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A semiphenomenological study of the dynamics of the first hyperon resonance V1* (138S) has been made
in a one-channel approximation by the techniques of partial-wave dispersion relations. Contributions from
Z and Fi* exchange, and the exchange of a low-energy s-wave ~-2f- pair, to dispersion relations for the Pat2
m-A, scattering amplitude were evaluated on the physical and crossed physical cuts. The coupling constant

and a parameter related to the P312 m-A, scattering length were varied so that the amplitude calculated
from the dispersion relation was consistent with the input resonant amplitude on both cuts simultaneously.
This could be achieved for ~p ~=10.9~0.3. The dynamics of I"&* are found to depend almost as much on
the exchange of the s-wave ~-2f- pair as on Z exchange.

I. INTRODUCTION

HE existence of a wealth of accurate experimental
pion-nucleon scattering data, together with the

fact that x-N scattering may be treated as an elastic
problem to a good approximation, at least to medium
energies, has doubtless contributed to the fact that the
majority of successful applications of dispersion rela-
tions in the past have been in the 6eld of pion physics. In
strange-particle physics, however, there is a paucity of
experimental data, and few, if any, of the strange-
particle coupling constants are known from experiment
with confidence. We present here a calculation of one
of these coupling constants gag by the phenomenologi-
cal application of partial-wave dispersion relations to a
system which, we have reason to hope, may be treated
adequately in a single-channel approximation, namely,
the production of the first hyperon resonance Fi*(1385)'
by pets pion-lambda scattering.

The quantum numbers of Fi*(1385), i.e.,' s= —1,
8=+1, J=$, allow it to be coupled to p-wave boson-

baryon systems of strangeness minus one. The three
lowest-lying such states are ~-A, x-Z, and E-X. Con-
servation of energy allows decay only to the two former
channels. The branching ratio for the m-A. channel is
greater than 95'%%.s The branching ratio for the sr-Z

channel, although correspondingly small, is still the
subject of some doubt. ' We interpret the branching
ratios as experimental evidence that I'&* is weakly
coupled to the x-Z system, and that the forces giving
rise to the resonance come from the m-h. channel. Possible
theoretical reasons why this should be so are briefly
mentioned in Sec. 9.The X-X channel, although closed,
could influence Fin if there were appreciable p-wave

Z-S scattering. However, E p scattering data are well-

fitted by the assumption of a pure s-wave interaction to
kaon momenta of 200 M eV/c. e In view of these facts
we have analyzed the dynamics of I'&~ assuming it to be
a pure pets resonance in the sr-h. channel.

The results of the calculation are (i) that a self-

consistent resonance can be achieved for g~g '=10.9
+0.3, and (ii) that the dynamics of the resonance de-

pend on the exchange of a low-energy T=O s-wave x-m

pair as much as on the exchange of a Z hyperon.

Summary of Method

Partial-wave dispersion relations for the amplitudes

Ft+(s)=f&+(s)/q" (s) were evaluated on both the physi-
cal and crossed physical cuts. A three-parameter form
of the resonant pets amplitude was used in the rescat-
tering integral. Two of the parameters were fixed by
assuming the position and width of F1*, and the third
parameter et, which was related to the pets scattering
length, was free. In terms of u and g~q, contributions
to Repsts were calculated from the exchange of Z and
I'1* in the u channel, and from the exchange of a low-

energy 7=0, 1=0 m-x pair in the t channel. In the latter
case the form of the low-energy s-wave phase shifts for
sr+sr ~ sr+sr was assumed. The two parameters a and

ggq
' were varied so that the calculated real parts were

consistent with those given by the resonance formula on
both the physical and the crossed physical cuts simul-

taneously. These parameters were then used to calculate

pits contributions to the pets amplitude, arising from the

crossed channels, and the two parameters again varied
to achieve consistency. Good self-consistent solutions
could be found for gqq '= 10.9~0.3 and u= 0.33~0.02.

Contents

In Sec. 2 we present the notation and kinematics to be
used. throughout the rest of the paper, and in Sec. 3 we

discuss the partial-wave amplitudes Ft~(s) and the dis-

persion relation. In Sec. 4 we describe the treatment of

the physical region, and in Sec. 5 we discuss the cal-

4 R. H. Dalitz, Rev. Mod. Phys. 33, 471 (1961).
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Pro. 1. 77-h. scattering and
crossed processes.

Pl{A)

27, is the scattering angle. q'(s) may be written

4sq'(s) =[s-(A+p) '][s-(A-/i)'].

The 5 matrix for channel I may be written'

Sf; 5f; ——(22f)'—i 5 &'&(q;+p;+ qf+ pf)

where
-4i f~iEf—

rf'=&f(pf) ~f'&'(P').

(6)

culation of the unphysical-cut terms as functions of the
parameters a and g~g . Details of the calculational pro-
cedure are presented in Sec. 6, followed in Sec. 7 by a
discussion of the short-range forces in the ps/2 and pi/2
channels. In this latter section we also estimate the
e8ect of neglecting s-waves. Finally, in Sec. 8 we com-
pare the value of g~~

' obtained here with other pub-
lished values, and in Sec. 9 we summarize the results
obtained and briefly comment on the implications for
other strange-particle processes.

o/(E) is the c.m. energy of the pion (A). The problem of
spin is treated by writing the T-matrix element T~; in
terms of two scalar invariant amplitudes A~;, By;.

~!'
L ~f'+ a27' (q~+qf)Bf ]'

The amplitudes A and B satisfy the Mandelstam rep-
resentation, ' In the c.m. system the diGerential cross
section may be written

f do) (~ «')(o «f)
1 2 Z

(dn)f;
2. NOTATION AND KINEMATICS

The notation and kinematics of x-A. scattering are
identical with those of the (+) charge combination in
~-N scattering. The scattering is in a pure T=1 iso-
topic spin state. We present here the relevant formulas
that we shall need in later sections.

We take p;(q~) to be the initial four-momentum of the
lambda (pion) and Pf(qf) to be the corresponding final
four-momentum. These are shown in Fig. 1 which
represents the three processes

where the matrix element is taken between two-
component spinors and the expression is summed over
final spin states and averaged over initial spin states.
The helicity amplitudes' fi and fs are related to the
amplitudes A and B by

fi= [((w+A)' —/i2)/162rs][A+ (w —A)B], (9a)
and

2r+A —+ 2r+A,

2r+2r ~A+X. w+A m —A
A =8+m fi — f2, (10a)

(w+A)' —/i2 (w —A)' —/i2
The four-momenta are formally written as ingoing.
Thus, for any of the three scattering processes two of
the momenta are negative. We define the usual Lorentz
invariants,

and
1

B=8xm fi+ f2 . (10b)
(w+A)' —/i2 (w —A)' —/i2

(I)
f2——[((w—A)' —/22)/162rs][ —A+ (w+A) B]. (9b)

The inverse equations are
(II)

s= (q'+ P') '= —(qf+Pf)'—
t = (q'+qf)'= (P'—+Pf)'—
I= (q+Pf)'= (qf—+P')'—

where, by virtue of momentum conservation,

s+ t+:22=2(A2+/22) . (2) and

fi= 2 f/+I'/+2'(~) Z f/ &~i'(*), —-
L=O l=2

(11a)

The amplitudes fi and f2 are related to the phase
(1) shifts by

In channel I
s—w2 [(A2+q2) 1/2+ (p2+ q2) i/2]2

f2= 2 [f/ f/+]I'/'(&), -—
L=1

(11b)

and where x=—cos6, and
t = —2q'(s) [1—cosi7,], (4)

f/+(s) =exp[i5/+(s)] »»/+(s)/q(s)
where q(s) is the magnitude of the c.m. momentum and

(12)

' S. Mandelstam, Phys. Rev. 112, 1344 (1958):115, 1'N1, 1/52
5 G. F. Chem, M. L. Goldberger, F. E. Low, and Y. Nambu, (1959).

Phys. Rev. 106, 1337 (195'/). ' W. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).
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is the partial-wave amplitude for scattering in a state of
total angular momentum J=L~~. The inverse of Eqs.
(11) is

+1
j'+()=- d Lf P(*)+f«( )] . (13)

-1

Finally, using Eqs. (9) and (13) we have

(to+il) s—psf.()= P+( -~)B]
16ms

-co- s
-co

S=-62
2 2q= —h

(I =90'
q'= -fi2(1% +1) = -32

e 52'
—13

= 48,9, S = 80.8
q2 0

S=+62.9
2 2'

q=-p= -1

m
oo

where

(w —A.)'—les

L
—A„,y(w+X)B„,], (14)

+1

LAr(s); Br(s)]=- da[A(s, f); B(s,t)]Pq(x). {15)
2 -1

oo+- ds
(&+e) '2

tArs(s', t'); Brs(s', f')]
df' (16)

(s'—s)(t' —f)

plus similar integrals in (s,l) and (e,t). The functions
LA;s, B;s], jk=13, 23, 12, are real weight functions,
and

R.=R„=gsa s(Z —l1), (17a)

~ff ~Q gZAfr ~ (17b)

g~~ is the renormalized pseudoscalar coupling constant
(e.g. , gsrsr~'/4s~15). The analytic properties of fr~(s)
are easily obtained" from Eqs. (14), (15), and (16)
(see Fig. 2). Here as throughout this paper we use units
such that h=p, =c= i. The singularities consist of the
physical cut so= 80.8 ~& s& ~, and a number of unphysi-
cal cuts. In particular the short cut labeled "Born" is

ISI = h'-g'

2A+2p, —E')

(A+I )

PHYSICAL CUT

Fro. 2. The singularities of f~~(s) in the s plane.

3. PARTIAL-WAVE DISPERSION RELATIONS

The invariant amplitudes LA(s, t); B(s,t)] satisfy the
Mandelstam representation'

I R, ; R,'] LR„;R„']
LA(s, f); B{s,f)]= +

s—Z'

Fro. 5. Values of q'(s) on the cuts of f~a(s).

s —s

other unphysical cuts

s —s1

aF,„(s')
ds' . (18)

s —s/

Equation (18) may be evaluated on the physical cut,
where the erst integral is principal-valued, and on the
crossed cut, where the second integral is principal-
valued. The advantages of using the amplitude F~~(s)
have been stressed by Hamilton and co-workers. "On
all the cuts q'(s) is real, and increases as s moves further
from the physical region (see Fig. 3). Thus the factor

q "(s) suppresses contributions from those parts of the
unphysical cuts where the interaction is unknown, i.e.,
the back of the circle, and the line — (s ~&0. Further-
more, at high physical energies the factor q-"(s) is small,
and so the high-energy portion of the rescattering in-

tegral is also suppressed. This is particularly important
in the situation treated here where only the low-energy
resonance is known.

4. THE PHYSICAL REGION

In the absence of detailed experimental information
about the ps~s m. -A scattering amplitude we are forced
to use a resonance formula in the rescattering integrals
and for the real parts of the amplitude. The most com-

monly used of such forms is the relativistic Breit-
Wigoer formula,

due to Z exchange in the I channel, and the cut
—eo(s~&ss=48.9 is due to the region N&&(A+fr)'.
The line 0&st&80 we call the crossed physical cut. '
The circular cut IsI ={h.'—p') is due to the region
t ~& 4ps. In addition there is a pole at s=Z' (not shown in
Fig. 2) which occurs in the pries amplitude only.

In practice we shall work with the amplitude Fr+(s)
= fr+(s)/q"(s) This fu.nction is bounded at the physical
threshold and has a square-root branch point there.
Thus we may write the dispersion relation

1 " ImF~+(s') 1 " ImF&~(s')
Fi~(s) = ds' — +— ds'

Fi~(s) =v/L~s —~—svq't+'(s)] 1 (19)
' S. W. McDowell, Phys. Rev. 116, 774 (1960).
9 J. Hamilton and L D. Spearman, Ann. Phys. (N.Y.) 12, 172

(1961.).
~~ See, e.g. , A. Donnachie, J. Hamilton, and A. T. Lea, Phys.

Rev. 155, 3515 (1964).
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where ~= (q'+ti')'I', and the real parameter's ~s and

y are related to the position and width of the resonance,
respectively. However, the choice of physical amplitude
should be such as to approximate the singularities
shown in I"ig. 2 and exhibited by the dispersion rela-
tion, Eq. (18). Investigation of the singularities of Eq.
(19) to the left of sp shown that apart from the cut
—~ (s&~8p, the function Fi+(s) has a pair of complex-
conjugate poles close to the real axes in the region
0 ~& Res ~& 80, and another pair of complex-conjugate poles
on the circle at about p 50' (for a F't* width of 50
MeV). This region of the circle corresponds to momen-
tum transfers of t 50@', and since we believe low

momentum transfers to be more important, because of
the factor q-"(s), such an amplitude was not used. A
three-parameter formula suggested by Layson, " as an
empirical fit to the experimental 1V*(1238) phase shifts
turns out to be very satisfactory. For a p-wave reso-
nance it is

where
F.(s) =et/L~n ~ sviq'(s)j—

Pl
~+~a 1+(qa)'

(20a)

(20b)

~& W. M. Layson, Nuovo Cimento 20, 1207 (1961),and CERN
Report, 1961 (unpublished)."A. Donnachie and J.Hamilton, Phys. Rev. 133,31053 (1964).

The parameters cog and yL, are related to the position
and width of the resonance, and the parameter u de-
termines the over-all shape of the amplitude. The pots
m-A scattering length a3 is given in terms of u by

as =ReFi~(sp) =—2Aa'yr/qs'. (21)

The singularities of Eq. (20) are similar to those of
the Breit-%igner form, but now the poles on the circle
are at g 10' which corresponds to low momentum
transfers t 8p'. The exact positions and residues of
these poles depend on the three parameters cog, yr„and
a. %e may look at the Layson formula in another, more
physical" way. In the Breit-signer formula, the
centrifugal-barrier-penetration eGect is described by the
factor q'(s) in the denominator. In Layson's form, this
is replaced by the factor

(qa)' 1

1+(qa)' (a+con

which even in a relativistic process should be a consider-
able improvement, since a high-energy particle does not
have to penetrate such an extensive potential barrier as
a low-energy particle.

The parameter a is of the order of the range of the in-
teraction. Layson found a good 6t to the experimental
E* -data for a=0.714. A Layson form with @=0.718
has also been found to be a good solution of the p-wave
m-Ã dispersion relation. '2 However, this value of u
cannot simply be taken over to the I'~* calculation, as

the following simple model shows. Consider the nucleon
as a hard core with a surrounding pion cloud. Then, the
radius of the cloud, i.e., the range of the pions, will

be limited by the uncertainty principle AEhR fic,
with d E= 1 p in the x-X case we have AR
(h=ti=c= 1). For n.-h. scattering, hZ=Z —A+ti= 1.5 p
and hR -', . Thus from the value of u found in m-g
scattering, i.e., @=0.7, we would expect for x-A scat-
tering a 0.4. In the actual calculation the parameter a
was left free and determined by the requirements of
self-consistency.

Bn.,„(s,t) =gss '/(I —Z'). (22b)

Using Eqs. (22) in Eqs. (10), (14), and (15) of Sec. 2
we may easily calculate the contribution of the Born
terms to the ReFt+(s), on both the physical and crossed
physical cuts, " in terms of the single parameter g~~ .
On the physical cut the Born terms for the po~s ampli-
tude are positive, and on the crossed cut they are
negative.

(ii) The Crossed Physical Integral

Fi~(s) on the line 0(s ~&8p may be related to physical
m-A scattering by the use of the crossing relations

A(s, st, t) =A(l, s,t), (23a)

B(s,l, t) = B(l,s,t) . — (23b)

The crossing relations (23) enable fi and fs for 0&s~&8p
to be calculated from the equations of Sec. 2. The crossed
region contains contributions from all waves in the
physical region s~+ sp. Equation (13) then enables
ImFi~(s) to be calculated on the crossed cut, and hence
the crossed-cut contribution to ReF~+(s) on both cuts
can be calculated. Provided only p waves are crossed
from the physical region, there is no trouble at 80 and
ImFt+(8p) is finite there. "The real parts on the crossed
cut may be found by using the crossing relations applied
to the real parts in the physical region. At the crossed
threshold,

ReF i+(8p)~gap+ s at—ap/6A. (24a)

ReFi-(8o)—sacs—sat —2ao/3A. ', (24b)

where a2~ is the scattering length for scattering in a state
of total angular momentum J.Equations (24) show that
the s-wave contributions to the real parts of the p-wave

~3 See Ref. 9 for the details.
'4 J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick,

Phys. Rev. 128, 1881 (1962). This paper will be referred to as
HMOV.

5. CALCULATION OF THE UNPHYSICAL-CUT TERMS

(i) The Born Terms

From the Mandelstam representation Eq. (16) we
have

An.,„(s,t) =gss '(Z —A)/(I —Z'), (22a)
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amplitudes at the crossed threshold are suppressed with
respect to the p-wave contributions by factors of As.

Our estimate of the s-wave scattering length, to be made
in Sec. 7, shows that the s-wave contributions are
negligible.

(iii) T=O sr-er Term

The amplitudes A and 8 have discontinuities on the
circle ~s~ =(A.s—ps) which are given by the absorptive
parts of the helicity amplitudes for s+vr~h. +X,
as defined by Jacob and Wick, " which we denote by
i's~~(1) in analogy with the amplitudes f~~(t) introduced
by Frazer and Fulco" for the m-Ã problem. The ab-
sorptive parts are given by"

ImA (s,t)

8x
Q (J+-,')(ip qs)

~ Pg(cos8, ) Imh~~(i)
P J'=0

cos8gPq'(cos8&) Imh+~(t), (25a)
LJ(J+1)j'"

20 —
i

I

I

I

I
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0
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I

S- (A+()z lp
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Fro. 4. The kernels Z&+(s) at the physical and crossed
physical threshold.

where q, (ip ) is the pion (4) c.m. momentum in the
channel vr+m —+ A+X. They are given by

ImFg+(s) = — — dx Imh+s(t) Hg~(s, i), (29a)
8sq" (s)

(J+k)
ImB..(s,t) =8rr g

&=r $J(J+1)O'Is
Equations (28) may now be used in Eqs. (14) and (15),

X(ip qs) 'Pq'(cost7, ) Imh~ (t), (25b) for s on the circle,
+I

Also,

qs'= (-,'t- p'),

p '=(4' ——,'i).

costi &

——(s Ps+—qss)/(2iP qs) (27) Now on the circle
I= —2qs(s) P1—xj (30a)

where
(26)

&~~(s)I)=L(~+~)'—~'jP~(&)

[(w —A) ' /—k' jPg—yt(x) . (29b)

ImB (s,t) =0. (28b)

'~ W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1609 (1960).
's G. C. Oades, Phys. Rev. 132, 1277 (1963).

is the channel-IIl scattering angle.
Bose statistics applied to the initial-state pions shows

that isospin T=O occurs only with even J values. The
Legendre expansions (25) converge only on that arc of
the circle ~g~ ~&52', which corresponds to 4ys&~t~&52@s.

Thus we require Imh~~(t) for even J, andi in the range
4IJ, '~&t~&52p'. Oades" has shown that T=O, J=2 m-x

scattering is not strong at these energies. Therefore we
consider only s-wave x-m scattering and take over the
results of HMOV, " who determined the low-energy
T=O s-wave z-x phase shifts from an analysis of low-

energy s-wave m-E scattering data. We shall discuss the
use of their phase shifts in Sec. 5(iv).

If we neglect J~&2, Eqs. (25) become

ImA (s,t) = L47r/(A' ——'i)j Imh+'(t) (28a)

and

where

4y'&t&I „Q), (31)

I .„(g)= —4q'= 4'.' sin'(-,'P)+p' cos'(-,'P)7. (32)

Hence we may change the variable of integration in Kq.
(29) and, after some manipulation, write the circle
contribution to ReF~~(s) as

ReP(~(s) = Ck E~~(s,t) Imh+'(i) . (33)
4~1

The kernels E~+(s,t) are complicated functions of various
kinematical factors, and t, Q, ) is taken as 52ps

because of the convergence restriction.
The form of Eq+(s, t) is shown in Fig. 4 at both thresh-

olds for the ps~s case. The pr~s kernels are of similar

q'= —Lh.s sins(-'p)+ ps coss(-,'g) j. (30b)

Thus, contributions to q' on the circle come from the
helicity amplitudes for all values of t in the range
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form. It should be noted that the kernels are strongly
peaked in the forward direction, i.e., about t=4p', and
that they are slightly larger on the crossed cut than on
the physical cut. The strong peaking means that low
t values will be far more important than high t values in
Eq. (33).This, in turn, means that the error in Imh+o(t)
for high 3 values should be unimportant, and that the
precise value of the cutoff t, (rt .„) should not signifi-
cantly affect the circle contribution. This latter state-
ment ls found to bc true ln pI'actlcc.

(iv) The Helicity Amplitudes 11+o(f)

The calculation of Imh+o(/} for t &~4@,' may be effected
in terms of the low-energy T=O s-wave m-x phase
shifts and physical m-A scattering parameters by means
of the Omnes method. '~

By examining the analytic properties of LA q(/), Bq(t)$
in channel III" we 6nd that the amplitudes h~~(t)
are analyticin the cut plane4p'~&/& ~ and —~ &i~&a',
where

a'—= (2A.'+2rr' —Z') —(cV—p, ') '/Z'= 2.59.

The function

g(~) =I+'(~) -pE- ~o'(~)3

I' F(v)-F(vl)
ReD(v) =1+— —F'(r 1) (43)

ImD(v) =(—I'/(v —»))(v/(v+1))'",

v&0 (44)

F(v) =M ln(((1+%)/(1 —M)
~ }, v~&0v~& —1,

=M' arctan(1/M'), 0)v) —1,

M = Lv/(1+v) j'" (46)

jf'= L
—v/ (1+v)j'"

D(v) has the phase —rroo on 4rp, '~&t&16rtr', and if we as-
sume this is true for higher values of I, we can replace
Eq. (34) by

ImA(v) = —rri'h(v —vl), I"=const, vi&0 (41)

E(v) = I'D(vl)/(v —vl) . (42)

We use vp=vl, i.e., D(vl) =1.The solutions of (40) and
(42) are

has only the cut —op & t ~& u', and we may write the dis- Rnd Eq (35) bee~mes
persion relation

1 " Img(t')
g(&)=- df (35) h, o(~) =

orD(v)

D(v') Imh~o(t')
Ch'— (48)

~()=((+1)/)'" E &o'j
'

bo' (36)

or a subtracted form of this equation if the integral does
not converge. To bring in the T=O, J=O m-x phase
shifts we write

and is formally true. Inspection of Eq. (48), however,
shows that, because of the contribution of I'1* (for 3 ~& 0)
to Imh+o(f'), the equation requires two subtractions to
ensure convergence. These are made at 1=0. Thus, we
6nally have

the invariant T=O or+or —+rr+rr amplitude, in the I
E/D form. 'p Here v=3/4 1, and A(v) is ana—lytic in h+o(3)= D(v= —1) Reh+p(0)
the cut plane —00 & w ~&

—1 and 0~& v& 00; thus D(v)

A(v) =E(v)/D(r ),

ImE(v) =D(v) Imd(v),
=0

p g
v) —1 (38)

ImD(v) =0, v&0
=—ES(v)(v/(v+1}) r~', v~& 0 (39)

and &=(p'o.e/rT r)z o,r-o Taking =R=1 and matung one
subtraction ill D(v) Rt v= vp to 1101'111Rllze, we have

If we replace the left-hand cut by a single pole at v= v1,

'7 R. Omnks, Nuovo Cimento 8, 316 (1958)."G. F. Chere and S. Mandelstam, Phys. Rev. 119,467' (1960).

(v—vp)
"

f v' ) rr' E(v')
D(v) =1— rlv'i

i
—. (40)

p &v'+1) (v' vp) (v' v)— —

8
+t fD(v") Reh+o(P) jBt" tvv=o

1 8
p

m' Bt"

D(v') Imh+o(t')
dk

(f P)(t' r) r-=,— —(49)

Values of Imh+o(/) for 3&&4rl' may now be found from
Eq. (49) if we know Imh+o(t) for —oo &terr', the two
subtraction constants Reh+'(0) and Reh+" (0), and the
m-~ pole parameters I' and vy. For the latter we use the
best-6t solution of BMOC, i.e., I"=15 and pq= —30.
The form of the x-~ phase shift bo' is shown in Fig. 5.
Thc Ã-Ã scatter1ng length 1s go = j..3.

The region of convergence of the Legendre expansions
limits us to finding Imh+o(/) for rr" &&terr', where
rr = —26.5rr ~ Im/$+ (/) 111 tllls 1Rllge Illay be found 111

terms of the two parameters a and g~g by writing dis-
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Reh '(0) sL=/l, (A+1)ao, (51a)

Rex,o'(0).,=A(A+ 1)a,+-,'A(A+ 1)a,
—((A.—1)/8A)cp. (51b)

Equations (51) show that repulsive s-wave s-A scat-
tering would increase Re/1'~"(0) and attractive scatter-
ing would decrease it, but in both cases the e6ect is
heavily suppressed compared with the contributions
from the p-wave scattering lengths. Our estimate of Qp

in Sec. 7 shows that at most the s-wave contribution is
1'Po of Reh+ '(0). In the case of Rek+'(0), the s-wave con-
tribution is not small and our estimate of ap shows that
this term could be comparable to the Born and rescat-
tering contributions to Reh+0(0). However, the con-
tribution of Reh+0(0) to Eq. (49) is very small, and
altering the value of Reh+'(0) by a factor as large as two
does not appreciably aGect the helicity amplitudes
Imh+'(t).

6. CALCULATION PROCEDURE

The mass of I"~* was taken' to be i385 MeV. This
6xes the value of the parameter cog ——3.218. The width

J. S. Ball and D. Y. Kong, Phys. Rev. Letters 6, 29 (1961).
P. Menotti, Nuovo Cimento 23, 931 (1962).

persion relations for A and 8 at 6xed momentum trans-
fers t ~& u' and using physical m-A. scattering parameters
to evaluate them. The subtraction constants may be
found in a similar manner in terms of forward m-A

scattering data by an extension of the method of Ball
and Wong, "as used by Menotti, "in a similar calcula-
tion for m-E scattering. In practice the dispersion rela-
tion for A(s, t) requires a subtraction and we make this
at t=0 in the amplitude

F{s,t)=—A (s,t)+ (h/4p ')B(s,/); (50)

This has the practical advantage of removing the con-
tributions of the p-wave scattering lengths to Redo(0),
and the d-wave scattering lengths to Reh~"(0). The
scattering-length contributions to the two subtraction
constants are then

of the resonance is a function of both yl, and u. For 6xed
values of the parameter a, values of yI, were calculated
for a I'~* width' of 50 MeU. With fixed values of u and
gag, the Born term, the crossed integral, and the re-
scattering integral were evaluated on both the physical
and crossed physical cuts by the methods of Secs. 4,
5(i), and 5(ii). The Layson formula was used in the re-
scattering integrals. In the crossed integrals only the
Y~* was used (pq/2 contributions are discussed later).
The difference between the real parts of the p3/2 ampli-
tude given by the Layson formula and the sum of the
contributions from the Born term, rescattering, and
crossed integrals was then formed. This quantity we call
the discrepancy. ' By varying gz& and u, and ignoring
the x-x effect, we 6nd that there exists no pair of
parameters such that the discrepancy is a monotonic
function of s across both cuts simultaneously, i.e.,
could be represented by a short-range term. This is due
to the sign of the Born terms being different on the two
cuts, and shows that a x-x eGect must be invoked in
x-A. scattering. We 6t the discrepancy by the con-
tribution from the T=O ~-m term and a linear term
which we use to represent the unknown, neglected,
short-range part of the interaction. We compare our
estimate of the short-range term with that calculated
from a unitary sum rule in Sec. 7.

Thus, using the same fixed values of u and g~q
values of Imh+'(/) for a" &~t~&a' were calculated by
the method of Sec. 5(iv). Again only the Yq* was used
in the rescattering integral, but here s&/& and pg/Q con-
tributions are negligible because of the restriction im-
plied by Eq. (31). The double subtraction in Eq. (49)
means that values of Imh+'(t) for larger negative values
of t are well suppressed. Furthermore, it turns out that
the second subtraction constant is more important than
the integral term in Eq. (49). The two subtraction
constants Reh+0(0) and Reh+0'(0) were also calculated
in terms of gsq and a, using the pa/2 scattering length
u8 from the Layson formula, Eq. (21). Equation (49)
was then used to calculate the values of Imh~'(/) for
t~&4p' in terms of the s-wave T=O m-~ phase shifts.
Finally, Eq. (33) gives the T=O s-~ contribution from
the front of the circle to ReF&~(s) on both the physical
and crossed physical cuts,

The parameters a and gqq were then varied to make
the difference between the discrepancies and the T=O
x-x contribution a monotonic function of s across both
cuts simultaneously. In practice this condition was
difficult to achieve near s=so because, as Eq. (24a)
shows, the p~/2 contribution there is not negligible.
Furthermore, the second subtraction constant Reh+" (0)
gives an important contribution to Eq. (49), and, as
Eq. (51b) shows, the p~/2 scattering length cannot be
neglected in its calculation. Consequently, the best
parameters found from the above were used to calculate
ReF& (s) on the low-energy portion of the physical cut
from the dispersion relation (18) in exactly the same
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way as the p~q2 amplitude was calculated. Unitarity
then gives ImF~ (s). The predicted values of Repq~s on
both cuts are shown in Fig. 6. The pq~q amplitude was
recalculated incorporating the p~~~ contributions to
F~+(s) on the crossed cut, and to the circle contribu-
tion on both cuts. The procedure of 6tting the dis-
crepancies was then repeated by varying a and g~~ .
The best-6t parameters found were @=0.33+0.02 and

gz& '= 10.9&0.3. The errors are determined only by the
goodness of 6t, and do not represent any assumptions
about the validity of the approximations made. Finally,
the difference between the discrepancies and the circle
contribution was fitted by a linear term of the form
A+Bs, where A and 8 were chosen to give a best fit
on both cuts simultaneously. The results are shown in
Fig. 7. Table I shows the contributions to the Omnes-
equation subtraction constants, and the corresponding

TABLE I. Contributions to the Omnhs-equation
subtraction constants.

First subtraction
constant Reh+0(0)

Second subtraction
constant Reh+0'(0)

From scatter-
ing lengths

Total Born Rescattering pq12 PI12

—9.02 —4.74 —4.28

6.21 2.84 —1.85 7.06 —1.84

values of Imh+'(t) for a"~& t ~(a' and t&~ 4p' are shown in
Figs. 8 and 9, respectively. The values of ReFq+(s)
calculated from the dispersion relation (18) and the
values given by the Layson formula, with short-range
terms, are shown in Fig. 10, and the numerical values
of the contributions at both thresholds are shown in
Table II. The column headed "Short-Range" shows the

0.02--

FIG. 7. The P3~& discrepancies with
short-range term (solid lines), and the
T=O m.-m contributions (broken lines)
for the best-6t parameters. The linear
term is shown as a dotted line.
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Ifw
tions from the back of the circle and the 1' — & &0.

we represent the sum of these contributions by a single

(52) will enable us to determine its residue. The exact
position of the pole is undetermined but b f
the factor

u ecause 0
e actor q "(s) it would be unreasonable to place it

on the line 0~&s~&si would have most of the unknown
cuts to its left. We wiH compromise by placing the pole
at the rear of the circle, at s= —(A' —1), noting that
this will give an upper estimate of the short-range
orces, and that the value will decrease as we move the

pole to the left.
If we define

ImF g~(s') ds'

ImF g~(s') ds',

0.0011. at, so and 0.0013 at Bp which are consistent with
those found in Sec. 6 (see Table II). In the pq~~ channel
we And J&0.005 and Aq = —0.16; hence, I'= —0.16.
We have calculated the short-range contribution to the
pqqp amplitude given by the second predictions. The re-
sultmg py~2 phase shifts ale shown m Flg. 11.

(ii) 8 Waves

Throughout this work we have neglected the s-wave
s-A interaction and its contribution to p-wave scatter-
ing via the crossed channels. As in all s-wave problems,
we are hindered in our calculation of the sz]2 amplitude

ecause the lack of a centrifugal barrier means that
there undoubtedly exists an important short-range inter-
action. Furthermore, in this case we cannot deduce this
short-range interaction because of our lack of knowledge
o the s-wave rescattering. However, an estimate of the
s-wave scattering length may be obtained by consider-
ing the weak decay

—+ A'+s

ImF (~(s')ds'+—

7r LR
ImF (~(s')ds'

This decay may be specided by three parameters"
a, P, and y such that

n'+P'+y'= 1. (5"I)

IfSan~ &S and are the s~~2 and p~~~ s.-A scattering amplitudes
in the 6nal state, and we normalize

then"
0

is the unphysical contribution coming from the "nearb "
singularities, then the residue of the short-range p 1- ange poe

Using the results of Sec. 6 for the pg~q channel we Gnd

J=1.02 2 ~+=0,87, and hence F= —0.15. For a pole at
s= —(A' —1) this gives short-range contributions of

n=2Re(S*F); P=2Im(S F); y= lSl' —lPl'. (59)

The e8ect of the final-state interaction is to multiply
the s- and p-wave amplitudes by a phase factor which

~ T. D. Lee and C. N. Yang, Phys. Rev. 109, 1755 (1958).
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TABLE III. Contribution of nearby singularities to Ref0+(S).

N
tsl
tLl
K
c5
tLJ

-1,0

Fio. 11. Predicted
values of the pl~2
phase shifts.

$0
8

0.000
0.000

0.21.2
0.170

—0,035—0.030
0.177
0.140

Using the values given in Table III we have

ap ———0.08+0.20. (64)
-2.0

depends on the m-A phase shift. In Ref. 23 it is shown
that, if time-reversal invariance hoMs for the decay,
then

tan(6ygg 38i p) =p/rr &
(60)

Because of the large error on p the precise value we use
is not significant. Using these values of n and P in Eq.
(60) and taking the value of 6»«at the decay energy
s=8=89.5 from Fig. 11, we have 8„„(8)=—7'&13'.
Equation (12) then gives Ref~(8) = —0.12+0.20.

The dispersion relation (18) may be written for /=0
and s~ sp)

Refp+(s) =Z(s)+rescattering+short range, (62)

where Z(s) is the total contribution from the "nearly"
singularities. The constituents of Z(s) at sp and 8 are
shown in Table III. If we assume that both the rescat-
tering and the short-range terms are slowly varying
functions of s, then from Eq. (62)

Ref p+(Sp) =Op~Re fp+(8)—Z(8)+ Z(s) . — (63)

'3 T.D. Lee, T. Steinberger, G. Feinberg, P. K. Kabir, and C. N.
Yang, Phys. Rev. 106, 1764 (1939).

~ See H. Ticho, Proceedings of the Brookhaven Conference on
Weak Interactions, 1963 (unpubhshed).

25 P. L. Connolly, E. L. Hart, G. KalbQeisch, K. W. Lai, G.
London, G. C. Moneti, R. R. Rau, N. P. Samios, I. O. Skillicorn,
S. S. Yamamoto, M. Goldberg, M. Gundzik, J. Leitner, and S.
Lichtman, Proceedings of Siena International Conference on
Elementary Particles, 1963 (unpublished), find a= —0.49~0.16
and p = —0.02~0.22 which are consistent with the results of L. W.
Alvarez (Ref. 24) who finds 0.= —0.41+0.08 and p = —0.08~0.26,
and L. Jaureau, D. Morellet, U. Nguyen-Khac, A. Rousset, J.
Six, H. H. Bingham, D. C. Cundy, W. Koch, M. Nikolic, B.
Ronne, O. Skjeggestad, H. Sletten, A. K. Common, J. J. Esten,
C. Henderson, C. M. Fisher, J. M. Scarr, R. H. Thomas, A.
Haatuft, R. Myfllerud, and K. Myklebost, Proceedings of the
Siena Conference on Elementary Particles, 1963 (unpublished),
who find m= —0.44~0.11 and p= —0.24+0.53. However, D.
Carmony, G. M. Pjerou, P. E. Schlein, W. G. Slater, D. H. Stork,
and H. K.Ticho, Phys. Rev. Letters 12, 482 (1964), find o.= —0.64
~0.13, p=+0.65~0.16, and H. Schreider, Phys. Rev. Letters 4,
360 (1963), finds 0.= —0.73&0.21, p =+0.44~0.36, both of which
appear to be incompatible with time reversal invariance which
predicts p =0.

where 8 are the phase shifts at the decay energy. Ex-
periments agree" on the value of n but the value of P
is still subject to large errors."We shall use the average
results of Connolly et al.25 and Alvarez et al. ,

24 i.e.,

n = —0.45&0.13; P = —0.05&0.24. (61)

Thus, although the sign is not determined, ~ap~ (0.3
and hence the contribution of ap to Reh+"(0), which is
the most important term in Eq. (49), is less than 1%.
Likewise, its contribution to Fi+(s) on the crossed cut
is negligible. Using the value of ap given by Eq. (64)
and the value of Z(sp) given in Table III, we see that
the sum of the rescattering and short-range terms is—0.26&0.20. Since the rescattering will be positive at
threshold, this means that there must exist a strong
short-range repulsion in s-wave +-A scattering, the value
of which at threshold is less than —0.26. The situation
is thus very similar to s-wave m-S scattering, where there
exists a strong short-range repulsion contributing about—0.3 to both the s-wave scattering lengths. "

Finally we note that accura, te values of n and P
would enable us to predict s-wave x-A phase shifts in
the low-energy region. These would be valuable in the
study of A.—.V scattering.

8. OTHER EVIDENCE ON gyp

In this section we compare the value of g&z
' ob-

tained here with other determinations, with special
reference to SU(3) symmetry. "In terms of the SU(3)
mixing parameter o, and the pion-nucleon coupling
constant g&&, , the coupling constant gz+ is given by"

gZA~ = 3O' g~~&-2—4 2 2 (65)

If we use g~~ '——14.6," and g~q
'——10.9, we obtain

n=0.1'5.

Phenomenological determinations of g~~ have been
made by many authors. Analyses of hyperon-nucleon
scattering have been made by a variety of potential
models and by effective-range theory, 29 but the results
are inconclusive because of the lack of experimental
data and the difhculty of fixing the core of the potential
for s-wave scattering. Information on the pion-hyperon
couplings may also be obtained from nonleptonic
hyperon decays. '0 The most detailed calculations of

"M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne'eman,
Nucl. Phys. 26, 222 (1961).

"A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963).
-' J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737

(1963).
29 C. Dullemond and J. J. De Swart, Ann. Phys. (N. Y.) 19,

458 (1962); Nuovo Cimento 25, 1075 (1962). J. J. De Swart and
K. C. Iddings, Phys. Rev. 128, 2910 (1962); 130, 319 (1962). B.
Ram and D. W. Downs, Phys. Rev. 133, 8420 (1964).

3 G. Feldman, P. T. Matthews, and A. Salam, Phys. Rev. 121,
302 (1961);S. K. Bose and R. Marshak, Nuovo Cimento 23, 556
(1962); A. Fujii, Phys. Letters 1, 75 (1962).
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these processes have been carried out by McCliment and
Nishijima. "These authors have used unsubtracted dis-
persion relations to calculate the rescattering contribu-
tions to the decay amplitudes. Their results are in
rough agreement with experimental data on sigma de-
cay for g~~ '= 7.1 and g~g '= 1.2, which implies
0.60&~ &0.86.

Martin and Wali" have generalized Chew's "recipro-
cal bootstrap"" to a many-channel system based on
SU(3) symmetry. They have considered the scattering
of the baryon octet 8 by the pseudoscalar meson octet
I', assuming the processes to be mediated by the ex-
change of 8, the 8* decuplet, and the vector-meson
octet V. The coupling constants g~g~ were taken from
SU(3) in terms of rr Th.e mixing parameter o/, together
with two cutoff parameters, was then varied in a 6rst
iteration of the 1V/D equations to yield a consistent
closed ps/s 8*decuplet and a pr/s 8 octet. This could be
achieved for 0.55~&a, ~&0.75. This range of n includes
o, =0.66 which was found by Cutkosky'4 using similar,
but less detailed, self-consistent methods. However,
these calculations do not include contributions from the
exchange of scalar systems, which we 6nd to be im-
portant for the dynamics of Y~*.

9. SUMMARY AND CONCLUSIONS

We have shown, in the framework of the approxima-
tion, that a self-consistent I'~*(1385) resonance can be
achieved for g~q„' ——10.9, and that this value of the
coupling constant is consistent with previous determina-
tions and with unitary symmetry. Furthermore, self-
consistency can be achieved only by the specific in-
clusion of the effects due to the exchange of a low-

energy s-wave m-~ pair. The short-range force in the
I'3~2 channel found for a unitary sum rule was shown to
be consistent with the self-consistent determination.
The short-range force in the I'~~2 channel was also cal-
culated by a unitary sum rule and used, together with
the contributions from nearby singularities, to predict
pg/s s A phase shifts. The effect of s~/s vr-A. scattering on
the p waves was shown to be small.

We have used the experimental branching ratios of
I'~* as part of the basis of the approximation used.
However, some insight into the dynamical reasons for
the weak coupling to the x-Z channel may be obtained
by noting that for o/=0. 75 the total Born term (due to
both Z and A. exchange) in ps/s T= 1 7r-Z scattering is
negative, i.e., repulsive. This means that in the Omnes
equation [cf. Eq. (49)j for the helicity amphtudes for
s.+s.~Z+Z there would. be cancellations between the

"E. R. McCliment and Nishijma, Phys. Rev. 128, 1970 (1962);
E. R. McCliment, Ph.D. thesis, University of Illinois, 1962
(unpublished).

"A. W. Martin and K. C. Wali, Nuovo Cimento 31, 1324
(1964).

"G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 395
(1961)."R.Cutkosky, Ann. Phys. (N.Y.) 23, 415 (1963).

integral term and the subtraction constants. Hence we
would expect the T=O x-x e6ect to be small. Other
possible attractive mechanisms are p exchange and T= 2
x-m exchange. However, p exchange occurs for t=28p, '
and would be well suppressed by the factor q "(s),ss

and T=2 m-m scattering is known to be small. "Thus
the tots, l unphysical contributions to the T=1 ps/2
elastic x-Z amplitude would be small. In the case of
7r+h. —+s+Z the Born terms are positive in the ps/s
state but are small because for o.=0.75, the quantity
gag '=3.7, which is small. Furthermore, in the t channel
there is no T=O x-x exchange, and the arguments con-
cerning p exchange in m-Z scattering apply here too.

We conclude by remarking that in all previous self-
consistent calculations of members of the SU(3) ps/s
decuplet32'~ the scattering amplitude in the unphysical
region has been assumed to be dominated by the baryon-
exchange processes, with small contributions from
vector-meson and isobar exchange, and although this is
well known to be true for x-X scattering" it has never
explicitly been demonstrated for any of the other proc-
esses. Indeed, examinations of the strengths of the
coupling constants involved and the relative distances
of the nearest singularities would lead us to suspect that
this assumption would not always be valid. In view of
the importance of the T=O x-m exchange in this cal-
culation, it would seem likely that the inclusion of the
exchange of scalar systems would significantly affect
the results of any such calculations.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor J. Hamilton, who
suggested this problem, for his continued advice and
encouragement throughout the course of the work, and
for critically reading this paper. I would also like to
thank Dr. G. C. Oades for useful advice and for infor-
mation on the T=O x-m phase shifts, and Dr. A.
Donnachie and Dr. D. H. Lyth for discussions.

Computing facilities at the Institute of Computer
Science, London University, and at the Atlas Computing
Laboratory, National Institute for Research in Nuclear
Science and a maintenance grant from Department of
Scientific and Industrial Research are all gratefully
acknowledged,

Finally, I would 1ike to thank Professor A. Bohr for
his hospitality at the Institute for Theoretical Physics,
Copenhagen, where this paper was prepared, and the
Ford Foundation for a Fellowship.

ss This is well known to be the case for iV*(1238), see, e.g., Ref.
14.

"G. C. Oades, Ph.D. thesis, University of London, 1962
(unpublished) .
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"Although even for $~(1238) the T=O ~-~ eGect cannot be
neglected. See, e,g., Ref. 14.


