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Dynamic Collective Theory of Odd-A Nuclei*
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The unided model and the collective giant-dipole-resonance model are uni6ed. The resulting energy
spectrum and the transition probabilities are derived. A new approximate selection rule involving the sym-
metry of the y vibrations is established. It is verified that the main observable features in the phot~n-
absorption cross section are not influenced by the odd particle, despite the considerably richer spectrum of
states as compared to even-even nuclei.

I. INTRODUCTION

HE previously developed complete collective
theory of the nucleus, unifying the low-energy and

the high-energy collective degrees of freedom "i.e. the
rotations, surface vibrations and the dipole oscillations,
still lacks one feature, namely, the possibility of having
nonvanishing ground-state spin. In the present paper
we intend to remedy this situation, and we set ourselves
the task of unifying the uni6ed model and the giant-
resonance hydrodynamic model in a completely
quantum-mechanical treatment.

The reasons for doing it are manyfold. Firstly, experi-
ments are being performed on odd-A nuclei which do
have a 6nite ground-state spin. It has been frequently
stated that the last odd particle will have a negligible
CGect on the giant resonance, ' but this statement has to
be made quantitative. This is particularly important
since odd-A nuclei frequently are monoisotopic and
therefore the finer details, e.g., the line shape of the lower
energy peak, are not washed out as they may be in an
isotope mixture. Furthermore, experiments involving
nuclear orientation require a 6nite ground-state spin.
For a consistent description of such experiments the
incorporation of an odd particle is indispensable. In
particular, the tensor polarizability of a nucleus vanishes
for a zero-spin ground state. Also, the details of the
clRstlc Rnd the RRIQRQ scRttcllng of photons depcQd
essentially on the ground-state spin of the nucleus.
Finally, the presence of a further angular momentum,
viz. , the particle angular momentum, provides for a
large number of ways for the system to couple to a given
total angular momentum. A considerable enrichment of
the structure of the spectrum thus is to be expected,
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compared to the already quite rich level structure of the
cvcn-cvcn nuclcl.

Two aspects can bc distinguished in the addition of an
odd particle. The 6rst is the change of the kinematic
features of the system, the change in its symmetries; and
the second is the change in the dynamic characteristics,
the appearance of ncw dynamic variables and interaction
terms in the Hamiltonian. The 6rst aspect is of quite
general validity being based only on angular momentum
and parity conservation and on the assumptions of the
symmetries of the deformed intrinsic nudear system.
The dynamic aspects depend. in detail on the speci6c
assumptions of the model. We are going to use the
Nilsson Hamiltonian to describe the odd partide and
its interactions with the collective degrees of freedom.

Naturally, one cannot expect a quantitative description
of the "single-particle" aspects of the nucleus by this
simpli6ed treatment.

In Sec. II we write down the Hamiltonian of the
system and discuss the magnitude and the importance
of the several terms. Omitting the less important terms
we establish the Hamiltonain which we then proceed to
solve in Sec. III, arriving at the energy spectrum and
the wave functions. In Sec. IV we derive the dipole
operator in the intrinsic system. We write it as a power-
series expansion retaining terms quadratic in the de-
formation parameter and linear in the vibrational co-
ordinates. In Sec. V we write down the transition matrix
elements and indicate the selection rules which arise
from the symmetries of the wave function. In Sec. VI
we discuss the results obtained and estimate their
accuracies. We also give an outline of the possible ways
of improving the present treatment.

II. THE HAMILTONIAN

The total Hamiltonian of an odd nucleus consists of
the collective Hamiltonian of the core, the single-
particle Hamiltonian of the odd particle and an inter-
action term between the two. The collective Hamil-
tonian of the core consists of terms describing rotations
H„t,vibrations B;b,dipole oscillations IId;~, and various
interaction terms between these.
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1. Rotations when R, d, and j are the angular momenta associated
with the rotation, the dipole oscillation, and the single-

particle, respectively. In the rotational energy T„t,,
In the intrinsic coordinate system the shape of a

deformed nucleus can be speci6ed by

&=~0(1+(Po+t)I'20+21(F22+I'2 2)], (1)
when Po is the equilibrium deformation parameter and

$ and 21 are the vibrational coordinates. ' The total
angular momentum, I, then is

I=R+d+j,

$2+ 2

2;.t= P=»J.(~,n)
(3)

one can express R in terms of I, d, and j. A straight-

(2) forward calculation yields

ilts tr 1 1—
~

—+—[(I+i +I j+)+(I-+d +I d+)-(i-+d +—i d+)-]-

I22 1 1 ~
ittt(

~,"=- —+—inI-I")+(j'-j")+(d-d»+ —
I

——i~(I"+I )+u +j )+«+d )]
4 Jr Js) g &J, J2)

where I~=I~&iI2, etc, The moments of inertia J„are
given in terms of the shape parameters by' '

Jt 2 ——IlL2tl'+3(P +t)'~(24)'~'(P +$)21]
(5)

J3——88g2.

We assume, as usual, that the vibrational amplitudes
are small, i.e.,

and where

Jo——3BP02.

The meaning of the various terms is clear. H; t
describes an interaction of three degrees of freedom;
e.g., rotation-particle-vibration, etc. We have done the

expansion of the moments of inertia only up to 6rst
order in the vibrational coordinates. We further have

left out the terms (ks/2J0)(js+ds) since they are pure

single-particle and dipole terms, respectively, and it is

understood that they will be contained-in the Hamil-

tonians for the single-particle and for the dipole

oscillations.

Many of the energies of Eq. (8) occur already for
even-even nuclei, ' ' and it is here only of interest
whether a strong coupling exists between the odd

particle and the dipole oscillation. We see from the
above that Hp +d p is of the order of the rotational

energies, i.e., 50 keV. If we neglect this coupling, the

energies will be uncertain by 50 keV which is about
0.3% for the dipole states, but about 10—15% for the

single-particle states on top of the giant resonances

relative to each other (the single-particle energies are
of the order of 300-500 keV).

Another coupling of the dipole modes with the odd

particle takes place via the quadrupole vibrations: the

dipole oscillations are strongly coupled to the quad-

rupole vibrations (=1 MeV) and the odd particle is

coupled to the quadrupole vibrations via IIp,~;b('& of

(8). The latter coupling is, however, very weak ( 5

keV) and therefore the odd-particle structure on top of

the giant resonances will be only disturbed by 1%
as a result of this coupling.

ls/Pol«1, I ~/Pol«1 . (6)

One then can expand the moments of inertia in (4).
The result is

~rot IIrot+IIrot vib+IIrot dip+IIrot psrt+IIist
+IIvib dip+IIpsrt dip+IIpsrt vib r (~)

where

II ot = (i'2'!2Jo)LI'—Is' —ds' —js']
+(It'/2 J2)DI2 —js—do) '—1],

I22 $ 1 hs

K.t n = ——(I'—Is')— —(I+'+I-')—
Jo Po (g6) Jo Po

it' $ 1 A2

'b d' (d2 d82) . (d 2+d 2)

Jo Po (st/6) Jo Po

II„„d;,= (h'/2J0)(I+d +—I d+),

IIrot port= (~ /2 Jo) (I+j—+I—j+)
IIp-t d'. =+(&'/2J0)(j+d +j d+)--

i22 $ 1 iit 2
ri

II..„.;,& &=—(j —j')— (j"+j ')——-
Jo Po (V 6) Jo

(g6) h'
P(I j +I j )+(I d—+I d )

3 Jo

(i+d++j d )] + L—(I+i +I &-+)-——--
Po Jo

+(I+d +I d+) (j+d +j de)]-, —(g)--—

hs 1 . 1y h2

(I~j++I j )+(Igd++I d ) (j~d +—j d )]+ (I,—jt—ds)' (4)
4 Jt Jsl 2J3

4 The coordinates & and q introduced here are identical with the
coordinates u0' and a2' respectively of Refs. 1, 6—9.
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2. Quadrupole Vibrations

The structure of this energy is clear from earlier
papers' ' and the quadrupole vibration Hamiltonian is

where H„,&('& is the well-known Nilsson Hamiltonian"

Hp„t&P) =-,'F (—V2+X'r')
F~Ppr Ysp+C~l's+ C 1 (17)

i'22 82 1 t92 ) Cp
H, b= — +- ~+ P—+Cst)'

2a aP 2 ag'& 2

3. Dipole Oscillations

(9)
where F„ is the energy parameter of the shell-model

potential well, and H~„&;b(" is the interaction of the
particle with quadrupole vibrations

Hport vib Frr)r Y2P Frri)r (Y22+ Y2—2) . (18)

The Hamiltonian of the collective dipole motion in
the core has been derived earlier. ' In the classical three-
axial ellipsoid three eigenmodes exist:

where

p„=jI(b„r)c„, ) =0, a1

C„=(YI„+12YI „)/W2,

b& = (2.08/Rp) [1+0.08(ARp/Rp) j.

(10)

where the energies Ace„depend on the deformation

parameters, e.g., the vibrational coordinates. Therefore

(12) exhibits not only the pure dipole energy but also

its interaction energy with core vibrations. If both are
separated, one obtains in lowest order in p, 27

Hdip+Hdip vib Zp Mpbp bp

++„hp)„G„($ 1)I6I~227) b„t—b„, (13)

where, introducing the abbreviation P = (5/4)r) I12Pp,

AMI ——ised I——[(8s/M*) (XZ/A') J'I'(2.08/Rp)

X (1—0.04P) (1—0.5P)
—'

(14)
happ

——[(8)t/M*) (NZ/A') ]'"(2.08/Rp)

&&(1+008P)(1+0) '

and

GI——G I= (5/162r)'"[(1—0.5p) '—0.08j,
Gp= —(5/4)r)I12[(1+P) '—0 081. (15)

The last term in (13) describes then the interaction of

the dipole oscillations with the quadrupole vibrations.

In (14) s is the symmetry energy parameter and ~* is

the e6ective nucleon mass. '

4. Single-Particle Hamiltonian

The complete single-particle Hamiltonian with its
interaction with the quadrupole vibrations has been

recently discussed by I'aessler. ' We follow his treat-
ment. Thus we have

H...t=Hp. ,t +Hp.~,b(o) (2) (16)

» A. Faessler, Nucl. Phys. 59, 177 (1964).

If we introduce annihilation and creation operators b„
and b„t, respectively, for the states (10), the dipole

energy in the adiabatic approximation is

Hdip =+p Atppbp bp r

The difference between Hp, ~;b&I) in Eq. (8) and

H„~,b(') is that the first arises from the rotational
energy while the second arises from the shell-model
potential energy. Both terms (8) and (18) together with

Hq;~;b lead to a coupling of the dipole oscillations with
the odd particle (see the remarks at the end of Sec. II.1).
The term (bsjs)/(2Jp) which we mentioned after Eq. (8)
is included in (17), since

j'= (I+s)2= (1'+s'+21 s)

and the terms 12 and 21 s are understood to be absorbed
in the constants C ' and C„of (17), respectively. The
term (ss)22)/(2Jp) yields only a constant which can be
left out, since ssx= (3/4))t for each Nilsson function )c.

III. WAVE FUNCTIONS AND ENERGIES

1. Details on the Solution of the Hamiltonian

In this section we solve the "basic" Hamiltonian

H= Hrot+Hvib+Hdip+Hpart+Hdip vib ~ (19)

All the other terms discussed so far for completeness,
will be neglected, because they result only in small
perturbations (at least for low spins). The wave function
of (19) consists of terms of the form

+sr& 4'pxoP($&'9) ~ (20)

The factors describe rotations, dipole oscillations, the
odd particle, and quadrupole vibrations, respectively.
E and 0 describe the projections of the relevant angular
momenta along the equilibrium symmetry axis. The
subscript p, denotes, according to (11),certain combina-
tions of projections of the dipole angular momentum on
the symmetry axis. Since (19) is invariant under the
symmetry operators:

)I=0r +1; p=0, +1, +2 . . (21)

The second symmetry operation transforms

rp XO ~ ( )rr(1 p)p+I+X+p+r'+O+IrL—) rrf )r O (22)

"S.G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat, Pys.
Medd. 29, Nor. 16 (1955).

(s1) rotations through tr around s' axis;
(s2) rotations through tr around x' axis;
(s3) rotation through tr/2 around s' axis s,nd simul

taneous replacement q —+ —q;

the wave functions are required to obey the same sym-
metries. ' The first symmetry leads to the condition
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+= Px,o(k, &i)4'p

XL+mx Xo+( )'
I&I =I+I +I +a+Q+1
According to (21) we have

(23)

Since Xn is not an eigenfunction of j', the phase (—)' has
to be understood as an operator which acts on the
diferent j s contained in Xz. A wave function invariant
under operation (22) is therefore of the form

The wave functions and energies are thus

U„,„,($)= (n/2"o)'i'pr 'i'He„, [n($ $„—) j
XexpL —pn'(& —4)'j

n4= BCp/h',

e.-o= (~p+ p)Es —A.
Ep= h(Cp/P)' ',
A „=,'(hp&„G„P-p/Es)'EIr .

(31)

(32)

K= Q+p+2& =Q—1, Q+1, Q+3,
I=X, X+1,K+2,

Note, that K can never be zero, since Q in (24) is not an
integer, while p and 2v are integers. If we insert (23) into

(25)

The &i vibrations (y vibrations) are described by the
differential equation

h' (E—Q)'+p, '—1
+Cp&i'+-

4B ~g' 168

—6' 'pG„hp&„&i v (ri) = ex„„,p&(rl). (33)

and multiply from the left by

l= —p+ p L~'+(&—Q)'j'". (34)

If we drop the linear term, (33) has the solutions"'

Except for the term linear in g it has the form of the
&l'»[SMK xn+ ( ) +M—x —Ql radial part of a three-dimensional harmonic oscillation

with a centrifugal barrier resulting from an angular
and integrate over all coordinates except $ and &i we
obtain the following equation for the vibrational wave
function:

hP

+— ~+ pt CpP+ CprIP+ ha&„G„($ p6'~'g)—
2B ap 2arl'i

O'I (E—Q)'+&u' —1j
Px»&&p&& p(5&&i)

168g'

=E~x,-."(t,~) (26)

2n(l+-') —'~'

v (n) = (nn)'+'I!r(t+-,')

Xexp[——,'(n&i)'jtF t(—tr; l+-,'; n'rP)

p'drl= 1, n4=4BCp/h',

(35)

Defining the rotational energy parameter

Eg= (h'/2J ) (27)

the energy, excluding the energy E of (26), is given by

E—E=LI(I+1)—E'—p,
'—Q')Eg+ hpp„+ e~ & (28)

and the energies

eK»p»"'= (2ep+l+$)Ev& E~= h(C,/B)'». (36)

Maximon has treated the Eq. (33) by a perturbation
method" and has obtained the first two correction
terms for the energy

the single-particle energy e&+ being given by the Nilsson
Hamiltonian:

e&»p» e«p» +LkVII'e&»p +pV a ex»
—= ex»p» +As'»&» (37)

IIp8,rtxQ+ &0+XQ+ ~ (29)

6Pp'G„Err hp&„/Ep'. — (30)

The subscript Q+ stands for all the relevant quantum
numbers which are, in addition to 0, the principal
quantum number P, the projection of the spin on
the symmetry axis Z, and the asymptotic quantum
number e,.

Equation (26) separates immediately into equations
describing P and ri vibrations. The f vibrations (P vibra-
tions) are described by a harmonic-oscillator equation
where the potential minimum has been shifted because
of the term linear in $ from )=0 to

as well as the first-order correction to the wave func-
tions. For the first-order correction to the energy, the
second term of (37), leads to the splitting of the upper
resonance peak reported in an ea,rlier paper' '; it is the
first term in the energy which depends on the sign of p.
We give here only the expression ~&'):

(——,')., r(l+2)
(&)—

np! r(l+-,')
XpFp( —&re& p& l+2; p

—
&re& l+-,'; 1), (38)

y =—6hp&„G+p(2Eg/E~') '». (39)
L. C. Maximon (private communication, to be pub]isbeQ).
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I 2Ey
l II

caEp
I l

~2Ey ~Ep

$2Ey Zgl

Irnln Q Q,-2
K-9 0 "2

0 0
n, 0 0
nz 0 0

A Q-I
0 -I
0 I

0 0
0

-3 -I
I I

0 0
0 I

9-I 9+I
-I I

I I

I 0
0 0

9+I 9+I

I I

I I

0 I

I 0

9-I 9-I
-I -I
-I -I
0 0
0 I

0 -3 0-I 0+ I 0+ I

-3 -I I I
-I -I 9 -I
0 I 0 0
0 0 0 I

9+I
I

-I
I

0

Fzo. 1.Schematical level scheme of the giant-resonance region. All states with up to one surface-vibration phonon are shown. The angu-
lar momenta of the members of the rotational bands increase in steps of 1 beginning with the value I;;i.e., they are I;,I; +1,I; +2, The intensities of the Ei ground-state transitions are also indicated schematically: heavy solid lines represent strong tran-
sitions; heavy dashed lines represent weaker transitions; light dashed lines indicate negligible transition strengths.

The expression for s(') is given in, Appendix II. In (38)
we have used the abbreviation (n)tI—=n(n+1)(n+2)
(n+P 1)—

The potential barrier in Eq. (33), 1jI) is impenetrable.
The wave function for y&0 therefore can be chosen
independently. from that for p&0. This freedom is very
important and must be used to give the total wave

function the correct symmetries. The function de6ned
by (35) is normalized for the interval 0&g& n).

2. Complete Wave Functions and Level Scheme

Up to now we have not incorporated the third sym-
metry (s3). Under this operation the wave function
(23) transforms

Qxap($( g)4'p[+Mx'xa+ ( )
wxa, (5)ri)4 „f&MK'Xa+( )'"+")"+—"&M K'x Qj( )'*'x " I"~).—(40)

Therefore, the complete and properly normalized and symmetrized wave functions are

)2I+1~ 'I'
((~Mxrxa+( —)&(I ") px~M Krx Q)p (( a r(q)+( ))(K—a—

( ()
32%2

X(+MKXQ +( ) " " +M—K X—a)f—ppx —a,— (—g)), (41)

E=0,, 0+2, 0+4 for 0=-'

&—I~I+2 fl—lr I+4
I=E, E+1, E+2

for nZ~&,

The functions qx a,„,„,r(r)) and Ir)x Q, „,»r( ri) are-
normalized and dehned for p&0 and &&0, respectively.

One sees from Eq. (33) that px a,„,»r(I)) has the
same value (up to a phase factor) as q K Q, „,» (—I)) for
the same ~r)~. The phase factor has to be chosen, in
order that

q,„.,'(+ I))=—((, , -,'(—
V) (42)

gi'ith this convention (41) fulfills all symmetries. The
energies for the wave functions (41) are

r Ll(I+.1) E &
Ir

2 Q&]pa+ M„——
+"++(No+x2)&p ~.+(»~+I+

elsewhere. " One sees that, compared to the giant-
resonance spectrum of a deformed even-even nucleus,
many new levels appear in the giant-resonance region of
an odd-A nucleus. However, we have to study in detail,
which states can be reached with the dipole operator
from the ground state. %e will see that several selection
rules limit the number of such states appreciably.

IV. DIPOLE OPERATOR

1. Introductory Remarks

In Ref. 1 the dipole operator has been derived for an
even-even nucleus (the core in the present case) in the
lowest order in po and $. The I) dependence was explicitly

The level scheme is shown qualitatively in Fig. 1. The
wave functions of the diferent states are given in detail

"M. Danos, W. Greiner, and C. B.Kohr, University of Mary-
land Technical Report No. 381, 1964 (unpublished).
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neglected there, since for transitions from the ground-
state linear terms of the dipole operator in g do not
contribute. In this section we will establish the operator
in higher orders in the vibrational coordinates; this is
needed for the estimate of the magnitude of diverse
correction terms to the transition amplitude, as wi11

become clear later.
The dipole operator in the laboratory system (D„) is

related to the components in the intrinsic system (D„)by

D„=Q, S„.'D. ,

where

2. Potential-Energy Constants

They are obtained in the hydrodynamic model from
the relation

Y(f) =Zw 2kplfvI'

=K (I po
—2pir(core)

I
'/po)d«+const, (51)

where po is the unperturbed matter density. Substitut-
ing (48) into (51) and expanding yields

Dy= p„rF j,dr (45) Y(t) =" (I ~pol'/po)«

and is calculated in the classical model. p~ is the charge
density of the intrinsic nucleus and is given by the sum
of the charge density p~ (core) of the core and the charge
density of the particle p„(particle). The latter is just a
8 function

p„(particle) =e.ii()(rp, ~—r), (46)

D„=D„(core)+D„(pa rticle),

where e,n ———(Z/A)e for an odd neutron and = (/(//A) e
for an odd proton. Therefore

—4)( Re (d po)*(pi(0) /p 0)g„ f'„f),21(k„r)C „d«

+4)( I Ip, (0)p, 3',f,ji(k,r)@„I'/pojdr+const, (52)

where hpo= po —2p„(0). The first term of (52) is a con-
stant and the const can be chosen to cancel it The
second term vanishes because of parity selection rules.
Therefore only the last term of (52) needs consideration.
We obtain

0,(core) =fO (core) r Fo&

D„(particle) =e,i( p„(part)r Yi„dr

We now compute D„(core) in the classical model, as
done in Ref. 1.The charge density of the core consists of
the unperturbed charge density p„(0) and the charge
density associated with the dipole oscillation p„,

p„(core) =p (0)+p .o= p (0)(1+2) f) f)4') ) (48)

The f„are normalization factors which drop out later
and therefore need not to be specified. Here i„are the
amplitudes of the dipole oscillations, which are defined
by writing the total classical dipole energy

Z, Ckg. Ii, I'+2k. l&. l j=Z„k „b„'&„. (49)

The creation and annihilation, operators b„t, f(1)2) are
related to the amplitudes i'„by the well-known relation

l „=(ka)„/2k„)'"(b„t+b„). (5o)

The procedure for computing D.(core) is clear: (48) has
to be inserted into (47) and the f„hveato be expressed
via (50) in terms of the creation and annihilation opera-
tors. Therefore the constants h„of the potential energy
have to be determined.

Y(t')=(«Ip. (0) I'/po) z, l&.f~l' I ji(k «)@ I'«

+2 Re
I tifiji(kir)Ci]*Q' if iji(k ir)C ij«

+similar cross terms involving 4, . (53)

The cross terms, including the term written down
explicitly, all vanish when performing the angular inte-
grations. This can be seen by writing for the relevant
integral

f i*f1*i if 1 ji*(kir) ji(k ir)r'dr

X (Yii*+Yi 1*)(Y11—Yi,)dQ.

The last two factors in the integrand may be written

(Y11 +Y1—1 )(Yll Yl-1)— (Yli Yi—1 ) ~

In the expansion of the Bessel functions at the upper
limit of integration the symmetry between Y» and V2 &

in the radius E Lsee Eq. (1)g ensures that the terms
F~~' and I"~ ~' will cancel after the integration. Now we
calcula, te the diagonal terms of (53). The radial inte-
gration yields

l~'I ji'(k.~)—jo(k,~)j (k,&)j=Z Z(k„Z). (54)

Both arguments, k„and 8, are functions of the vibra-
tional coordinates, see Eqs. (1) and (11). We expand
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p{k g) ~b~~t k„—k„(0)=2 08/go and +=go to terms of order $, ij, and po'. Then

R'=Ro'(1+3(Po+P) I'oo+3&j(I"oo+ I'o o)-+3Po'I'oo']

~&{p)
P(k„g) =ZLk„(0)Z,]+{Lk„—k„(0)]&o+(&—~o)4(0)) +I k.—k,(0)](~—&o)

~P p k~ (0)Bp

~ ~(p)
+-', {Lk„—k„(0)]'go'+ (R—Ro)'k '(0)+2(R—Ro)Lk„—k„(0)]Eok„(0))

~P ~ p=k~(0) gp

(55)

After some straightforward computations we obtain The radial integration gives

I,( )=Z Z(k„Z) =X.( )+%( )E(Po+h)I'-
+„(I„+I, ,)]+.g, (o)Poop', oo, (56) D„(core)=P„(0)P t „f„(R/ok„) jo(k„R)C„I'i.dQ. (62)

where

X,( )=W{I(p)+g&, (& p{6)"-~)]
X& k,(0)&'(p)&,= „o o,

~, =WL3~(p)+~.k.(0)~(.)],=;...,

~, .=&, l-3~(,)+3~.k„(0)~ {»
+-,'~o'k (0o)~"(p)]o=o.(o»o ~

The formula (56) exhibits explicitly the angular de-

pendence ot the radial integral in (53). Inserting (56)
into (53) and performing the angular integration gives

I (~)=4 Lp.(0)'i"]Z. l{..f, l'I. ,

(58)I.=XI. &

v=0

I„.=X.+~.( )(&-p(6)'"~),

i(")(pop p)(5/4&r)' '(201'
l
1p&{2010110&

%(")(Po+—0)fi& &

~ (o))j(5/4&r) i)o(221—1
l
11)(2010

l
10)

=p+io&))jfo„

3. Intrinsic Comyonents of the Diyojle Oyerator

We calculate now the quantities D„{core) of (47).
Inserting (48) into (47) yields

1„.=~,( )p. (5/4 )L{2020l00&'

+{2020I20&{20'pl'p&{2010l10&]=Ã'™pof'"' {
Comparjng (57) with (49).yields ior the desired po tential

energy coefFicients h„

k.=84.(0)'/po]f' 2 I"—=Q.f' (6o)

~o= E~"/k. (0)]{(1-G.B-.(6)'I"])~'(p)
+G»B—&M(6)"'&)]&kgb(0)fo'{p)}o=o.(o))io

~i= C~o'/ko(0)]L3io{p)+~ok'(0) io'(p)],=o„(o)~„(64)
~ =LW/k. (0)]L3& {)+3+k.{0)&'()

+~"ko (0)~."(p)]o=..«).o ~

We now write (63) as follows:

L~'io(4~)/ko) = 2 ~... (65)

&go =~o+~o(" (8 p{6)i o&f))=&„—o+IiJ'„o', —
&„i=~i(Po+ 4) &oo,

J„o=~i)j(I"oo+I'o o),

J„o——MoPo'Fgp'.

Equation (62) then becomes

D (co«) =p (0)Z .{,f,I,.„

IPSE JII~@II,I gydQ o

We again expand. the integrand about k„(0)go
obtain after straightforward calculations

LRojo(k„R)/k„]=Mo+MiL(Po+$)F'oo
+i)(I'oo+I's o)]+~oPo'I'oo', (63)

D.(--)=..(0) L1+Z, {-.fd ( k) ]cI,~. (61) Th-. q.-tt-" g ~ i- li-l-. t .d;...;.
Appendix I. Using these results and inserting them into

(69) we obtalii

Di(core) =p„(0){(tifi+{i f i){lioi+hii+Iioi)+({ifi—{-if-i)( ui+Iioi'))
&

D i(core) =p„(0){(|ifi—1-if-i)(lioi+Iiii+Iioi)+(i ifi+{'-if-i)(lioi+Iioi')),
Do(core) =p„(0){ofo(looo+Ioio+Iooo+ oooo) ~
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With Eq. (47) we now can introduce the creation and annihilation operators of the dipole quanta. Using (60)
for the constants h„me 6nd

D ( o )= (0){L(»/2Q)'"(b'+b)+(»-/2Q-)'"(b-'+b-)j(I +I +I )
+[(»i/2Qi)"'(&i'+&i) —(»-i/2Q-i)'"(b-i'+& 1)](Iisi+Iiol )j

D- (core) pv(0){[(»i/2Qi) (f'i +bi) (»—i/2Q —i) (b-i +b-i) j(Iloi+Iill+Ilsl)
+[(»i/2Qi)'"(f '+&i)+(»-i/2Q-i)"'(&-i'+& i)](Iisi+Iioi')), (70)

Do(core) =pv(0)(»o/2Qo) (bo +ho)(Iooo+Ioio+Ipso+Ioso) .

These formulas can be vrritten in a short @ray:

D.(c»e)=p.(o){[(»l l/2Ql. l)"'(&l.l'+&l. l)+v(»-l. l!2Q-lvl) (f—l~l +f—lnl) j(Il,lol. l+Il, lil, l+Il, lsl, l)

+[(»l.l/2Ql l)'"(bl l'+bl l) —v(»-l l/2Q-l l)'"(&-l.l'+b-l l)j(Il.lsl.l+Il, lol, l') ), .=~1, o. (71)

This forln of dipole operator is not suitable for actual calculations, since the quantities ~t„t, B~„~, and I„„qdepend
on the vibrational coordinates $, g. In order to obtain a form showing explicitly this dependence we expand these
quantities to first order in g, st and to second order in Po. Using (59), (60), and (13) we find for»„/2Q„
—j4)„-»' h~„po 1+G[k p(6)—'"n'j

2Q„16m p„(0) No+(Nifty+No ")(Ps+5)+[Nifs. (6) No~jvg+NsPo fs~

1 (pp) '~s»„
4p„(0)'E ~& No+ NiPfoi, +NsPpfs,s

Nifi. +No'"' Nifs. —(6)'"No&"&
X 1+-' G.— $—-,'v (6)'"G„+ —

g . (72)
No+Nifi. Po+Nsfs Po —— No+Nifi Po+Nsfs Po

The dependence of I„„zon the vibrational coordinates can be found in the Appendix. Using (72) and the Appendix
and inserting this into (71) yields after some calculations

D,(cole) = d~{[(biI +f't~l)+v(f' —l~l +~—l~l j[So(v)+Si(v)$j
+L(bl l'+bl. l

—v(f-l. l'+b l.l) j[Ss(v)+Ss(v)jg), v= +1, 0, (73)

1 (p I/s- hMp

4E a Np+NiPpfi„+Nsppsfs„

So(+1)= —2 '~s{3Eo+il/IifiiPo+3EsfsiPos),

So(o)=~o+~ifipP p+1lIs fsoPo',

Si(v)=-,' G„—
Nifi, +Np'"'

Sp( )+(—) "l(2) '""(~i+iM '"')fil l

No+Nifi. Po+Nsfs. Po'

(74)

Ni fs,—(6)'"No'"'
S (v)= —-'v 6'"G+ Sp(v)

No+Nifi Ps+No fs.Po'

Ss(v) = —
(
v

(
2 'Is[Ms —(6)'"Mp&"&jfs„.

Equation (73) is the dipole operator to be used in actual calculations. It is easily checked that in the case of t= ~ =0
it is identical with the result derived in (1).

V. DIPOLE TRANSITIONS PROM THE GROUND STATE

To obtain the dipole absorption cross section it is necessary to compute the transition matrjx element from
the ground state fir o „, p, „, , or~ to the dipole state ipx. „.„,.„.z.r'sr' of Fq. (3g),

Q'x- oo, ,-, ~oD, if@ ~, „r~ )=—BR. (75)

We are here interested only in the collective transitions and therefore the single particle part of the di
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(44) is omitted. We further restrict ourselves to the main term of the intrinsic operator (73), j.e., we neglect jts
dependence on ], g. Using (38) and (73) thus the matrix element (75) is

L(2I+1)(2I'+ 1)j'I'
&L& 'x +—(—)"'& —'x- JL«o (n)+ v ooo(

—n)3 o(&)|t"'
32%2

X I Zv' +v~' dv'L&bjv'j +~jvj)+& (b—jv'j +b-jv'j)g I
P+3f'z' xa'++( ) SM'-z x 9

Xp yz ' ~ "(q)+(—)~'z'-'-j"'j'L&~ z '~a+ —(—)-~&'+"»'+"'&

X4 '~z o -' .--* .'(—n))N'-0 (&)) (76)
On collecting the different terms ('M) becomes

L(2I+1)(2I'+1))'"
5R=

32%2

Xd, &«00(—n) I vz o, ,"(—n)&
—(—)»" "'"'+'+' "'&&~ a'I & 'I &~ z'&(& ~ ~ +v'8 ~ ~ )

Xjf («00(g) I
v'z'-o' ' ' '(n)) ( )~~

' "' j"' '+"' "'j+ '+"+ '&&m-o I& 'I &u z'&—(fj +&'& )

Xd"&««(—v) I vz -o .-~, 2 '(—n)&} (77)

U'sing well-known relations of angular-momentum theory, Eq. (77) can be rewritten as

(2I'+1 '"
SR=

I

— f'jo+, a+&No($) IN„.;($)& Q; (I'M'1j
I IM) (I'IC'1v' IIQ)(b„,j„j+v'b„., j„j)

&2I+1
Xd"&«0o(» I «o ~ .'(e)&2I 1+(—) ' '-"'- ' j. (78)

The notation for the overlap integrals in (77) and (78) is the following:

&v ~(n) I jj s(n)&=&~~(—~) I ~s( ~)&= v ~—(n) ~s(n)dn

Because of angular momentum conservation the sum

reduces to the one term u= 0—E'. Explicit expressions
for (79) are given in Appendix II.

The most interesting aspect of (78) is the selection
rule implied by the bracket containing only phase
factors. The origin of this rule is the symmetry of the
vlbratlonal wave function undel substltut, ion g ~ —g,
which thus can be called q parity. Transitions in which

the g-parity changes are forbidden owing to the vanish-

1ng of the overlap integral. Thc posslblllty of having
vibrational states degenerate in energy but of opposite
parity is a consequence of the impenetrability of the
potential barrier at g=0 in (33). Without this barrier
the symmetry requirements of certain states could not
be fuelled.

The q-parity selection rule is, however, not exact. It
is broken by the terms in the dipole operator having q
as factor, as well as by the term B„g;bneglected in the
present treatment. Both these terms are small and the
strength of q-parity forbidden transitions is of the order
of 10%%uo of that of allowed transitions. The parameter
wh1ch dctcrmlncs thc st1cngth of thc forbidden trans1'

tjon js &z/E~ The selection rule thus loses valjdjty as
one approaches the region of vibrational nuclei.

g e now summarize the main results of this paper.
To begin with, the assertion that the odd particle does
not have an important inhuence on the giant dipole
resonance has been borne out. As a matter of fact, this
assertion is even better ful6lled than expected in that
the g-parity selection rule discussed in the last section
limits the number of the important upper dipole transi-
tions to two, the same number as in the even-even
nuclei, while the lower peak splits into two roughly
equally strong components separated by about 100keV,
a splitting masked completely by the width which for
the lower peak is about 2 MCV. This is true despite the
fact that here the number of states which can be reached
by Ei transitions when considering only angular mo
mentum and parity conservation is considerably greater
than in even-even nuclei. In fact, the q-parity selection
rule is not exact and the photon absorption spectrum in
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odd-A nuclei will be somewhat diferent than in even-
even nuclei. Because of the smallness of the syrnmetry-
breaking terms this diGerence will, however, be so small
that it is not clear whether it can be experimentally de-
tected at all.

The structure of the Hamiltonian and of the transi-
tion matrix elements further shows that Brink's hy-
pothesis'4 is ful6lled to a large extent for our model. This
hypothesis asserts that besides fu1611ing the sum rule,
dipole transitions originating in excited states of the
nucleus resemble the transitions froIn the ground state
even more closely in that in such transitions also a giant
resonance appears at the same photon energy. This is
supposed to be true for transitions starting at every
excited state. This hypothesis turns out to be ful6lled
for the giant resonance "based on" the excited single-
particle states while only very small changes occur in
the giant resonances "based on" the lower rotational
and vibrational states.

We would now like to discuss the consistency of the
model, the accuracy of the solutions, and the possibility
of re6nements of the theory.

The model consists of two kinds of collective degrees
of freedom and of a single particle moving in a potential
well. The 6rst two, the surface and the dipole modes, can
be considered as resulting from the quantization of a
continuous system, i.e., the treatment of their degrees
of freedom may be called quantum hydrodynamics. The
parameters of the theory are to be considered as arbi-

trary parameters to be determined separately, either
from more fundamental theory or from experiment. This
system will of necessity fulfill the classical dipole sum

rule, and by introduction of an CKective mass one may
even include the CGccts of exchange forces. Depending
on whether the odd particle is a proton or a neutron the
sum rule must be taken either as (1V—1)Z/A or

N(Z 1)/A; the odd—particle does not participate in the
collective motions. However, in thc denominator one

has to retain A rather than changing to A —1 since the
odd pRrtlclc partlclpatcs ln thc recoil motion. Thc ad(4-
tion of the odd particle to the model is, however,
not completely consistent: de facto, all particles par-
ticipate in the collective excitations. For example, an

fq~s valence nucleon can make a dipole transition
to R gef2 stRtc. When treating thc dlpolc state in
the shell model, this transition has to be admixed

to the states making up the dipole state. It would

therefore be wrong to expect to see a —',+ state with R

single-particle Ei strength at the energy corresponding
to the independent particle transition energy which herc
is the energy separation of the major shells, i.e., at about
7 MeV. However, such a state would be predicted by
the model. The reason for this inconsistency is ovbious:
the model HaIniltonian is not symmetric in all particles;

'4D. Brink, thesis, Oxford University, Oxford, England, 1955
(uupubhshed).

the A —I particles which make up the core are described
by the collective variables while the valence particle is
treated as an independent particle in a potential well.
It is also not clear how to formulate the antisymmetriza-
tion of the wave function in the model, the coordinates
of the core particles being hidden away in a nontrans-
parent manner.

The above rather obvious remarks were made to
indicate the limited validity of the model: it can be used
to describe only a very limited number of "single-
particle exritations. "On the other hand, it is complete
for the purpose of de6ning all the possible kinds of
symmetries of the wave function of a deformed odd-A
nucleus. If one allows also integer values of 0 one can
similarly investigate the symmetries of the wave func-
tion for odd-odd nuclei. In other words, this model can
describe all the kinematics of heavy nuclei. It also can
be expected to describe very well the dynamics of the
collective aspects; however, the model is too primitive
to describe the dynamics of the "particle-excitation
spectrum, " The kinematic aspects of the odd particle
are, however, very important. They are, for example,
indispensable in the description of the elastic and the
Raman scattering of photons on nuclei and of experi-
ments involving nuclear orientation. Fortunately, the
kinematic aspects are sufhcient for the description of
these phenomena, and the limitations of the model here
RI'c of no conscqucncc.

W'e now turn to the discussion of the accuracy of our
solutions and of the model Hamiltonian. Concerning the
energies, the rotations and the p vibrations could be
treated exactly. The treatment of the main splitting,
i.e., the determination of Acro and Ace+~, is very accurate.
The only relatively large uncertainty is associated with
the subsidiary splitting, which is associated with the
interaction of the dipole mode with the y vibrations,
i.e., with the solution of Eq. (33). However, even that
is not very important. According to Maximon, " an
educated guess gives for the uncertainty of the energies
of the states with p, =&1 a value of about ~50 keV, or
about 0.3% of the dipole energy. Again, considering the
width of the states, this uncertainty is trivially small.

The accuracy of the dipole intensities is somewhat
smaller. The inaccuracies are here assoriated with the
dipole operator, with the matrix elements of the dipole
operator (Q,Df) and with the evaluation of the overlap
(y~ y) of Eq. (80) which, again, involves the solution
of (33).The dipole operator has in the present treatment
been evaluated by exPanding it in Powers of Ps, $, and
g. The matrix elements werc evaluated using spherical
functions rather than spheroidal functions. Together
with the uncertainties resulting from the evaluation of
the above overlap integrals and the diferent small terms
dropped from the Hamiltonian the accuracy of the line
intensities is therefore not better than about &20%.
The accuracy for the main transition is somewhat
better. Some of these inaccuracies are eliminated if one
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computes only relative line strengths where the ac-
curacy is about 10%.

As to the possible refinements of the theory, very little
can be done in the improvement of the model Hamil-
tonian as long as one keeps the two kinds of dynamic
variables, the collective and the single particle, which
are not independent of each other. In order to improve
the description of the "single-particle" aspects one
could think, for example, of including more than the
minimum number of particles in the "odd"-particle
part of the Hamiltonian, viz. , one for odd-A nuclei and
two for odd-odd nuclei. One could then do configuration
mixing to improve the dynamics of the "single-particle
spectrum. " However, this is not advisable since one
would then rob the collective degrees of freedom even
further of their completeness. The possible improve-
ments of the collective Hamiltonian, as, e.g., the in-
clusion of the diverse coupling terms dropped in the
present treatment, are of minor importance in the
giant-resonance region. Also, improvements in the wave

functions will have practically no eGect concerning the
energies of the states. However, the transition proba-
bilities are much more sensitive to the accuracy of the
wave functions. A more accurate solution therefore
seems desirable. This would have to include a numerical
treatment of the y vibrations. Also, certain selection
rules forbidding, e.g., the transitions involving a change
in g parity are broken by some of the neglected coupling
terms. This last e6'ect results again in a rather
small change in the cross section. However, all these
small inaccuracies will have to be cleaned up if one
aspires to compute the intensities to better than,
say, 10%.
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APPENDIX II

We quote here the results obtained by Maximon" for the energies and the overlap integrals by means of a
perturbation treatment for the coe%cients of the power-series expansion of the solutions of Eq. (33).The notation
is the same as in (37) and (39) except that we omit the subscript 2 in nm, and we write
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Tllc 61161'glcs of Eq. (37) Rlc
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1 «v+1) (v+2). ~ ~ (—n) (—n) (v+1)~
gx„( )—

4 «v+2) n! ~-»'-o S'S'.(v+5) (v+2)~'

I"(vs+i'+k) "-' (l+j—n)-(——:—j')- (—l —j).(—l —j')-
X P (-1) (n-nI-1)!

t4~0 «v+ j+m+2) n!

1 I"(v+j '+vn+23) 1 I"'(v+1) t (——,') g'+-— IF2(—n, v+1, —,'; v+-', , —,
' —n; 1)

~=0 nI+ P(v+n+nl+1) 4 P (v+ 2) (n t)

" (—n)I(v+1) (2)» 1 «v+1)(v+-,')„
&&Z, , f 4(n j—k—) 4—(2)+4(1) 4—(n+ 1)j+

'=0 j!(v+2)~(2—n) 2 I'(v+-,') (n!)'

(- ); (-:),'«2 +2+2j')2"-~"
XL(——',) $'3F2(—n, v+1, 2; v+-,', ,' n;—1—) Q

~'-o j'~(v+ ') '(-' n-) 'F(2—v+R+j'+n)
WW

&I(2+i—' n ln —
2

—j';2v—+8—+i'+n;k) . (II 2)
8 —/=0

Tllc overlap lxltcgl'Rls, Eq. (79), Rl'6 1161'6 given fol' trRIlsltlons fronl thc ground stR'tc, l.c., OIlc of tllc fullctlolls 18

always the ground-state function q 000(x), which is known exactly since the linear term is absent in the potential
of the equation for the ground state; see Eq. (33).The wave functions for the excited states are normalized up to
aQ accuracf jlQcal Hl the pertulbatloD parameter p& 1.e.

&

Lp, „,„(x)O'Ch= 1+0(y') .

TheQ, Up to terms 11Deal ixl "y, there holds

VOW(&) Ã1—8, l,n(&) d&

P(-:+-.)(-,"—:). ~(--:).«+1)--- (-.),(-:),(+1),
jn!I'(v+ ,')(v+ ,')-O'I' -4 n!«v+-,'} -0 r!(-,' —n)„(v+-', )„

(v+k)- "-' (—n)~(kv+-') V (v+5) p(2v+-')
+SF', , 2 . , C4(1)—4(n+1—j)l +-,

&="—-'). -0 j!(v+5)~ — 4 (l -!).p(! +-.')
" (8—n) -I(2v+x)~ -' (—n).(8).(v+1). V (—k)-(v+4)»

(l) (+ ) - l(l- ).(+l). '(-"--')-

(2v+-:)I«2v+-') (kv+4)I«v+1) —
v (—2). «v+1) (v+x2)- «kv+x)

-(-:);(+1)-P(-:+-.') (+-,')-j «+-:)- 2 -P(+-,') (+».«-,"+-:)

(II 4)
V (—2). (v+5)-«v+1)«v+5)2'"'""

1F1 —1F1(—,
' ——,'v —n —1, ,'v „'+n;—,'v—+-n+ ', ; -',)—-

«-,"+:)«-:+ +')

1F8=—3FI(—ni 88~ v+1~ Rs »v+8 ~
1)—

Note that for e=o the erst four summations are to be dropped.
Very few terms in the series expansion of $82FI/8$/r 0 are needed to obtain a good numerical accuracy for

(II.2) and (II.4) since the argument of the function is ~~.


