutation relations obeying the no-particle condi-
tions, Eqs. (5) and (6). For each p, the representation
on 0', is therefore equivalent to the representation (with
the same p) just characterized in our theorem. That 8
is invariant under the action of the a's follows straight-
forwardly from Eqs. (3)—(6). The space 8 is a proper
subspace of the representation space 61 (defi.ned above)
of the Fock representation of the b and bt operators
occurring in the Green ansatz. Finally the space 0',

(8) is irreducible under the a and at (6and bt) operators.
The irreducibility follows from a lemma of Haag and
Schroer" that an algebra of operators is irreducible if
the representation contains a cyclic vector and the
algebra contains a projection A. onto the cyclic vector.
For both 8 and S, the cyclic vector is Co. For 0', the
projection is"

sinatra

and for S
sine bI, ( ) tbg( '

A=+
(a)fb (a)

The no-particle conditions, Eqs. (5) and (6), uniquely
characterize the irreducible representations of the para
commutation rules, Eqs. (3) and (4), up to unitary
equivalence, because Eqs. (3)—(6) suffice to compute
the expectation value of any polynomial in the aA., and
uAt in the no-particle state. "

The usual Bose and Fermi operators satisfy Eqs.
(3)—(6) with p= 1. Since these equations uniquely
characterize the irreducible representation, they neces-
sarily lead to fields obeying the usual Bose and Fermi
rules. Thus, ordinary fields are special cases of parafields.

Another special case is P=2, where simpler trilinear
commutation relations hoM:

QJ,G~ 8 WQ Q~ Glc= 281c~Q %28 ~Glc

Gk CEQm&QmC~Cy = %261c~Qm,

GI CiCm~CmGiCa =0.

(C) Case of Several Different Fields

We want to generalize the preceding discussion to
the case of several different fields. To this effect, we
have to define the relative commutation rules between
different fields. The situation here is somewhat more
complicated than in the case of ordinary fields, but not
essentially different.

"R.Haag and B. Schroer; J. Math. Phys. 3, 248, 252 (1962).
~A. S. Wightman and S. S. Schweber, Phys. Rev. 98, 812

(1955), Table I.
"A.S.Wightman, Phys. Rev. 101,860 (1956);W. Schmidt and

K. Saumann, Nuovo Cimento 4, 860 (1956); R. Haag and B,
Schroer, Ref. 10; and M. A. Naimark, Eormed Ei~zgs, translated
by L. F. Boron (P. Noordhoff, Ltd. , Groningen, 1960), especially
Chap. IV.
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[[(tk,(tlhsay (Jna J = —2()km(tl, —

P[(tkPt], ap (twas-= 0 p

(14)

(15)

from vrhich all other relations can be deduced by
applying Jacobi's identity or Hermitian conjugation.
We next consider the trilinear relations involving tt,

'4 H. Araki, J. Math. Phys. 2, 267 |',1961), and references cited
therein.

With ordinary fields, one has to specify vrhether a
pair commutes or Rnticommutes. The usual terminology
labels as "normal" the case where any two Bose 6elds
commute, any tvro Fermi 6elds anticommute and each
Hose 6eld commutes with each Fermi 6eld. Beside this
"normal" case, there is a vrhole set of "anomalous"
cascsq whclc some comIDutRtols Rrc I'cplRccd by Rntl-
commutators and vice versa. There is no (t priori
reason to exclude the anomalous cases. The main
diGercnce with the normal case is that, in general,
additional restrictions have to be set on the interaction
Hamiltonian in order to preserve locality, the practical
consequence of which is the occurrence of some addi-
tional conservation rules, modulo tvro. '4

When dealing with several para6elds, it is also
possible to assume bilincar commutation or anticom-
mutation relations. However, in keeping vrith the spirit
of parafield. theory, there is no good tt priori reason to
exclude the possibility of trilinear relations betvreen
some of the para6elds.

i,ct us investigate this point more closely.
There is considerable leevray in the choice of trilinear

relations between different 6elds, and vre clearly have
to adopt some requirements in order to limit the choice.
These requirements ought to be such that the trilinear
commutation relations introduced by Green for a single
para6e]d appear as R special case of the trilinear
relations between diGcrcnt fields. YVC demand the
following:

(i) The left-hand side must have the form

L[~,Bj„C].
vrith c, q = +1, and the right-hand side must be linear;

(ii) when the internal pair [A,B), refers to the same
6cM, its ~ must have the form related to the number
operator (e= +1 for para-Bose, e= —1 for para-Fermi)
and it must commute with C(tt= —1) if C refers to
another 6eld;

(iii) these relations must be satisfied by ordinary
Bose ol Fclml 6cMs

Let us apply these conditions to two paraields p„
p~. We use e, e'= +1 to label their respective types
(e= +1 for para-Bose, e= —1 for para-Fermi). We want
to show tha, t conditions (i), (ii), and (iii) allow only
two sets of trilinear relations.

Ke recall the trilinear relations involving one of the
fieMs alone, @„say.We have

twice and pk once. Conditions (i) and (ii) imply

f[(tk t+tj, ag f)mJ-=O,

P[(tk&(tt j,a, f)~n J =—O,

Ll(tk'«'3. &-J-=O

(16)

(17)

(18)

L[(tt*~t'j.- &-'j-=o

LP ',(tkJ„, «'3 „,.=2~»& ',
I [(t'l Pm ]q) e'k J qqN 2))E5klf)—tn ~'

(16c)

(16d)

(16e)

The same arguments applied to Eq. (1'l) and to Eq.
(18),give similar sets of five relations, the sole difference
being that all the right-hand sides vanish. YVC 6nd

L[bmy(tkjgy (ttg-pea (17a)

LL& (tk 3s~ «J n. = O ~- (18a)

The 18 trilinear relations involving pk twice and p,
once RI"e obtained lIl cxRctly thc SRmc wRy' they Rrc
readily deducible from the 18 relations above by
exchanging the letters e and b everyvrhere.

The important point in all this is that, owing to
condition (iii), the same value of tt must be taken
everyvrhere. Thus, we 6nd in all tvro possible sets of
trilinear relations. The set corresponding to ))=+1 will
be called relative para Bose; that corres-ponding to
tt= —1 will be called relatit)e p0ra Iiermi. -

Next vre look for Fock representations of 6elds
obeying these rules, i.c., representations possessing a
Ne~qle no-particle state 40

uI,Co=b 40=0.

Solutions to this problem are provided by the follow-
ing straightforward generalization of Green's ansatz.
Given a positive integer p, we expand each field operator
into "Green components"

(tt —Q (tk(~) ) —P $ (tt)

cs=1 P=l

For each pair of components belonging to the same 6eld,
vre assume the commutation rules of Green's ansatz,
i.e., the para-Bose rule if e=+1 and the para-Fermi
rule if e= —1. For each pair uJ. & &, b &t'&, vre assume the
para-Bose rule if tt=+1 and. the para-Fermi rule if

Using the generalized version of Jacobi's identity

PP,Bj„cg +L[C,~g„, aj „,+„L[~,Cg„, ~ j „,=0,
together with conditions (i) and (iii), we find only two
possible sets of relations "permuted" from Eq. (16)

L[b,(tktf„, (tt J „, = —2c't)ktb, (16a)

[[«,b j„,akt j „„=2tt()ktb . (16b)

For ordinary 6elds, tt=+1 corresponds to commuting
6clds Rnd q= —1 to Rnticommuting 6clds. Hcrmltlan
conjugation further gives
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b b tC'o=p("()~A'o. (20b)

Fr(&m Eq. (16a), with a snd b interchanged, acting»
the vacuum,

bi(akb„t40) =0, for all k, l, m

and from this the uniqueness of 40 implies

Cga~ 40= gk~C)0, &Is~ a number.

Now using Eqs. (14) and, (15), we get

t L+i)+i j,a) +if)m $ =2& iaaf)m 1—
and ilsillg Kqs. (20a) and (20c) tile two nleilibel's

applied to 40 give

0= —2e'upb f40,

which proves Kq. (19c). Equation (19d) is proved the
same way. Then, from Kqs. (16a) and (16d) with a and
b interchanged, we obtain

Pmp+k jy&f)m =2& ((i((ii f)mf)m )+& & (i'&m Pm)(is jg

and the two members applied. to C o give, if we take into
account Eqs. (19c) and (19d),

0=(~~(i)'—b f ')@0=(p"—p'")Co,
hence

p(N) =p(() =p

q= —I, that is

Lg((~) $ (~)$ =0 L(i&(~) f) (~)tj —0
fg„(~)P (P)j =0 L(i„(~) f& (P)tj =0 ~~P

As can be seen easily, 6elds obeying these rules verify
the set of trilinear relations stated. above.

Using this generalized version of Green's ansatz, we
build, for each possible value of p, a Fock representation
for the pair of para6elds ip„p(„exactly in the same way
as for a single parafield. The no-particle condition (5)
is generalized to

(19a)

f) b„tC'O=p() Co, (19b)

(19c)

(19d)

Conversely, as a generalization of the theorem stated
above, it can be proved that all Fock representations
are given by this ansatz. The proof exactly follows the
line of argument used in subsection 2(B) for a single
parafield, with the sole difference that condition (5) is
replaced by the set of conditions (19).

The latter can be derived from the parafield commuta-
tion relations and from the uniqueness of the no-particle
state Co as follows: The results for single fields applied
to Q, and @b separately lead to Kqs. (19a) and (19b),
with p a positive integer, except that the values of p
might be different,

&i(iitC'o p "=()(i@'o, (20a)

The considerations just given for two 6elds can be
extended, without diQiculty, to any number of fields.
In particular, al/ Fock representations of any systems
of para6elds are given by Green's ansatz. With this
last remark, we are now ready to describe the whole
variety of theories involving several parafields.

For each pair of parahelds, we have in all four
possible sets of relative commutation relations: straight
commutation (B), straight anticommutation (F), rela-
tive para-Bose (pB) and relative para-Fermi (pF). The
last two are allowed only for paradelds of equal order;
they are not equivalent to the 6rst two, respectively,
except for ordinary fields (p= 1).All field operators obey
the no-l&article conditions, Eqs. (19), and are conven-
iently described by Green's ansatz with suitable bilinear
commutation relations between Green components.

The set of parafields entering the theory can be
divided into subsets or "families, " such that (i) any
two fields belonging to the same family have equal
order, and (ii) any two fields belonging to different
families have ordinary relative commutation rules, 8
or F. Then each 6eld Q,» is denoted with two subscripts,
i and X, with i labeling the family and X the particular
field within the ith family. We choose i so that p, &~ p;
for i&j. The case i=0 labels the family of ordinary
Bose and. Fermi fields (po=1). For p&1, we allow the
possibility that more than one para family can occur
with the same order.

In order to specify the relative commutation relations
between two parahelds, p,q and @;„, we use two di-
chotomic variables Og, ,;~ and v,~,;„,each of which may be
equal to 0 or 1.The four passible sets of commutation
rules are associa, ted to the four possible sets of values of
these variables according to the following tableau:

~'47E tgp

0
0 1

B p
PH PF

Thus, 0 indicates whether we have to deal with para or
ordinary relations, 7 indicates whether the type is Bose
or Fermi. Note that these numbers are symmetric in
the exchange of subscripts iX ~jp, and that:

Og, ,;„——0 if i/ j,
~.),a = &.

(21)

(22)

In the following we shall repeatedly use the Green
expansion of these para6elds

4'»(*) = 2 0'»" (*) (23)

and the commutation relations between the Green
components p,»( &(x), g;„(s)(y) for x—y space-like. Using
the variables 8 and r permits to write these relations in
the following completely general form

y,,( )y; ( &=(—) '»'y (.)y»(.) i=j ~=P (24a)
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y.gaia&y, ie) —( )rg, , ip+8gi, g„y. (e&y~(u&

i=j, nWP, (24b)

t&'= (—)""»' p;„'e&p,z( &, i'. (24c)

As a natural generalization of ordinary field theory,
we single out as the "normal" case the one in which (i)
there is only one family for each p, (ii) inside a family
the relative commutation rules are all para, and (iii)
the relative rules are of Fermi type if and only if both
fields are Fermi or para-Fermi. In equations, these
conditions are

(25a)

S matrix. The results are illustrated on some simple
examples in subsection (D). The notations of subsection
2(C) are used throughout.

Hr(x) = P K& &(x),
(m)

(27a)

(A) Conditions on Hr(x)

Expansion of Hr in Green components. Applying
Green's ansatz, Eq. (23), to each field in Hr(x) we
express HJ as a finite sum of monomials in the Green
component- fields:

~n& n'IA ~n&. n&~n'Is, u'I ~ (25b) X&"&(x)—=H &"o&(x)H & '& (x) H &""(x) . (27b)

where we have replaced the family index i by the order

p because of (i). The motivation for this terminology is
that it gives a unique normal case, and, as we will see
below, one in which there are as few restrictions as
possible on the interaction. We call all other cases
"anomalous. "

As a final remark, we mention that for a set of
parafields of the same type which transform as a
representation of some internal symmetry group the
normal relative rules are preserved by the internal
transformations. Thus, the normal case is appropriate
for fields with an intense variable.

LH, (x),H, (y)) =0, x-y, (26)

in the space S associated with the Green component
fields acting on the vacuum (x y means x—y space-
like).

This imposes on Hr(x) severe limitations which are
most conveniently explored by using Green's ansatz,
and expressing Eq. (26) as a set of conditions on the
terms occurring in the expression of Hr(x) in Green
components. We carry out this program in subsection
(A). The conditions which we obtain are discussed and
illustrated by examples in subsection (B). Then Lsub-
section (C)j we deduce a set of selection rules for the

"Strictly speaking, we should only assume that III(x) is local
in the space 8, since 6, is the space of physical states, rather than
the stronger condition that Bl(x) is paralocal, i.e., local in the
space Q 6,, which we have made. It is an open question whether
or not locality implies paralocality. Thus the selection rules which
we derive might be more restrictive than those which follow from
locality, although it is also possible that our selection rules may be
valid even if locality does not imply paralocality. The assumption
of paralocality of the fields has been used by Dell' Antonio et al. ,
cited in Ref. 5, to derive the connection of spin and type of para-
locality and the TCP theorem in the framework of general para-
Qeld theory. We are grateful to Professor C. N. Yang for pointing
out that our derivation of selection rules requires the assumption of
paralocality.

3. DERIVATION OF SELECTION RULES FOR PARA-
FIELDS FROM PARALOCALITY OF HI(x)

Our basic requirements are that the Hamiltonian
density Hr(x), expressed in free fields in the interaction
picture, be a polynomial in the fields all taken at the
same point x, and that Hr(x) be paralocal, "

A f=+ r~x, ~N'ax ~

iX
(28)

We point out two important properties of the expan-
sion Eq. (27).

First, because we have chosen a well-defined standard
order for each of the terms, the expansion is unique, and
no cancellations can occur between diferent terms.

Secondly, the expansion is invariant under all
permutations of the Green indices 0. which preserve the
algebraic relations satisfied by the Green component
fields. These algebraic relations are Green's ansatz,
Eq. (23), and the commutation rules, Eq. (24). The
permutations which preserve these equations are the
simultaneous permutations of the Green indices for all
fields in a given family. Therefore, if a term 3'.& ) occurs
in the expansion, then another term BC( ' ' also occurs

Here (m) = (mo, mi, ,m,) is a short notation for the
set of indices defining each term in the sum, and
H'~'(x) contains all the 6eld components of the ith
family.

For definiteness, we adopt a standard way of order-
ing the Green components p;q& & within each term
K& &(x). As exhibited by Eq. (27b), they are arranged
in increasing order of family indices; furthermore,
within each H'""(x), i.e., for fixed i, they are arranged
in such a way that ) increases from left to right; for
fixed i and ), the index n increases from left to right;
and finally for fixed i, ) and o., the fields are normal
ordered.

For later use, we define the following quantities
relating to a given II™~:
v;q(~), degree of the Green component @;),( );

&=—P&, p;&, &~&, total degree of the nth Green compo-

nents belonging to the ith family;

ii" »,&,
& ', total degree of the field p,i.,

o;=—P&, o;&„ total degree of the fields of the ith
family.

We shall also use the total degree Ey of fermion and
parafermion fields in 3'.( ):
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which divers from 3'.( ) only by the replacement of the
factor H( " by a factor H(~' ') obtained from it by
simultaneous permutation of all the Green indices. The
important fact, which we use later, is that the sets

{v, ),(~)} for H ~(~)and H(~'~') are related by the same
permutation of the a indices that relates the two H's.

The paralocality colditioes ie terms of Greer)'s ar)sate
We want to show that the paralocality condition, Kq.
(26), can be expressed as a set of conditions on the
various degrees, v and 0., relating to each B("')according
to the definitions given above.

I et us show first that paralocality of Bz is equivalent
to relative locality between any two terms of its Green
expansion. The expansion Eq. (27a) gives

Using Eq. (24), we find that

~m r
'Qzg ——~ L z))„jtsozX Ojls

+t)(jeajp(, (ri) &jp + Z &~X rjp )]~

Since, from Eq. (27b),

rt (m', m")=P )),;,
zl

we have

')t(m pm )= Q rii,j p(rA (r)&I,

ij;))p

and

Hr(x)Hr(y) = P X("')(x)X("")(y) (29)
(Nz'); (m")

Since the terms in Kq. (29) are products of monomials
which either commute or anticommute, each term in
Eq. (30) either vanishes or equals twice the correspond-
corresponding term in Eq. (29). Because of the standard
ordering of the monomials X("'(x) and the independ-
ence of the fields at x and at y, no cancellation is
possible among the terms in Eq. (29).The nonvanishing
terms in Eq. (30) are multiples of terms in Eq. (29);
thus the terms in Kq. (30) also cannot cancel, and the
vanishing of the sum implies the vanishing of each term
taken separately. Therefore, the paralocality condition,
Eq. (26), on Hr implies

PX' '(x) X' ")(y)] =0, x~y, forallm', m". (31)

Since the converse obviously holds, we have proved the
equivalence stated above.

If x y, each Green component field in X(~')(x)
either commutes or anticommutes with each Green
component field in X(m" & (y). Hence we have

X(m') (x)X(na") (y)
—( )z(m', m")X(m") (y)X(m') (x) (32)

where q (m', m") is the number, modulo 2, of minus signs
introduced by having each field component in X(~') (x)
travel from the left to the right across X(~")(y). The
paralocality condition Eq. (31) means that this number
must be even for all pairs (m', m").

From now on, we use the symbol = to indicate
equality modulo 2. With this notation, the paralocality
condition thus reads

LHr(x), Hr(y)]-= 2 tX("'(*),X'""'(y)]- (3o)
(tn'); (m")

+ g ()a„;,(oa'o;,"+E ra")r'."") (34)

Thus, an alternative way of expressing the para-
locality conditions for Hz is that the expressions given

by Eq. (34) must satisfy Eq. (33).
Interesting properties can be derived from this.
Consider first Eq. (34) for (m") = (m'). Because of

the symmetry of the r's and the 0's, all cross terms in
the sums occur twice and do not contribute. Vsing, in

addition, the property n'—rs, we find

n(m )m )=2 r*)., *)o,i+2 eai, a,[oa.'+ P ra,"'].

The last sum cancels (mod. 2) as a simple consequence of
the definition of 0.;g', and the first sum precisely equals
the number of Fermi-like particles E~' $Eq. (28)].
Therefore,

rt(m', m') Nr', for all—m',

and the paralocality conditions Eq. (33) lead to the rule

Eg—0, for all m. (35)

Otherwise stated, the total number of Fermi-like fields

must be even for all terms, a conclusion which could
also be reached using rotation invariance and the
connection of spin and statistics.

Another consequence of Eq. (33) is that rt(m', m")
must not change parity if a specific factor H™lin
3C( ') is replaced by the factor B(~z~') related to the
original factor 3'.( ') by an over-all permutation I'; of
the 0. indices in the ith family. This is true because, as
discussed above, terms X( ') and 3C(~z~') differing

only by the replacement of H( ") by H(~'~") both
occur in Eq. (27a). Thus, paralocality implies

q(m', m") 0 for a—ll m', m". (33) g (m', m') —rt (P;m', m') .

It remains to compute g. We 6rst compute the
number of minus signs rt;;=g(m, ',m;") —defined by

H (mi') (x)H(m(") (y)
—( )gA'H (mi") (y)H (mg'& (x) x~y

When we replace the two sides by their expressions
as given by Eq. (34), the equality simplifies enormously

because the permutation P; permutes only the indices in

the ith family and, moreover, leaves the a-'s invariant.
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One finds

P 0,,„„+(v,&,
'&~&+ v, &,

'& '"&)v;„'i~&—0.
Pp, n

Suppose now that the permutation I', is a transposition,
for example the one exchanging Green indices 1 and 2.
The above mod 2 equality then reads

0A ~v( va +vA ) (viv +v~v )=0 ~

Xp,

Here again, because of the symmetry of 0,), , ;„,all cross
terms (i.e., X&&ti) occur twice and can be dropped. Then,
using Eq. (22) and the property n'=I, we are left with

discussion of the anomalous cases, but merely point out
that in general additional restrictions can arise.

For example, a particularly simple anoma, ious case
occurs if there is more than one family for a given p,
and if all fields inside a given family have normal para
rules, and fields in different families have normal
relative bilinear rules. This case can be treated exactly
as the normal case; the additional restriction is that
Eq. (36) holds separately for each family with a given p,
rather than for all fields with the same p, as is the
situation in the normal case when there is only one
family for each p Lcondition (37)j.

In general, the paralocality condition, Eq. (33), leads
to further restrictions on H~ which are similar to those
which occur for ordinary fields. '

that is,
v, '(i&+ v,.'(2&~P (3) Properties of Paralocal H~(x): Discussion

and Examples
Repeating the argument with all possible transpositions,
we obtain the following important property:

v, (')—v;&')— .—v;(&') for all m;. (36)

Otherwise stated, paralocality implies that in each
term of the Green expansion of H~, the total degree
v;&"' of the nth components of the parafields of the ith
family have a parity independent of n. However, the
parity of v,' ' can be diferent in di8erent terms in
the expansion.

The eormal case. In the normal case, as dined by
Eqs. (25), condition (36) simply reads

v„"' v"'= =—v 'v') for all m, p (37)

and Eq. (34) simplifies to

Since we are interested in selection rules which
necessarily follow from the paralocality condition for
parafields, we discuss only the version of the theory
which leads to the minimum restrictions, that is~the
theory with normal commutation rules. Then, ".

" the
paralocality condition is equivalent to conditions (35)
and (37).

Condition (35) means that 8'r(x) does not contain
any term with an odd number of Fermi-like fields. This
result is a straight generalization of the result relating
to fermions for ordinary 6elds.

Condition (37), on the contrary, has no analog in the
ordinary 6eld theory and leads to new results.

In particular, it leads to

/ I/g(~, '»i )= Z rvi, v&,rv v, v.vav&, av v
py';)& p

0.„=—P v„' ' pv "' for a—ll m, p. (38)

The first term on the right-hand side vanishes (mod 2)
as a consequence of Eq. (35). As for the second term,
sinceov=P =iv v„'"&,itcanbe writtenPv(p'vv'"&r „""'
+pvv'"&vv"&'&) as a consequence of Eq. (37); it is
therefore a sum of even numbers and also vanishes
(mod 2). We see that the set of conditions Eqs. (35)
and (37) implies the paralocality condition Eq. (33).

Thus, Eqs. (35) and (37), which have been shown to
follow in all cases from the requirement that Hi(x) be
paralocal, express the full content of this requirement
in the normal case. This confirms the indication given
at the end of Sec. 2, that the normal case is the one
which implies the least amount of restrictions on the
interaction.

rfnomolous cases. We do not give here a systematic

TABLE I. Restrictions on 0„from paralocality of III.

v„& ) even
v„& ) odd

p even
0.„even
0-„even &~ p

p odd
0-„even
gy odd%~ p

The interesting feature of 0-„ is that, although it has
been defined, like v~& ), as a property of the term K' )

in the Green expansion of Hl, it can also be defined,
contrary to v~' ', as a property of the terms of III,
without any reference to the Green expansion. Recall
that H~ is a polynomial in the para6elds. Then, assum-

ing normal ordering, o-„ is the number of times parafields
of order p appear in the terms of this polynomial.

Equation (38) summarizes the restrictions on ov.
They are given in a more detailed and transparent way
in Table I. That all the allowed values of O.„indicated
in this Table can actually occur is best demonstrated
by producing specific examples. Let us give examples of
local fields in each of the four cases entering Table I.

(1) vv' ' ei&eri, p even (o-v ever&) Let p, and. p2 be
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para-Bose fields of order p with relative para-Bose
rules, and let A be a Bose field with relative Bose rules
with respect to gi and Ps. Then

+~(*) g~ (x)L4'i(x) )4's(*)]+ 2g~ (*)Z 4'i (x)A (*)

is local. In. this example, cr~= 2. We can obtain any even
o„by raising Lgi(x),gs(x)]+ to some power. Here, as
below, similar examples can be given with para-Fermi
fields. Here fg;,Hr] is local.

(2) i „& & even, p odd (o„even) Sa.me as in (1).
(3) r„'a' odd, p e~en (ax coen~&p). Let Qi, $s,

be para-Bose fields of order p with relative para-Bose
rules. Then

Here [&,,IJr] is local.
The existence of local interactions of this type

escaped the attention of previous workers. ' " Note
however that it is impossible to produce a paralocal
Hr with terms in which parafields of order p) 1 occur
singly.

A more practical example of type (4), which will be
used below for further illustration, is the Yukawa
interaction:

&r (x) = egal:~t (*),4 (x)]+-(L4 (x)4 (*)]+)s,0 (*)1+

=g 2 lt""(x)4""(*)4"'(*)
Sle f2e $3

all different

(39)

where tP and P are para-Fermi and para-Bose fields of
order 3, respectively, and have relative para-Bose
commutation rules.

(C) Selection Rules for The 8 Matrix

Conditions (35) and (37), which follow from the
assumption that Hr(x) is paralocal, and which in fact

"S. Kamefuchi and J. Strathdee, Ref. 4, stated that parafields
can only occur in pairs in Kl. Their condition on HI (which is
more restrictive than the condition we have used) was that the
Euler-Lagrange variational equations for the fields, deduced
using commuting or anticommuting variations, should agree
with the equations found from the commutation relations,
—io„x(x)= t x(x),P„j,where P„ is the total energy-momentum
operator. This condition is satisaed if l'x(x),IIi(y)j =0 when
x~y, which is the case for the examples given in (4). The para-
fields in these examples do not occur in pairs in (4), which shows
that Kamefuchi and Strathdee's analysis was incorrect.

$1 ~ ~ ~ $y
all different

is local and has o „=p. Examples with os even )p can
be constructed by multiplying this example by a factor
of the type given in (1).Here fp;,IIr]+ is local. (Note
anticommutator for Pp;,Hr]+.)

(4) v„&a& odd, p odd (o.x odd &~ p). Same as (3), except
that the outer bracket is an anticommutator:

g (a) ~ v (a,e) (41)

where the sum has to be taken over all vertices of the
diagram and v„( ') is the number of Green component
fields of order p with Green index a at vertex s. Applying
condition (37), Eqs. (40) and (41) lead to

g (1)ex' g (2)ext~. . .~g (y) ext
y (42)

Since Eq. (42) hold for all Feynman diagrams, it is an
absolute selection rule for the elements of the S matrix.
Conversely, as is easily seen, this selection rule neces-
sarily implies that Br(x) obey condition (37).Therefore
it expresses the full content of condition (37).

Among the properties, which follow from (42), we
are primarily interested in those which can be expressed
without explicit reference to the Green expansion.
Here, we shall focus on the selection rules for the total
number E„' ' of external lines relating to parafields of
a given order p in a Feynman diagram. Equation (42)
leads to

g ext —~ g (c)t)ext~ kg (1)ext
g7 (43)

Equation (43) summarizes the restrictions on E„e»t
We display these restrictions in Table II. Inspection of
this table leads to the following selection rules for X~'"t
as a consequence of paralocality:

(1) For each even p, the total number of para particles
of order p on both sides of a reaction must be even.

express the full content of the paralocality condition in
the case of parafield theories with normal commutation
rules, are symmetry properties and lead to selection
rules.

From condition (35), according to which Hr(x) does
not contain any term with an odd number of Fermi-like
particles, it obviously follows that the total number of
Fermi like p-articles, i.e., fermions and parafermions, is
absolutely conserved modulo Z in all reactions.

The selection rules associated with condition (37) are
somewhat more involved. Here, we derive them by look-
ing for symmetry properties common to all Feynman
diagrams. It should be emphasized that the selection
rules thereby obtained are absolute selection rules (in
all orders of perturbation theory), and that phenomeno-
logical nonlocal interactions which are mediated by
repeated local interactions must also obey these
selection rules.

Standard perturbation theory applies to the theory
expressed in terms of the Green component fields $xi&a&.

Let us consider a particular Feynman diagram in the
perturbation expansion. Let X„fa&e»t(X„&a&'"t) be the
number of external (internal) lines associated with
the nth Green components of the fields of the pth
family, and let S„( ) be the total number of these
components present in the entire diagram. We have

ialext Q (ai 2' (alint~Q iai (40)
and
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(2) For each odd p, the total rtumber of para particles

of order p ol both sides of a reaction cart take any value

except for odd uumbers smaller thau p.
It follows from this set of selection rules that E„' '= 1

is absolutely forbidden when p) 1.Therefore, we reach
the important conclusion that

Reactions with auy number of ordinary particles artd

ouly one para particle are absolutely forbidden.
Hence, the decay of para particles into ordinary

particles, and the production of a single para particle
by ordinary particles are prohibited.

TABLE II. Restrictions on S„'x"following from paralocality.

X„(~)even
ar, &-) odd

p even
1V' erat eve
S ~' even&~ p

p odd
E ''even
ar"„-t odd & p

where N is a fermion and &P a parafermion ot order 3,
if we assume that N and &P anticommute and obey the
following obviously local interaction

H. (x)= ~gN(x) l[4 (x),4 (*)]+-(H(x),4 (x))+)o,~b(*)I+

=gN(x) 2 0""(x)4""(x)0""(x)
~ ~

11& $R& $8
all diA'erent

(iii) For our discussion of the experimental evidence
that no para particles occur in nature, it is crucial that
a para particle cannot decay entirely into ordinary
particles. However, the Hr of Eq. (39), together with
the interaction

HI'(x) =g'N(x) N(x) [&t (x) &P(x)],

where Ã is Fermi and has normal relative commutation

(D) Illustrative Examples

(i) Let us produce a reaction in which the total
number of para particles increases by one, in contradic-
tion to Kamefuchi and Strathdee's conservation,
modulo 2, law. ' This reaction obeys selection rule (2)
given above. It is

4+4 ~4+4+4
with &P, P respectively para-Fermi, para-Bose particles
of order 3 coupled through the interaction given by
Eq. (39).The lowest order in which Eq. (44) goes is g'.
Using the Green components, all that must be shown is
that the Feynman graphs for Eq. (44) do not cancel.
The calculation is routine. The order g' matrix element
obeys the following selection rule:

&LIP/) A1„Isla/]„) ~0 ,'&
"""

with the exception of e~——e2——&3= —,for which the state
(l [&p,f],g] l

vanishes identically.
(ii) A similar example involving only one parafield

is the reaction

rules, seems at first sight to allow the two-step decay

g —+ &P+&P +N—+N.
Our general analysis shows that this decay is forbidden.
Let us give, on this particular example, an alternative
demonstration. It will give some insight into the close
relation between the symmetry property (37) of para-
local interactions and the absolute selection rule (42)
for the S matrix. We consider only polynomials and
states in which the number of Fermi-like particles
minus the number of Fermi-like antiparticles is zero.
All states of the system can be represented by poly-
nomials in the 6eld creation operators acting on the
vacuum state. We classify the polynomials by the
triplet of numbers (8"&,g&'&,n&'&) ordered in nonincreas-

ing order, where n& )=0 or 1 is equal, modulo 2, to the
total number of nth Green components of the parahelds

P and&P. We notice that Hr is (1,1,1) and Hr' is (0,0,0),
in agreement with condition (37).Therefore we consider
our triplets (rt& ') modulo the triplet (1,1,1), so that
there are only two different kinds of polynomials, those
with (0,0,0) and those with (1,0,0). The corresponding
state vectors span two orthogonal subspaces, " Q,p and
8~. The vacuum, and all states obtained from the
vacuum by polynomials (0,0,0) and (1,1,1) belong to
0,'p, all states obtained from the vacuum by polynomials
(1,0,0) and (1,1,0) belong to 8&. Clearly, all matrix
elements of H& and Bz' connecting Sp to Sy vanls11, so
that transitions between Sp and 8~ are absolutely
forbidden, in agreement with selection rule (42). Both
&l 0) and the state ([&P,f]+—([&P,&P)+)0) l0) to which it
can decay are in 8&, but NNl0) is in (to, hence the
decay g —+ N+N is forbidden.

4. IMPLICATIONS FOR THE KNOWN PARTICLES

The selection rules on para particles which follow
from paralocality together with some experimental
information, show that no presently known particle
can be para. "The particular selection rule which we use,
among those found in subsection 3(B), is the rule that
prohibits reactions with only one para particle. " In
particular, this rule prohibits the decay of a para particle
into ordinary particles and the production of a single
para particle by ordinary particles. The initial informa-

"These seem to be superselection sectors. We thank Professor
H. Araki for an illuminating discussion of superselection sectors
in parafield theory."The proposed model of strangeness advanced by H. Feshbach,
Phys. Letters 3, 317 (1963), in which the strange particles are
considered to be para particles of order 2, is in contradiction with
the parafield selection rules for strong as well as for weak inter-
actions, and is therefore inconsistent with the space-like com-
mutativity of observables. It may be worthwhile to point out that
no model employing parafields as the only source of conservation
laws can account for conservation of strangeness. A simple way to
see this is to observe that the parafield selection rules do not dis-
tinguish between E and X, and therefore cannot lead to S=—1
for E and S=1 for K without further cd hoc restrictions on the
terms in FII. We thank Professor Feshbach for helpful communica-
tions about this subject."S.Kamefuchi and J. Strathdee (Ref. 4) used the same selec-
tion rule in their discussion of the "statistics" of elementary par-
ticles. Here, we follow their argument closely.
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tion is that the nucleon and electron are Fermi, and the
photon is Bose. Single production of pions, for example,
S+X~E+E+tr, shows that tr is ordinary. The
hyperons decay into E and tr, for example Z —+ E+tr,~A+t« ~X+2«r, so the hyperons are not para. The
same is true for E, since E—& 2~, 3m. The neutron decay,
tt ~p+e+o„shows that o, is ordinary. The particles
p and v„remain to be considered. The measurement of
the pp, pair-production cross section together with the
assumption that the electrodynamics of the muon is the
tame, except for mass, as that of the electron, shows that
she p, is Fermi. "Then x decay shows that v„ is Fermi.
(There is still the unlikely reservation that if the two
neutrinos in p decay are both different than the v„ in x
decay and the v, in beta decay, then these p, decay
neutrinos might both be para. )

We emphasize that the argument of this section
requires the assumptions and computation rules of
6eld theory as well as the further assumption that only
ordinary and para particles can occur.

APPENDIX

(1) Calculation of the Norm IIKtrll2 for the
Para-Fermi Case

We find a recursion relation for IlxNII', where

Xtwt= (&tt:t)"co.

We will drop the subscript k, since it plays no role in
the calculation. Since

llxtrll'= (xtr i,«t«),
reduction of aX& to X» will yield the desired relation.
We do this by moving u to the right until it annihilates
Co ~

&txtt= (&tt&t&tt —&ttl &tt, &t7
—2&tt}xtt

=a'&txt« i+Q—2(Ar —1)7xtr i,

standard order

C'N —d 1 ~2 ' ' ' ~N C'0

Q@N=&toi &toe
' &'to'tr ~'o

With these notations +tt& &, as defined by Eq. (9), reads

We also define a vector C~ I ..

C+ g
—C2 83 ' ' 'Qg Co

permutations Q' on the N 11a—bels (2 3 X):

Q tt i om ao3 aotr 01

aIld an antisymmetric vector %g

where the sum runs over all (S—1)!permutations. Since

II+~"II'=&!(4'~-t ot+~") (A2)

calculation of u~%'N& ) in terms of vectors with N —1
quantawillallow thereductionof Il@N& &II'to Ilet« i& &II'

and yield a recu»i» fo~ui«or ll~~& tll'. We define
some more vectors to simplify this calculation. Let C z(&'

be constructed from a standard vector C ~ ~ by inserting
ci~ between 8't and 8 +yt

4g( ) =Q ~Qgt ' '0'~QytQ'+ t' ' 'QytC'0.

Let %t«&t& be the vector antisymmetric in (2,3, AT)

which is related to Ct«&t& (&tit remains the jth operator
from the left in each term)

= Z LP—2(&—i)7X~-t @~&~)—Q ( )t 4Zg~&r')—

=$(P+1—X)xtr i.

(2) Calculation of the Norm llirr~" Il' for the
Para-Bose Case

Ke will de6ne a, number of objects in order to control
this calculation. Let C~ be the vector with the u;t in

20 From the usual quantum-electrodynamic perturbation theory
applied to para muons, the lowest order cross section for pair pro-
duction of para muons by photons in the external 6eld of a nucleus
is p times the corresponding cross section for Fermi muons, vrhere

p is the para order, in agreement with Kamefuchi and Strathdee
(Ref. 4). A. Alberigi-Quaranta, M. De Pretis, G. Marini et cl.
PProceediwgs at the IÃZ Irtterrtatiomal Conference ol High Ertergy
I'byes ut CERE, edited by J. Prentki (CERN, Geneva, 1962),
p. 469j Gnd the pp cross section to be j..00&0.05 times the cross
section for Fermi muons, thus excluding the para cases p&2.

We will show below that

«+~&t'= (—)'I:2(i—1)—P7+~-t"
so that

&t,@&&'&=1V(p+1—AT)+~ i& &.

Provided Eq. (A4) holds, the norm Ilet«& &II' is given by

II+~"II'=&'&(&+1—&)(4'~-t +N-t")

=&'(p+1—&') ll+~- "II',

= II «'(p+1 —«) = (~'!)' (As)
f'=1 (p —AT) l

Now we derive Eq. (A4). From Eq. (A3),

since &ti commutes with Q. Since &t&Ctr&t& contains the
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a1t, i = 2, 3, X, in some order, acting on C'0,

(A7)
=2 p (—)'Q'(l, i+I, j)C)v I

l=2

+ (—)'(2—P)c'~-I,

where the numbers o.@'&' remain to be determined.
Using Eqs. (A6) and (A7),

~I+N 2 Z ao'o(P' Q f c')v—1
qr pr

where we have used the property of the group sum Po
and the definition of 4)v I'), Eq. (Ai), to reach the
second line. We determine the o.@ &j& using the para-Bose
rules:

ale)v Lalyar j+c)v—1 aI al@)r 1y—
for j=1.For j)1,
a)@')v(') = La),as j+as a; aI a,+I aN c'o

~2 ~1~3 ' ' ' ~j ~1 ~j+1 ' ' ' ~N C'0

Q (i i+i ' ' ' J)as ' ' aI'I a—( a(+I '''as as+It' aNt'~'o

~2 ' '~l—1 ~1+1 ' '~j ~l ~j+1 ' ' '~X C'0 ~

This completes the calculation of o.@
t'j&:

oQ "'= (—)'(2—p) Q'= &

=2(—)' Q'=Q'(~, i+~ " .7)

=0, otherwise.

Then the sum of interest is

Z &o ~Q "'= 2 (—)' '2( —)'+ (—)'(2—p)
L=2

= (—)'(2(j—l)—p),

which completes the demonstration of Eq. (A4), and
the result Eq. (A5).
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The E+p, w+p, pp, and pp data in the laboratory-energy region between 7 and 20 BeV and momentum
transfer squared, t, less than 0.5 (—BeV/c)' are analyzed in terms of the P, P', and ao Regge poles. A linear
approximation to the trajectories is made with slopes n' assumed to be equal. The reduced residues of P
and P' are taken to be of the form (1—5;t) ",i =P, P'(b;) 0). In order to explain the difference between the
antiparticle (X p and pp) and particle (X+p and pp) differential cross sections, the c0 residue should have a
zero at a negative value of t. Hence, the reduced residue for co is taken to be of the form (1+t/to) (1—b„t) '~,
where to is the position of the zero. We choose cg= e~.=2.5 and e„=3.5 in order to conform to the high-
momentum-transfer behavior (do/dt~t ') observed in pp scattering. The t =0 values of the residues and the
trajectory intercepts are known from other considerations. Covering the above range of energy and mo-
mentum transfer, we thus have five parameters for each of the antiparticle-particle sets, E+p and pp —pp,
and three parameters for ~+p, of which af' and (from factorization) the to's should be the same between the
different sets. The a' values turn out to be the same (=0.4I (BeV/c) ') for each set, while the te values are
reasonably close: 0.061 (BeV/c)' for E+p and 0.074 (BeV/c)' for 7)p —pp. It is found that the residues of P
contribute substantially to the di6'raction widths. A crude estimate of the contribution of branch cuts indi-
cates that they will not be important compared to P in the above region of energy and momentum transfer.

I. INTRODUCTION

ECENT experiments in the region of 7—20 BeV
have shown certain characteristic differences

between K+P, Ir+P, PP, and pP scattering. ' ' For
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instance, it is found that the pp diffraction pattern
shows a considerable amount of shrinkage, and Ir+p
shows very little, while the shrinkage in K+p is inter-

' S. Srandt, V. T. Cocconi, D. R. O. Morrison, A. Wroblewski,
P. Fleury, G. Kayas, F. Mueller, and C. Pelletier, Phys. Rev.
Letters 10, 413 (1963).

'K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.
Russell, and L. C. L. Yuan, Phys. Rev. Letters 10, 376, 543
(1963).

4 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.
Russell, and L. C. L. Yuan, Phys. Rev. Letters 11,425, 503 (1963).


