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A modified effective-range theory (MKRT) was introduced previously to describe the scattering of a
charged particle by a neutral polarizable system. The long-range components of the resultant eftective one-
body (generalized optical-model) potential, which cause the phase shift to have a rapidly varying energy
dependence, are taken account of exactly by solving a one-body problem numerically. The short-range
potential components generate only a slowly varying energy-dependent eGect on the phase shift, and this
efkct can be accounted for by a few terms in a power series in k'. The procedure is here extended to the case
for which the polarizable system is itself charged, An MERT expansion is derived for the di6erence 5 (k) be-
tween the total phase shift y(k) and the phase shift p(k) due to the long-range tail alone; both y{k) and
p(k) are deGned relative to pure Coulomb scattering. With the strongly energy-dependent Coulombic and
other long-range eGects accounted for exactly by the numerical solution of a one-body scattering problem,
low-energy scattering data can be matched by the proper choice of the coefficients of just the Grst few
terms in the MERT expansion; these terms will then determine the scattering in the (experimentally in-
accessible) energy domain extending down to zero energy. For a repulsive Coulomb Geld, the leading term
in v(k) is determined exactly for all L by the Born approximation; for V(r) = (2p/k')( —P'/r'), where
n P'k'=/ [ice'ZiZs [ =P'aci is the electric-dipole polarizability of the target, tanv(k) =P'aosk'/1 5 for kooL«1.

I. INTRODUCTION

HE problem of the elastic scattering of a particle
by a compound system can be reduced, formally,

to an equivalent one-body problem by introducing an
eRective (generalized optical-model) potential 'U. The
usual effective-range-theory (ERT) expansion of the
phase shift is a very useful tool when 'U is a short-range
potential. A version of ERT can also be used if '0 con-
tains a Coulomb component plus only short-range
components. Both versions of ERT fail if 'U contains
additional long-range components. ' ' We showed pre-
viously, ' however, that if the long-range component is
su@ciently well known, as it often will be, and if this
long-range component does not contain a Coulomb con-
tribution, then one can derive a modified ERT (MERT)
expansion for the phase shift 5(k), relative to pure
U-potential scattering, where U is known and contains
all of the long-range component. LAn expansion for the
total phase shift rf(k) is possible, "' but may not be
u,seful, since the long-range interaction results in a
strong energy dependence of the phase shift, so that
many terms in the expansion, and hence many experi-
mentally determined coeflicients, are needed. ]The basis
of the technique is that since U is known, it is possible

to solve (numerically, if necessary) the problem of pure
U-potential scattering, which is trivial to do since it is
a one-body problem, and thus to extract out exactly the
strongly energy-dependent terms. Our present concern
is to repeat the derivation for potentials which include
a Coulomb potential as well as other long-range
components.

The partial-wave solution to pure Coulomb scattering
has long been known: it is the function Fz(k, r) which is
given' ' in terms of a conQuent hypergeometric function
and which has the asymptotic form

Iiz(k, r) ~ sin(kr —rc ln2kr —srLrr+ar), rico (1.1)

where, in the scattering of a charged particle of charge
Ze by a target of charge Z'e,

e= ZZ'ss j(htt), e = the relative speed,

o z——arg 1'(L+1+ stan) .

When the potential consists of a short-range potential
in addition to the Coulomb potential, the ERT expan-
sion for the phase shift, g, relative to pure Coulomb
scattering takes the form~

Cz'(e)k'+'cotrf+kz(N)= 1/A+srsk'+ i
—(1.2)
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becomes local for large r, satisfies the condition

r'U(k) —& 0, r ~~ . (1.3)

In our present problem, the procedure is essentially the
same as it was for the previous non-Coulombic MERT
case: having expressed the potential as a sum of a
Coulomb potential, a potential U(k) which satisfies
Eq. (1.3), and a short-range potential, one must first
determine the phase shift, p, relative to Coulomb scatter-
ing )and two other functions of k which are the analogs
of the Cs.(n) and kr.(22) of Eq. (1.2)j, due to U(k) alone
in the presence of the Coulomb potential, by solving a
scattering problem which includes only U(k) and the
Coulomb potential, and then derive a MERT expansion
for the difference between the total phase shift relative
to Coulomb scattering and p.

While the technique we will use to derive the Cou-
lombic MERT expansion is formally the same as the
technique we used to derive the non-Coulombic MERT,
the physical process under study is quite diGerent, and
we would like to discuss this here. To begin with, in the
absence of a Coulomb field the contribution of the phase
shift due to the long range tail of U(k) is so strongly
energy-dependent that it dominates over the short-
range contribution. For example, for L& 1 the first term
in an expansion of the phase shift p due to a potential
which has a 1/r4 dependence for r &R is proportional to
k' rather than to k' +' and the coefficient of k' is inde-
pendent of R.' Since this first term is independent of
R, it is due entirely to the long-range tail, and since the
1/r' tail is asymptotically very weak, the Born approxi-
mation gives the Grst term exactly, that is, it gives both
the energy dependence and the correct coeKcient (in
fact, all terms up to but not including the k2 +' term
are given exactly by the Born expansion). Consequently,
the threshold energy dependence of the total phase
shift, g, is known exactly, since any short-range po-
tential contributes a higher order energy dependence.
In Sec. 4 we derive an explicit expression for the Born
approximation tangg for the potential

U(r) = —(l'22/244) (P2/r4)

in the presence of a Coulomb Geld, and discuss the
results in some detail. BrieQy, we prove in the case of the
repulsive Coulomb Geld, if for L/0 we have Lkao«1,
or if for L=O we have k@0«1, that to lowest order in k

tangs ——(p/ap) 2(ka2) '/15,

and that this result is exact for q itself, to lowest order.
In comparison, the phase shift for a short-range po-
tential in the presence of a repulsive Coulomb field is
proportional to exp/ —22r/(kao) j.However, in the case
of the attractive Coulomb field it is the short-range
potential which is responsible for the dominant energy
dependence of y, since the attractive Coulomb field
pulls the scattered particle into the neighborhood of the
origin. Of course, the Born-approximation result in the

U(k)=U(0)+ Q U k2™
m=1

V(k)=V(0)+ P V k2™
m~1

(1.5)

Although the functions associated with the Coulomb
field are well known, we have felt, since there is some
difference of notation in the literature Lin particular,
in the definition of kz(24), which is difficult to find for all

repulsive-Coulomb-Geld case is only useful as a pre-
liminary orientation except at extremely low energies;
it will not normally be sufhcient to match the experi-
mental data at other energies. Similar results can be
obtained for any 1/r" potential in the presence of the
repulsive Coulomb Geld, where p is an integer &3.These
results are derived in Appendix B.We note that we are
now studying the effect of the electric-quadrupole inter-
action in proton-deuteron scattering. Since this is a
three-channel elastic-scattering problem, the knowledge
that in the case of the repulsive Coulomb Geld the Born
approximation is exact, to lowest order, both in the
k dependence and its coeScient, allows for considerable
simplification.

The procedure we use to derive the MERT expansion
for the difference phase shift, and the procedure we
outline for its use, is applicable to any problem for which
a partial-wave analysis is possible. This includes the
scattering of electrons by negative or positive ions, and
the scattering of protons by light nuclei (since it is
applicable to low-energy scattering only, it is not useful
for the scattering of protons by heavy nuclei, where the
eGect is swamped by the very strong Coulomb scatter-
ing). In principle, it should be possible to extend the
procedure to any problem of elastic multichannel scat-
tering (e.g. , the scattering of protons by nuclei which
have quadrupole moments), and probably even to
multichannel inelastic scattering (the latter should be
much harder to do, but well worth the effort).

We consider below the single-channel elastic scatter-
ing of a particle of charge Ze by a target of charge Z'e
in the presence of an additional potential 'U(k), where
'U(k), the effective generalized optical-model potential,
satisfies Eq. (1.3). We have discussed. the relevant
properties of 'U(k) in a previous paper' and therefore
we need not go into detail here. We merely note that
we can set 'U(k) equal to two terms:

'U(k) = V(k)+ U(k),

where V(k) is a short-range potential (i.e., one which
falls off faster than any power of 1/r) and where U(k)
includes the long-range tail, has at most a 1/r singularity
at the origin, and is assumed to be a known function.
'U(k), V(k), and U(k) are all operators representing
nonlocal, energy-dependent potentials, with kernels
'U(k; r,r'), V(k; r,r'), and U(k; r,r'), respectively. We
assume that V(k) and U(k) satisfy
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values of L], that a collection of those functions which
are relevant to our discussion would be convenient;
this will be found in Appendix A. One other point of
notation should be noted: we suppress the L dependence
of wave functions, phase shifts, and associated functions
of k such as C(k) and k(k) Lthe analogs of Cz(u) and
kL(s)j except in the case of those pure Coulomb func-
tions for which I. is traditionally carried as a subscript.

2. PRELIMINARIES

Our problem is to determine the phase shift r1(k)
de6.ned by

[T(r)+ZZ'eP//r+ V(k)+ U(k) —Eju(k, r) =0, (2.1)

u(k, o) =0, (2.2)

u(k, r) —& F(k) sin(kr —u ln2kr ,'Ln+o z—+—g),.

r —+ po (2.3)
where

T(r) = (k'/2p) (—d'/dr'+L(L+ 1)/r')

E= k'k'/(2p)

F(k) is an arbitrary normalization factor LF(k) conforms
to a previous notation'; it has nothing whatever to do
with the Coulomb function Fz(k,r)5, U(k) is assumed to
be chosen to match the presumably known long-range
interaction between the particle and the system, the
phase shift p(k) associated with U(k) in the presence of
the Coulomb potential will be assumed to be determined
numerically, and we will develop an expansion for
cotb(k), where

b(k) =g(k) —p(k)

is the phase shift due to the short-range potential V(k)
in the presence of U(k) and the Coulomb potential.
While q(k) can be a rapidly varying function of the
energy because of the long-range potential, b(k) will be
relatively slowly varying. Hence only a few terms in the
expansion of cotb(k) will have to be retained, and these
coeKcients can be determined from an analysis of the
experimental data. We begin by introducing several
long-range functions.

A. Long-Range Functions

boundary condition

g(k, r) ~ cos(kr —u ln2kr ,'—Lv-+oz+p), r ~~ . (2.6)

Since U(k), by construction, has at most a 1/r singu-
larity at the origin, the regular solution f(k,r) will

behave as r+' in the neighborhood of the origin. We
define the function C(k), the analog of the Coulomb
function Cz(e), by

~ f(k,r) q
C(k)=—lim

~ ~

. (2.7)
P (kI+irk+1

It follows that as k-+0, f(k,r) approaches C(k)k~' times
a function of r Sin.ce C(k) is fixed by the asymptotic
condition (2.5), the quantity C(k)k~' might either
vanish or become in6nite at k=0, so that setting k=0
in f(k,r) might not yield a zero-energy solution. Let
fp(r) be a solution of

[T(r)+ZZ'eP//r+ U(0)jfp(r) =0, (2.8)

which is regular at the origin. Then as k approaches
zero f(k,r) must become proportional to C(k)k +'fp(r),
and we fix the normalization of fp(r) by choosing, for
any fixed r,

fp(r) = lim(
kPk'+C( )k)

(2.9)

The irregular function g(k,r) has a 1/rz singularity at
the origin, so that, using the asymptotic conditions,
Eqs. (2.5) and (2.6), and the Wronskian relationship
(see Sec. 3 below for the definition of W„LX,Vj)

W„Pf(k,r),g(k, r)j=const = —k,

we find, with Eq. (2.7) in the form

f(k, r) —+
C( )kk+z'r +' r —+0,

that
g(k, r) -+ $(2L+1)kzC(k)ref ' r ~0. (2.10)

Clearly we can now use this result to determine a con-
venient zero-energy irregular solution gp(r): It is
uniquely de6ned by the differential equation

PT(r)+ZZ'e'/r+ U(0) jgp(r) =0 (2.11)

We consider the three solutions f(k,r), g(k, r), and
v(k, r) of

and the limiting condition

gp(r) = lim fkzC(k)g(k, r)j (2.12)
[T(r)+ZZ'e'/r+ U(k) Ej—

X (f(k,r),g(k, r),v(k, r) )=0. (2.4)

Clearly only two of these three functions, which differ
in their boundary conditions, are independent. The
boundary conditions on the regular solution, f(k,r), are

y(k, o) =o,
f(k,r) —+ sin(kr —u ln2kr —pLv. +oz+p), r~~, (2.5)

and we define g(k, r) as that solution which satisfies the

The functions v(k, r) and v(o, r) satisfy, for all r,
differential equations which are independent of the
short-range potentials V(k) and V(0), but we define
them according to boundary conditions which depend
on these potentials, i.e., we define them to be the
asymptotic forms of u(k, r) and u(o, r). Hence we defer
the definition of v(k, r) and v(o,r) until we have discussed
the boundary conditions on the scattering functions
u(k, r) and u(o, r).
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B. The Scattering Functions

We have defined u(k, r), to within a normalization
factor, by Eqs. (2.1) and (2.2). We shall fix the normali-
zation of u(k, r) by fixing the zero-energy scattering
solution and then requiring that u(0,r) be this solution,
i.e., that u(0,r) satisfy the differential equation

[T(r)+ZZ'e'/r+ V(0)+ U(0)]u(0ir) =0, (2.13)

and the conditions

u(0,0)=0, u(0, r) = lim u(k, r). (2.14)

Since V(0) is by definition a short-range function, u(O, r)
must approach a linear combination of fp(r) and of gp(r).
We 6x the normalization of u(O, r) by imposing the
asymptotic condition

the Wronskian of X and I' by

W,[X,Y]= JV,[X(r),Y(r)7= [X(a)Y'(a) —X'(a) Y(a)],

where the prime indicates differentiation with respect to
r, and we de6ne

Wb [X,Y]=W—p[X,Y] 8—' [X,Y].
Multiplying Eq. (2.1) for u(k, r) by u(0, r) and Eq.

(2.13) for u(O, r) by u(k, r), subtracting, integrating be-
tween the arbitrary limits u and b, and using the
Hermiticity of 'U(k) to invert some terms in the inte-
grand, we obtain

Wp [u(k,r),u(0,r)]=k' u(k, r)u(0, r)dr

u(0, r) ~ v(0,r), r ~pp, (2.15) —(2p/k') u(k, r) [V(k)—V(0)]u(O,r)dr
where

v(0 r) = (—1/A) fp(r)+gp(r); (2.16)

consequently, v(O, r) satis6es the differential equation

[T(r)+ZZ'e'/r+ U(0)]v(O, r) =0. (2.17)

We choose v(k, r) to be that linear combination of f(k,r)
and g(k, r) which satis6es

u(k, r) —+ v(k, r), r —+ ~ . (2.18)

Comparing Eq. (2.18) with the asymptotic forms (2.3),
(2.5), and (2.6), we now find that

v(k, r) =F(k) cosb(k) [f(k,r)+g(k, r) tanb(k)]. (2.19)

We now fix F(k) by noting that Eqs. (2.14), (2.15), and
(2.18) result in

(2.20)v(O, r) = lim v(k, r)

Hence Eqs. (2.16), (2.19), (2.20), (2.9), and (2.12)
result in

—(2p/k') u(k r)[U(k) —U(0)]u(0,r)dr. (3.1)

Proceeding in precisely the same way with Eqs. (2.4)
and (2.17) for v(k, r) and v(O, r) we 6nd

8'b, [v(k,r),v(0,r)]=k' v(k, r)v(0,r)dr

—(2p/k') v(k, r) [U(k) —U(0)]v(0,r)dr. (3.2)

Substracting Eq. (3.1) from Eq. (3.2) and letting
b —+ we find

W,[u(k,r),u(0, r)7—W,[v(k,r),v(0,r)7

=kP [v(k,r)v(0, r) —u(k, r)u(0, r)]dr+A(k, a), (3.3)
lim [F(k) cosh(k)kz+'C(k)] = —1/A,
k~0

(2.21)

lim
k~0

F(k) sin8(k)

k'C(k)
(2.22)

where

R(k, a)=—(2u/k') u(k, r) [V(k)—V(0)]u(O,r)dr

and since Eq. (2.20) is the only requirement on F(k)
we can choose

F(k) =kzg(k)/sinb(k) (2.23)

for all k. Replacing F(k) in Eq. (2.19) and (2.21) by
the right-hand side of Eq. (2.23) we finally arrive at

lim [k' +'g'(k) coty(k)7= —1/A, (2.24)
k~0

v(k, r) =king(k) [cotb(k) f(k,r)+g(k, r)]. (2.25)

3. THE MODIFIED EFFECTIVE-RANGE
THEORY (MERT) EXPANSION

Having introduced the various functions, we are now
prepared to derive the MERT expansion. VVe denote

+ (2p/k') {u(k,r) [U(k) U(0)]u—(0,r)

—v(k, r) [U(k) —U(0)]v(0,r) }dr,

the Wronskians with respect to b canceling since u(k, r)
and u(O, r) approach v(k, r) and v(0,r), respectively. The
integrals in Eq. (3.3) are finite, since all of the integrands
are short-range functions. We now want to let a —+ 0,
but other than for 1.=0 we are not yet in a position to
do so throughout, since for L)0 v(k, r) and v(O, r) are
singular at the origin. We can, however, let a go to zero
in all nonsingular terms. Yo begin with, since

u(0,0) =u(k, 0)=0,
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is required of U(k) is that it contain aH long-range terms
in the equivalent one-body potential, we can simplify
the analysis by assuming that U(k) =0 for r(d, where
d is arbitrary. [More precisely, the kernel U(k; r,r') =0
for r(d.7

It follovrs that

W,[u(k,r),u(0, r) 7 —+ 0. (3.4)

Next, we use Eqs. (2.25) and. (2.16) to express v(k, r)
and v(0,r) in terms of f(k,r) and g(k, r), and fo(r) and

go(r), and replace v(k, r) and v(0,r) on the left-hand side
of Eq. (3.3) by these expressions. Equations (2.7), (2.9),
(2.10), and (2.12) result in

W,[f(k,r),go(r)7 ~ —k~+IC(k),

w, [g(k,r),fo(r)7 -+ [k~c(k)7-I

W.[f(kr),fo(r)7 ~ o,

fo(r) =Fr(O,r), r&d, (3.6a)

f(k, r) = [C(k)/CI (e)7Fr(k, r), r(d, (3.6l )

go(r) =Gr(0,r)+EoPI(O, r), r(d, (3.6c)

g(k, r) =[ci,(n)/c(k) 7Gz, (k,r)
+[8(k)/Cl(l)7FI(k, r), r(d, (3.6d)

where Fi,(k,r), Gr, (k,r), Fi,(0,r) and Gl, (0,r) are the
Coulomb wave functions given in Appendix A, E(k) is
de6ned by the last equation and is to be determined
numerically, and

lim [k'~+IC(k)Z(k)7=So. (3 &)

as c~ 0. Putting these limits, together vrith the limit
(3.4), into Eq. (3.3), and letting a ~ 0 for nonsingular
terms we 6nd

k"+IC'(k) cotb(k) —kiC(k) W.[g(k,r),go(r)7

=—1/A+k' [v(k,r)v(O, r)
We can now use Eqs. (A10), (A11), and (A12) to

u(k r)u(0 r)7dr+E(k g) (3 5) evaluate C(k)k W~[g(k~r)~go(r)7. Puttlllg the I'esult lllto
Eq. (3.5) and subtracting the divergent terms from both

Up to this point, we have made no specific assumption sides of the resulting equation [see the discussion below
about the behavior of U(k) for r small. Since all that Eq. (A12)7, we can now let a-+ 0 and. 6nd

C'(k) k"+' cotb(k)+h(k)

/ 1 Ci,'(n) o 2 ) '~+I

v(k, r)v(0,r) —u(k, r)u(O, r)+ (1—bio) ~

—2uk' +'
kk'r Coo(N) I"(21.+2) uo)

—Pr.(k,r)) dr

+k' [v(k, r)v(O, r)—u(k, r)u(O, r) —(1—Br,o)qsl(k, r)7dr+R(k, 0), (3.8)

h(k) =k'~I C(k)E(k) —So+hi, (II),

hl. (u) is given in Appendix A [Eqs. (A9)7, bio is a Kronecker-delta function, and c and @l,(k,r) are de6ned in
Appendix A.

To obtain the MERT expansion, we keep only terms up to k' in Eq. (3.8). Then, using Eqs. (1.4) and (1.5),
wc find

C'(k)k'~i cotb(k)+h(k) = 1/A+',rok'+—- (3.9)

rp—
oaoo 2 "+'L(21.+1)(L,+1)

v'(O, r) —u'(O, r)+ (1—4o)
r'(2I.+2) II, 6r

yl, (0,r) —dr

+ [v'(O,r) —u'(O, r) —(1—bz,o)yi, (O,r)7dr+ (2II/O') u(0,r) V,u(0,r) dr
a0/2

+(2II/O') [u(0,r) Uiu(0, r) —v(0,r) Uiv(O, r)7dr. (3.10)

The only reason for obtaining the expression (3.10) is
to shovr that rp is 6nite, which vre novr do. The first tvro

1Iltcglals arc finite by construction. Thc third 1ntcgI'al

is finite because u(0,0) vanishes, and because the inte-

grand is a short-range function. The last integral is
6nite because u(0,r) approaches v(O, r) asymptotically in
such a vray that the intcgrand becomes a short-range
function, and because vre have required V~ to vanish for
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r(d. Consequently, one can use Eq. (3.9) to match the
data, determining A and ro in the process, and for-
getting the complicated expression (3.10) entirely.

4. THE BORN APPROXIMATION

The Born approximation phase shift q~ for scattering
by a non-Coulombic long-range potential U in the
presence of a Coulomb potential will now be obtained
both because the leading term of g~ is, as will be shown
below, exactly equal to the leading term of q when the
Coulomb field is repulsive and because g~ serves as a
preliminary orientation in studying the eGect of U. In
particular, if there are special effects at low energies due
to the long-range tail of the potential, these must appear
in the Born approximation, since at sufficiently great
distances the long-range potential, which falls off as
some power of 1/r, is arbitrarily weak. As a concrete
example, we consider here the electric dipole polariza-
tion potential U(r) in the presence of the Coulomb field.
The long-range form of U(r) is

U(r) = P'r '&—'/(2t ) (4.1)

Since we are looking for special eGects due to the long-
range tail, and since the lowest order contribution to
g~ from the short-range part of the potential has an
easily recognizable energy dependence, it will be suK-
cient to find g~ for an unrealistic potential which has the
form of Eq. (4.1) all the way into the origin. This
simpliQ. es the calculations but forces us to consider L& 1
only. We will, however, be able to get some qualitative
ideas about the L=0 phase shift based on the results for
L&1, and we will derive the exact result for the L=O
phase shift in the limit of very low energies in the case
of the repulsive Coulomb Geld, in Appendix B.

In the absence of a Coulomb field, if U(r) is given by
Eq. (4.1) for all r, we find'

tangzi =2r(Pk) '[(2L—1)(2L+ 1)(2L+3)]-'
(L&1, no Coulomb field) (4.2)

and this is quite different from the lowest order energy
dependence (k' +') for a short-range potential. Since if
we cut off U(r) beyond some large value of r, however
large, it is still true that for sufBciently small k, g~ has
the k'~+' dependence of a short-range potential, we
conclude that the k' dependence of Eq. (4.2) is due solely
to the long-range 1/r4 behavior of U(r). Further, Eq.
(4.2) must be exactly the lowest order term for the true
electric dipole polarization potential, even though we
have put in the wrong short-range potential, since any
short-range potential will contribute terms of order
k'~' and higher. The I.=O case is more complicated,
since in the absence of the centrifugal barrier any short-
range potential must contribute a significant part of the
phase shift. Of course, special e&ects due to the long-
range potential must appear for L=O also."

In the presence of a Coulomb field the results depend
on the relative strengths of the Coulomb potential, the

where

n = —1/kup, attractive Coulomb field,

=+1/kap, repulsive Coulomb field,

and where, again, we must exclude L=0. If w(k, r) is
normalized so that

w(k, r) ~ Fz(k, r)+Gz, (k,r) tang(k), r ~pp,

where Fz(k,r) and Gz(k, r) are the Coulomb functions
defined in Appendix A, and g(k) is the phase shift rela-
tive to Coulomb scattering, then the Born approxima-
tion phase shift gzi(k) is given by

ta ga(k) = (P'/k) Fzp(k, r)r 'dr, L&1. (4.4)

This integral can be evaluated by integrating by parts
twice and using the following properties of the Coulomb
wave functions'.

dFz, (k,r) L+1 nk-
+ Fz(k,r)

dr r L+1
- 1/2

—k2+
ap'(L+1) '

dFz, (k,r) L nk
= ——+—Fz, (k,r)

dr r L
—I/O

Fz i(k,r), LWO, (4.5b)+ k'+
a02L2-

Fz(k, r)Fz (k,r)r 'dr=k[(L —L')(L+L'+1)]—'

X»n[2 (L—L')~—(~z—~z )], (4.6)

Fzp(k, r)r 'dr =k(2L+1) 'xz(n), (4./)

where

Xz(n) =-
en I+2 2n2+n2

L n
=-(1—COth2rn)+ —+ Q . (4.8)

2 2n ~=i 2n2+n2

Equations (4.5) and (4,6) follow from the differential
equations and asymptotic forms that Fz, (k,r) and

centrifugal barrier, and the kinetic energy, and on
whether the Coulomb field is attractive or repulsive. It
will again sufBce to study the problem with the un-
realistic potential U(r), i.e., we consider the scattering
function w(k, r) which satisfies

d' L(L+1) 2nk P'
+ + ——k' w(k, r) =0, (4.3)

r



8 iii2 R. O. BERGER AND L. SPRUCH

Fr;(k,r) satisfy, and Eq. (4.7) follows from Eq. (4.6)
and from

d(TI S
=Ime(L+1+on) = g

dI, oo ~1 m2++2

~=i m'+n'

L (L+1)(2L+1)
6m'

(L+1)(2L+1)(3L'+3L—1)
(4.10)

We have also, for large lel,

1—cothoroo=2+6(e ' t~"), attractive Coulomb field,

=8(e '~to o) repulsive Coulomb field.

Putting this last result, together with the expression
given by Eq (4.10) f. or the sum, into Eq (4.8) in. the
second form, we find

or(P/ap) l 6+2L(L+ 1)(kap) j
tangg=

L(L+1)(2L+1)(2L—1)(2I.+3)

f P l'(kup)' +.. .+O(e
—owtooo)

~api 15

(Lkap«1, attractive Coulomb Geld); (4.11)

P ' (kap)P
tangs —— — +. . .+g(e o~t t~o)—

up 15

(Lkap«1, repulsive Coulomb field), (4.12)

where in both Eq. (4.11) and Eq. (4.12) the ellipsis
stands for terms of higher order than the fifth in (kap).
Since at low energies the phase shift due to a short-

where @(s) is the logarithmic derivative of the gamma
function I'(s) and Im denotes the imaginary part. The
result of integrating Eq. (4.4) is

P (2L3+k ap L(L+1)jar, (oo) 3o—o '(2L+1)}
tang~=-

up'L(L+ 1)(2L+1)(2L—1)(2L+3)

L& 1. (4.9)

We will find the lowest order energy term of Eq. (4.9)
in two limits.

If Lkgp«1 then lel =(kGp) ' is very large compared
to I, and we can write

range potential in the presence of a repulsive Coulomb
field is of order exp( —2or/kap), Eq. (4.12) shows that
special effects due to the long-range 1/r4 potential
dominate over eGects due to the short-range potential.
Hence, the leading term in Eq. (4.12) is probably exact,
regardless of the true short range. On the other hand, at
low energies the phase shift due to a short-range poten-
tial in the presence of an attractive Coulomb Geld begins
with a term independent of the energy, as does Eq.
(4.11).Hence special effects due to the long-range 1t'ro

potential do not dominate, and the leading term in
Eq. (4.11) cannot be exact, since we have not taken
account of the correct short-range potential.

To emphasize the meaning of the above results, we
give an argument which, though only a qualitative
classical argument, is not without physical content. %'e

note first that Lkap«1 implies (since we have restricted
our attention to L& 1) a very large value of

l
oo l, hence

a strong Coulomb Geld as compared to the centrifugal
barrier. The result, in the case of the attractive Coulomb
Geld, is that the Coulomb Geld pulls the particle in
toward the origin at least as far as the point r=R~, at
which the Coulomb potential just equals the centrifugal
barrier, where

Rr„———,'L(L+1)ap.

But if the Coulomb Geld is not present, the particle
penetrates only as far as r= R», where

R =k 'l L(L+1)j't'
Since Lkap&&i implies Rl,„&&RI,&; the e8ect of the
strongly attractive Coulomb Geld is that the short-range
contribution of the potential dominates over its long-
range contribution. This result is certainly true when
I.=O also, since there is then no centrifugal barrier to
interfere with the action of the attractive Coulomb Geld.

In the case of the repulsive Coulomb Geld, both the
Coulomb potential and the centrifugal potential are
barriers, hence the long-range contribution of the 1/r'
potential to the phase shift must dominate over its
short-range contribution. However, since the k' de-
pendence of Eq. (4.12) is quite different from thek'
dependence of Eq. (4.2), and since L does not even

appear in the coefficient of the k' term, the centrifugal
barrier is not only dominated by the strongly repulsive
Coulomb potential but is irrelevant with regard to the
determination of the leading term in g. To see this more
clearly, we compare the two barriers at r=R,~, where

R.i=2/(apk')

is the turning point, the point at which the energy is
equal to the Coulomb potential. If Lkap((i, then the
centrifugal barrier is negligible compared to the Cou-
lomb barrier at r=R,~, and therefore it is the Coulomb
barrier which prevents the particle from penetrating
any further than r=R,&. Having noticed this, we can
actually use it to rederive the k' dependence. If we
assume that the contribution to the phase shift is
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negligible for r&R,I„we have

tangs ——(p'/k) Fz, '(k, r)r 4dr (4.13)

centrifugal barrier. However, the region where a weak
Coulomb field dominates over the centrifugal barrier is
only important for very small values of k, su@ciently
small to violate the condition Lkao»1.

For very small energies R,& is a large number. Assuming
it to be sufficiently large in r&R,z for Fz(k, r) to be
approximated by its asymptotic form,

Fz(k, r)—sin(kr —n ln2kr zLzI—+oz),
and approximating the integral in Eq. (4.13) by using
the average value (sin'0)„= —,', we find

tangs=-'p'k '
" dr P)'(kao)'

(4.14)
Ii„r4 ao) 48

00 00

ma=I+I mz+nz wa=L+I mz

(~nJ P
~=z m(m+1) Lkao

and Eq. (4.8) in the first form, for either Coulomb field,
becomes

Xz,(n)=-,'zr .

Hence Eq. (4.9) results in

tangs=p zrk'[(2L —1)(2I+1)(2L+3)] ',
(Lkao))1, either Coulomb field) .

But this is precisely the same as Eq. (4.2); hence to
lowest order the Coulomb field plays no role. Since
Lkeo)&1 implies a relatively large I,, i.e., a large cen-
trifugal barrier, and a relatively small e, i.e., a weak
Coulomb field, this is precisely what we should expect.
Of course, if we look sufficiently far out, the Coulomb
fieM, however weak, eventually dominates over the

which, like Eq. (4.12), has a k' dependence and no L
dependence. Since for L&i and a strong Coulomb
barrier, the centrifugal barrier is irrelevant, to lowest
order, we suspect that Eq. (4.12) may actually give the
lowest order energy dependence for L=O also, for a
potential which has the r 4 long-range behavior but is
finite at the origin. Ke will prove in Appendix 8 that
Eq. (4.12) is in fact valid for L=0.

Equation (4.14) is not exact, since it differs from the
correct result [the leading term in Eq. (4.12)] by the
numerical coefFicient. But we could not expect it to be
exact, since in reality it is not sufFicient to approximate
gQ by merely using the asymptotic form of Fz,(k,r) in
Eq. (4.13).(It would suffice to use the W. K. B.approxi-
mation. See Appendix B.) The reason we have gone
through the argument, however, is that it provides some
physical insight.

The other limit that we want to mention is Lkuo»1.
Here

Fz(k, r) =Cz(n) P AIz(n)(kr)',
j=L+1

(A1)

Gz(k, r) = [Cz(n)(2L+1)]—'

where

8 (n)(kr)'+[2n/Co'(n)]j=I
XFz(k, r) [ln2kr+qz(n)/Pz(n)], (A2)

n= e(kao)-'

e=+1 for the repulsive Coulomb field,
=—1 for the attractive Coulomb field,

ao ——
) k( zzZZe')-'(,

Co'(n) =2zrn/(e'~" 1)—
Cz(n) =2zl' —'(2L+2)

~
I'(L+1+in)

~
e &"~

~~], —+ I, =1, Bl, y =0.
The zero-energy solutions are, for the attractive

Coulomb field,

Fz(0r) = 2[(2L+1)'](«/2)~'{»zz+i(x)), (A3)

Gz(0&r) = —
2i[zr/(2L+ 1)!](2/ao)z{xXzz+i(x)), (A4)

and for the repulsive Coulomb field,

Fz(0,r) = —,
' [(2L+1)!](ao/2)z+'

X (i)—&'z+'&{xJzz+i(ix)), (A5)

G (0 )=l(—1)"'[/(2L+1)!]
X(2/ao)z{xHzz+i ' (zx)), (A6)

APPENDIX A: COULOMB FUNCTIONS

The Coulomb wave functions satisfy the differential
equation

{T(r)+ZZ'e'/r E){F—z(k,r),Gz(k, r) ) =0.

The Coulomb wave function which is regular at the
origin is normalized to unit amplitude asymptotically.
Kith this normalization, it is found to satisfy

Fz,(k,r) ~ sin(kr —n ln2kr 2Lz—r+oz), r +~ . —

The irregular Coulomb wave function is chosen to
satisfy the asymptotic condition

Gz(k, r) —+ cos(kr n ln2—kr —2zLzr+oz), r ~~ .

These functions can be shown to have the following
series expansions (undeffned coefficients will be found
in Ref. 6; their a,.~ corresponds to our 8;~, and their g
corresponds to our n):
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where
x=(Sr/ao)" 2

J2~1(x) is the Bessel function of order 2L+1,
1V2'+1(x) is the Neumann function of order 2L+1,

Ho~1&"(ix) is the Hankel function

of the first kind of order 2L+1.

[We note that the F~(0r) and the G~(0,r) are all real
functions. Ke note further that they are usually written
without the bars; however, since they are not the func-
tions F~(k,r) and G'(k, r) with k=0, we use the bars to
preserve this distinction. ]

Substituting the series expansions for J (x), X (x),
and H ("(x) into Eqs. (A3) to (A6), one finds for either
Coulomb Geld:

2(n) 2 21+1

+ 2nk2~+'
Co'(n) ao

2g 2L $

X ln —+2y —Q-
Cp a=1 S

r'(2L+2)

The L=O irregular Coulomb wave functions satisfy

Co(n)Wo[Go(0, r),Go(k, r)7=ho(n), (A11)

and for a and L both nonzero, neglecting some terms
which vanish at g=O,

k~cg(n)W. [Gz,(0,r),Gg(k, r)7

k~
P 'B'k(a'+~'(i —j)

2L+1 J,(=~

Fg(0,r)= Q nor',
j=L+1

R(0,r) = 2 0'r'+o(2/ao)2™r '(2L+2)F (0r)

(A7)

where

C"(n) rz(n)
+2nk"+' Q~(n)+, (A12)

Co'(n)- P~(n)-

r'(in) i s
Qg(n) = —ln(on)+Rc +Q

r(in) .-is'+n'

where

2L+1

XD (2„/ )+2 p(1/)7+. . . (Ag) The left-hand side of Eq. (A12) involves: (1) terms
8=1 which diverge as 1/a", where m ranges from 1 to

(2L+1).These terms, which can be written as

r'(2n)-
ho(n) =o(2/ao) —ln(on)+Rc

1'(in)
L

k'(n) =Ck'/(2L+1)7 ~ (1—2j)Pk'Bi-k'k' '
j=L+1

(A9a)

+[2nk2'+'Cgo(n)/C '(n) —o(2/ao)2~1r —'(2L+2)7

2L j
27—P — +2nk2'+'Czo(n)/Coo(n)

s

XLQ()+ ()/P()7 (A9b)

The Coulomb wave functions satisfy the followimg

Wronskian relationships, as u —+ 0,

W,[F~(k r) Gg(0r)7-+ k'+'C~(n)—,
W.CGi(kr), F'(0,r)7~ Ck'C'(n)7 ', (A10)

W,CFg(k, r),Fg(0,r)7-+0.

nP=ok'+~'r(2L+2)(2/a())~~'
x[r(j—L)r(j+L+1)7-,

PP=(—o)k+'r(L+1 —j)(2/a, )~~
xLr(I+1+j)r(2L,+2)7-,

y=0.5772. . . (Euler's constant),

and terms in C~(0,r) which have been dropped are of
order r +2 or higher.

The function k'(n) which occurs in any eRective-
range theory expansion for scattering in the presence of
a Coulomb Geld is given by:

1/a =m r '"+'idr

will be lumped together as

k' yg(k r)dr,

(2) terms which are independent of a; the sum of these
terms is equal to kz, (n), given by Eq. (A9b), (3) terms
which vanish as a —+0, and (4) a divergent term,
ln(2a/ao), which can be written as

In(2a/ao)=—
a0/2

dr/r.

where EWO but is otherwise arbitrary. Integrating by

APPENDIX B: NOTES ON THE BORN
APPROXIMATION

We prove here that Eq. (4.12) gives the lowest order

energy dependence of the phase shift in the presence of
the repulsive Coulomb field for L=0 as well as for L &~ 1.
Since we are only interested in the leading term for
small energies, we shall, throughout the derivation,
ignore terms of order exp[—2m/kao7. The integral we

want to evaluate is
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parts once, and using Eq. (4.5a), we 6nd

tango(k)=P' 2n r 'Fo'(k, r)dr

2—[1+no)'i2 r 'F (ok&r)F (ik,r)dr, (81)

where we have dropped the integrated term since for
small k it is irrelevant:

(p'/k)F (k R)/R' ~ p'kc '/R ~ 22e'~io. oop'/(Ra )

The second integral in Eq. (81) can be integrated by
parts, and using Eqs. (4.5) and (4.7), we find

r 'Fo(k, r)Fi(k, r)dr

(81), we find that to lowest order

tango(k) —(p/ao) '((kao) '/15),

which is what we set out to prove.
We note that the finite integrals from zero to infinity

discussed in Sec. 4 can also be extracted from the paper
by Alder et al. In addition, their WEB results can
be used to obtain tanp& to lowest order in the energy for
any 1/r2' potential, where P is an integer. (In the follow-

ing, all equation numbers with Roman numerals refer
to equations in Ref. 8.) Assuming that the potential is
given, for all r, by

f/(r) = (&'/2—l )(Pn '/r')

where P~ has the dimensions of length, we 6nd, for the
orbital angular momentum L,,

=-2'kL1+n')'"
t Foo(k,r) —F22(k,r))r—'dr

=I 6n(1+no)»2) ik2- (82)

where
tange=kP~4 'cVl„z, ",

&VI„i, 2' O' Fr=,(k,r)r 4'FI, (k,r)dr.

00 Ill, ' ~ ek
I. r 2Fr, 2(k,r)dr=

B 2r' g L+1
r 2Fi,2(k r)dr

where we have again dropped terms of order e ' '~ 0.

To evaluate the 6rst integral in Eq. (81), we 6rst con-
sider LAO and integrate by parts, using Eq. (4.5a),
to find

We have introduced the notation Ml„~ & in order to
make contact with Eq. (II 8.46); note that we have
k;=kf ——k and L;=lf=L. In the WEB approximation,
which is good to lowest order in the energy, MI„L, "
is given by Eq. (II 8.98); for our purposes, this expres-
sion simplifies enormously, since )=0 for k;=kg (see
Eq. (II 8.95), noting that we use the symbol n where
these authors use g), and since 4—1 )see Eq. (II 8.96))
for kaoL«1. There results

+kt 1j /n(2L+1) )'2~ 2 r 2FI, (k,r)F1+i(k,r)dr. (83) k& '
~L,L

2m~'
COSh4oy 1) o+ld4o

Both integrals on the right-hand side of Eq. (83) can
be integrated for all values of L. But when L=O each
side of the equation vanishes identically. However, we
can use the equation to evaluate the integral on the left
when L=0 by integrating the right-hand side for LQO,
taking the derivative with respect to L of both sides of
the equation, and finally letting L=0. The result is

r 'Fo'(k, r) dr kot 3nX—o(n)+n Imk'(1+in) —22),

where 4'(s) is the derivative with respect to s of 4'(s),
and where terms we have dropped are of order
exp( —22r/kao). Since

Xo(n) =—,'2r(1 —cothorn)+1/2n —1/2n

1 1 1
Im@'(1+in) = ——+ + +

e 6n3 30n5
we obtain

r 2Fo2(k, r)dr (k'/6) (e 2+n 4/5—) . --
Putting this result, together with Eq. (82), into Eq.

The transformation x=e"+1 reduces the integral to a
trivial form, and we find

p o—2

tango —— (kao)'& '
Co

( 1)y-i—m2m

X (p—2).2-+' P
~=o no!(p 2 no)!(no —2p+—3)—

For p=4, this reproduces the lowest order term as
given by Eq. (4.12). As two further examples, we 6nd

tango=(Po/ao)'(kao) "/35, P =5,

tango —4(Po/ao)4(kao)o/315, P= 6.
Zoic added in proof Recently, som. e consideration

has been given by Bassel, Drisko, Satchler, Lee, jr.,
SchiGer, and Zeidman to long-range polarization poten-
tial eGects in deuteron scattering by ' Ca, and in the
competing deuteron-stripping reaction, at 7—12 MeV.
As was to be expected, the polarization potential was
found to have little eGect at these energies. See Phys.
Rev. 136, 8960 and 8971 (1964).

8 K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther,
Rev. Mod. Phys. 2S, 432 (1956).


