NUCLEAR STATES WITH HIGH ANGULAR MOMENTA

compressibility conditions are relaxed in the same way,
but the potentials are very different. From a comparison
between the results of the two calculations one can
estimate the effect of the potential on the moment of
inertia. Table V shows that the moments of inertia for
a Fermi gas moving in a harmonic-oscillator potential
are smaller that those for a bag full of fermions. Finally
a comparison between two calculations assuming a
harmonic-oscillator potential is made. Here again the
difference stems from the difference in the assumed
models. The Fermi-gas model predicts slightly higher
moments of inertia which increase with angular mo-
mentum. The shell model predicts constant and smaller
moments of inertia. An attempt was made to study the
moments of inertia as one goes from the extreme case
of the liquid-drop model to the extreme case of the
shell model. In all calculations interactions are neg-
lected except as they show up in the surface energy.
Therefore, all calculations can be considered as single-
particle calculations. The two last calculations using a
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harmonic oscillator could become more realistic if the
potential would be allowed to deform. Such calculations
with the inclusion of electrostatic forces would approxi-
mate very well the behavior of real nuclei. Grover®
has already concluded that the latter results agree well
with moments of inertia derived by him from experi-
mental data.

The moments of inertia calculated from the depend-
ence of the density of levels on angular momentum ob-
tained by Bloch* and Ericson and Strutinski®® indicate
similar results to those obtained in this calculation.
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The Hartree-Fock problem for even-even nuclei in the s-d shell is solved without requiring the intrinsic
state to be axially symmetric. Two regions of axial asymmetry are found—around Mg and around S%.
The existence of an energy gap between occupied and nonoccupied single-particle states is established for
all cases. The moment-of-inertia tensor for the axially asymmetric cases is computed and provides an im-
provement over the axially symmetric results of former calculations.

I. INTRODUCTION

HE calculational limitations of the shell model in
treating nuclei with many nucleons (more than

four) outside closed shells led to the development of
the collective picture of nuclei. In this treatment, the
nucleus is described as performing some kind of collec-
tive motion, such as rotations and vibrations.! The
coordinates of the individual nucleons are replaced by
a smaller number of degrees of freedom, of a more
macroscopic nature. (In the unified model, which is an
extension of this, some individual nucleons are still
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considered.)? A small number of parameters is sufficient
to specify exactly the new Hamiltonian of the system.
In the case of a pure axially symmetric rotator, only
one such parameter—the moment of inertia—is neces-
sary. The initial justification of such a model was the
actual occurence of, say, rotational spectra in certain
nuclei. Moreover, the values of the parameters were
artificially adjusted to fit those observed spectra. From
this point of view, the model provides merely a phe-
nomenological presentation of experimental data. Its
qualitative and quantitative relations to the actual
many-body problem of the nucleus (or, at least, to the
shell-model version of it) are therefore of great interest.

The significance of the “intrinsic” state of the nucleus
was long recognized in this connection. The “intrinsic”
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state is not the actual state of the nucleus, but rather,
provides a basis from which the model extracts and
constructs the physical states. For example, the in-
trinsic state may not have J as a good quantum number,
but may give rise—through proper projection—to a set
of states of good J of the nucleus.

The possibility of the existence of deformed nuclei,
and deformed intrinsic states, was originally suggested®
in order to explain abnormally large electric-quadrupole
transition probabilities. For closed-shell nuclei, the
argument went, a spherical shape is prevalent. How-
ever, when more and more external nucleons are added,
a growing permanent deformation becomes energeti-
cally more stable. The nucleus retains this large defor-
mation, and thus may quantum-mechanically give rise
to rotational motion—as opposed to a spherically
symmetric body. For axially symmetric rotators, an
approximate expression—the cranking formula—relates
the moment of inertia and the single-particle structure
of the intrinsic state.® Similar relations hold for pa-
rameters associated with other modes of collective
motion. Therefore, a knowledge of that internal struc-
ture becomes very important.

The most widely used method of obtaining an axially
symmetric deformed single-particle structure—eigen-
functions and eigenenergies—was the Mottelson-Nilsson
model.’ The nucleons are assumed to be moving in an
axially symmetric deformed harmonic-oscillator well,
and a set of wave functions and energies, characterized
by a deformation parameter is obtained by diagonaliz-
ing the single-particle Hamiltonian in a spherical shell-
model representation. Although this proves to be
generally a successful basis, it fails to produce good
results when applied to the cranking formula. The
predicted moments of inertia are very large compared
to experimental values, differing by more than a factor
of two in the s-d shell, and actually coincide with the
rigid-body values.® Since the cranking formula was
based on a self-consistent Hartree-Fock treatment, it
became worthwhile to approach the whole problem via
this treatment. Thus, rather than limiting the intrinsic
structure to one generated by a deformed harmonic
oscillator, a fully self-consistent program was carried
out.” A shell-model Hamiltonian with both a single-
body and a two-body part gave rise self-consistently
to intrinsic structures having the same general prop-
erties as those of the Nilsson model, but not limited as
they are. Because of the more complicated numerical
nature of the problem, only the s-d shell was treated.
Indeed, when the self-consistent solutions were sub-
stituted into the cranking formula, values much closer
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to experiment were obtained.® The main feature re-
sponsible for this correction was the appearance of an
energy gap between occupied and unoccupied states.
This is connected with the exchange character of the
two-body Hamiltonian.

The limitation of axial symmetry in this region may,
however, prove to be too severe. It results in having
k, the projection of angular momentum along the body
z axis, as a good quantum number. Consequently,
there are rotational k bands in odd-even nuclei, mixed
by a Coriolis force with a Ak=1 selection rule. Electro-
magnetic (in particular E2) transition probabilities
between bands with Ak=2 should therefore be much
smaller than those for transitions within the same
band. This is notably not the case in Mg? and Al%,
for example.” Moreover, in this region even the self-
consistent values for the moment of inertia are too
large.

It is the purpose of this article to investigate the
possibility of nonaxially-symmetric intrinsic states in
the s-d shell, and its experimental consequences.

The extended self-consistency problem will be formu-
lated in Sec. II. Section IIT will give a treatment of the
asymmetric rotator and the moment-of-inertia tensor
associated with it. Numerical results will be presented
and analyzed in Sec. IV.

II. THE SELF-CONSISTENCY PROBLEM

The Hamiltonian of the nuclear system is assumed
to be of the following form, in second-quantization
notation:

H= Zﬁ (@|K|B)as'asgt+i Zﬂ (aB|Valvd)ad'aglasay, (1)

v

where, by definition, V4 stands for the two-body inter-
action between antisymmetrized states,

(@B|V a|v8)={(aB| V|v8)—{(aB| V |57). 2

The single-body part in the Hamiltonian K consists of
the kinetic energy term, a spin-orbit interaction and
an I force

ﬁ2

k=——A+a1.sl-s+a1212. (3)
2m

The two-body interaction V is taken as the Rosenfeld
mixture! used by Elliott and Flowers,!

eg—rle

(0.340.701 a2) . 4)
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V=V0><
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This mixture has the proper saturation properties,
and yielded good results when used in shell-model
calculations.

The intrinsic single-particle structure of the nucleus
is derived from the many-body Hamiltonian by solving
the self-consistent Hartree-Fock equations.’? That is,
one finds simultaneously the one-body operator %, its
self-energies e, and eigenfunctions {¢.}, such that

{a|h|B)={a|k|B)+2x {a\| V.4 |BN) ®)
hN)=ex|\). (6)

The summation in the first equation runs over all the
occupied states. A determinantal wave function made
up of these states gives a stationary point of the ex-
pectation value of the Hamiltonian. In particular, the
minimum of (H) with respect to this kind of wave
function is found. Thus, knowing the subspace which
is spanned by the set of occupied states {A} is equivalent
to knowing the Hartree-Fock Hamiltonian. In particu-
lar, symmetry properties demanded for the Hartree-
Fock Hamiltonian may be incorporated into it by
properly restricting the set {\}; if a certain operator Q
leaves the set invariant,

and

oA ={2}, (M
and it also commutes with H,
[H2]=0, ®
it will clearly also commute with %,
[A,Q]=0. 9)

In the case of the axially symmetric treatment, each
of the single-particle states occupied was a sum of
eigenstates of j.. As a result, # commuted with j,.
Another property of the set {\} was its invariance
under time reversal; i.e., along with each function ¢,
its time-reversed function ¢, also belonged to the set.3
Moreover, with each proton in a certain state, a neutron
at the same state is included, and vice versa. The
Hartree-Fock spectrum had therefore a fourfold de-
generacy built into it. Each level was filled by two
protons and two neutrons with their spins up and
down.

In the present treatment the same fourfold degener-
acy is retained, but the single-particle states are no
longer eigenstates of j,. Each level is chosen as a linear
combination of the following form:

=3 aia? jm), (10)
with @;n»* vanishing unless m—1 is even. In the s-d
shell, to which we restrict the sum, the states ds25/2,
d1/25/2, d1/23/2, 51/21/2, d_3/25/2, d_3/23/2 Wlll appear. The

2 G. E. Brown, Lecture Noles on the Many Body Problem
(Nordita Publications, Copenhagen, 1961).

13Tt should be noted that in such a case, the variational pa-
rameters can be chosen real.
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time-reversed! state
RIN=L aju(—1)77] j—m) (11)
m

will be a linear combination of states with m—% odd,
and will thus be orthogonal to |\). A rotation of 6
radians about the z axis will transform

R.(0)| jm)y=e=t| jm). (12)

Hence, each of the states (10)-(11) is invariant under
a rotation through = radians about the z axis:

R.(r)[\)==%i[N). (13)

The physical meaning of these restrictions on the
intrinsic structure is that the nucleus may assume
ellipsoidal shapes, with %, ¥, z being the major axes.
This will be more strongly emphasized in the next
section.

A further advantage of this particular choice is that
it removes the degeneracy of the orientation of the
deformed field in space. Since the major axes are fixed,
the only possible degenerate intrinsic states are ob-
tained by permutations of those axes. Thus, for ex-
ample, one may obtain a state which is axially sym-
metric around the x or the y axis. This will be illustrated
in the following sections as well.

The solution of the self-consistency equation is
achieved by iterative methods. Various relative minima
in the energy surface are obtained by starting the itera-
tion with different initial conditions. For more details,
the reader should consult Ref. 7.

III. THE ASYMMETRIC ROTATOR

The energy associated with rotational motion of the
intrinsic structure is obtained by applying cranking
model ideas to it.’® The expectation values of all the
components of angular momentum in the self-consistent
intrinsic state ¢o vanish:

(@0l Jz|d0)= (0| Ty | po)=(bo| J.|po)=0.  (14)

Now, one is looking for the determinantal wave func-
tion which minimizes (H) under the subsidiary condi-
tion that (J.), (J,), (J.) taken on prescribed values.
Clearly, the expectation value of the Hamiltonian will
be higher than in the nonrestricted case, and the energy
excess will be described as the rotational energy of the
system. The solution of the new restricted self-consist-
ency problem is obtained by the Lagrange-multiplier
method. Three Lagrange multipliers—w,, w,, w.,—are
introduced and a determinantal solution ¢(w) is found,
such that

(¢ (@) [H—0-J|$(w))=0. (15)
The expectation values of J are related to the

% In the s-d shell, where (—1)!=1, the time-reversal operation
on a single-particle state is equivalent to rotation of = radians
about the « axis.

15 See, for example, Ref. 12.
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Lagrange multipliers by
=90, (16)

where 9 is the moment-of-inertia tensor, and the energy
increment is given by

(¢(0) | H|¢(w))— (¢ H|p0)=30"9- 0.
The self-consistency equations for %(w) are
(a]h(m)|ﬂ>=<a|kll3)+x(2) (e (@) |V a| BN (@)
—(ale-J[B) (18)

() [M0))=er@ M) 19)

The approximation that we make in solving these
equations is the one used in deriving the Inglis cranking
formula, namely, we neglect the effect of the two-body
interactions, and take simply

h(w)=k0)—aw-J.

(17)

and

(20)

The occupied states, of which the determinant ¢()
is composed, are the lowest eigenstates of %#(w). These
are readily obtained from the eigenfunctions of %(0)
by perturbation methods. To first order in o,

LA IVARY
@)=+ e

€o— €\

(21)

where the sum runs over the unoccupied states {o}.
The expectation values of J with respect to each single-
particle state |A(w)) to first order in w is

M) TN w))

MI| Yoo TN+ N o T|a)a| TN
___Z(H)(l A ><Il>’(22)
4 €s— €\
and
(¢(w) |J|¢(w)>=§ MA@ [JM @) (23)
Going back to the definition of 9, we find
MTe|aeXa| Ta| N+ (N Tslo)o| Ta|N
aﬂ=2<| ECARZIDNE RN VA EIIC] l), 20

o, es— €\

with \ running over occupied, and ¢ over unoccupied
states. This reduces, in the case of axial symmetry
about the z axis, to the Inglis cranking formula

[{o| 7| M)[?

o\ €s—E€\

(25)

x

In the present case, the particular choice of the form
of the wave functions introduces simplifications in 4.
Since the matrix elements of J, and J, have the selec-
tion rule |Am|=1, and those of J, have Am=0, we
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immediately have

gzz—_-gyz:O- (26)

Moreover, our variational coefficients are all real so
that the matrix elements of J, in the sum are pure
real, and of J, pure imaginary.

Thus

<)\le|0'>= (<‘T|Jxl)\>)*=<a'ljzl)\>r
(NTylo)y= (o[ Ty A*=—(a| T, IN).  (27)

Each separate term in the sum (24) vanishes, and we
have

9.y=0. (28)

We therefore conclude that for our choice of varia-
tional treatment, x, y, and z are indeed the principal
axes of the system. The rotational energy would there-
fore be given by the three principal moments of inertia
Ja=9aq as

Eov= Za (hz/zgaz)]ar2 ’

where the J,’s are the components of angular momen-
tum in the body-fixed coordinate system.

In the case of axial symmetry one of the 9,’s vanishes,
and the other two are equal. The one that vanishes will
not necessarily by ., as in previous treatments. This
reflects the fact, stated above, that the intrinsic state
is degenerate under permutations of the axes.

It is of interest to compare the obtained moments of
inertia with those of the irrotational model of Bohr and
Mottelson. Their parameters—3 and y—were used by
Davydov and Fillipov!® to get eigenenergies of an
even-even asymmetric rotator. There we have

9o=4B@ sin?(y—2ra),

(29)

(30)

with =1, 2, 3, referring to the three axes. The three
moments of inertia are not independent in this treat-
ment. In the last section, the extent to which the
cranked moments of inertia can be represented by
such a parametrization is discussed. This will enable
us to judge the applicability of the ideas of irrotational
motion which underlie the Davydov-Fillipov treatment
in this region.
IV. RESULTS

The program of solving the self-consistency problem
in the s-d shell was carried out for all even-even nuclei
with an equal number of protons and neutrons. Odd-
even nuclei were not treated since the main purpose of
the work was to find the general trends in the shell.

The extra freedom allowed to the intrinsic state by
removing the restriction of axial symmetry results in
a rearrangement of the single-particle levels. Usually,
more than one stationary intrinsic state exists, and
therefore we generally find a competition between the
lowest axially symmetric and nonaxially-symmetric in-

16 A. S. Davydov and G. F. Filippov, Nucl. Phys. 8, 237 (1958).
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trinsic states. Two such typical situations are illustrated
in Figs. 1 and 2. In Fig. 1, for Ne%, the axially sym-
metric state is energetically lower, and the reverse is
true for Mg?, shown in Fig. 2. It should be emphasized
that the larger energy gap between occupied and non-
occupied states which is associated with the lower expec-
tation value of the Hamiltonian is an essential feature
of the Hartree-Fock basis. It increases the stability of
the ground-state determinant against two-particle ex-
citations. Such a gap is absent from the Mottelson-
Nilsson deformed harmonic-oscillator spectrum.

The complete set of solutions for even-even nuclei
is given in Table I.

B 1039
[
-2 b .1
4 |- K3 .
Fic. 2. A compari- " |
son between the single- B kel -_—
particle self-consistent
Hamiltonians for the 8 - .
axially symmetric and —
nonaxially symmetric oL |
cases in Mg* The Kesy, E—
force parameters em- ¥
ployed are V=50 -2 |- Kety! -
MeV, (¥L,S=2.8 MeV.
protons and two neu- I |
trons occupy the low-
est two single-particle #0606 k=3,
levels in each case. 6 - T
8 - ®ece |
®000 K+
20 - axiolly K B
Symmetric 0606
Non Axiolly

A very interesting feature of the intrinsic states is
the abrupt change of the sign of the nuclear deforma-
tion around mass 28 (see Fig. 3). This is most probably
also supported by experimental evidence.l”

Figure 4 gives the difference in expectation values of
the Hamiltonian H

AE= ($nonax I H l ¢n0nax}_<¢ax I Hl‘ﬁﬂ) .

Negative values of AE on the curve indicate that an
axially asymmetric intrinsic state is energetically prefer-
able. Two regions of axial asymmetry are clearly seen,

80 - _ o 4
_ -0~ \
o~ \
60 |- \ -
\
)
40 - -
20 |- -
Fic. 3. The dependence of the A
quadrupole moment (Qo) of the & o ; : ' ' ; MASS |
energetically lowest intrinsic state v 20 24 28 32 36 NUMBER
on the mass number. (Qo) is given
in arbitrary units (of 6.22 mb). 20 n
-40 b =
-60 |- -0~ -
-
- -0~
-80 .0~ .
7
s
4

1" See: H. E. Gove, in Proceedings of the International Conference on Nuclear Structure, Kingston, edited by D. A. Bromley and E. W.
Vogt (University of Toronto Press, Toronto, Canada, 1960), p. 438.
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TasLE L. Single-particle self-consistent Hamiltonians for the even-even nuclei in the s-d shell. For each nucleus, the lowest axially
symmetric and nonaxially-symmetric cases are presented. The italicized numbers give the single-particle energies in MeV, followed by
the components of the single-particle wave functions in the representation (in this order): ds/®2, d_3252, d_3/2*2, 152, d1/2%2, S1/9M2
The expectation value of the Hamiltonian H (in MeV), the three principal moments of inertia (in MeV-1), and the expectation values of
Qo and Q; (in arbitrary units) are also given for each case. The Hamiltonian H is the Rosenfeld mixture used by Elliott and Flowers,
with Vo=350 MeV and a spherical single-particle spin-orbit term with ap,g=2.8 MeV.

NeZD Mg% Si28 532 Al-aﬁ

Ax Nonax Ax Nonax Ax Nonax Ax Nonax Ax Nonax
—17.656 —15.681 —19.499 —20.607 —22.706 —21.811 —22.729 —24.729 —26.761  —26.147
0 0.836 0 —0.118 1.000 0.284 0 0.947 1.000 —0.727
0 —0.383 0 0.268 0 —0.458 0 0.036 0 —0.325
0 0.394 0 0.167 0 —0.093 0 —0.001 0 0.043
0.819 0 —0.850 0.816 0 —0.811 —0.699 0.075 0 —0.460
—0.381 0 0250 —0.118 0 0.021 0.302 —0.014 0 0.025
0.429 0 —0.465 0.454 0 —0.208 0.648 —-0.310 0 0.390
—9.225 —9.562 —15.106 —17.656 —21.256 —19.120 —22.684 —23.648 —25.569  —25.547
0 0 0 —0.103 0 0.295 1.000 0.230 —0.613
—0.997 0 0974 —0.758 0 —0.687 0 —0.581 —0.996 0.476
—0.080 0 0.226 —0.149 0 0.167 0 0.095 0.094 —0.006
0 0.944 0 —0.004 —0.628 0.397 0 —0.598 0 0.631
0 —0.042 0 —0.522 0.299 —0.439 0 —0.053 0 0.012
0 —0.328 0 0.346 0.719 0.251 0 0.491 0 0.000
—8.016 —9.030 —12.060 —10.243 —18.141 —18.063 —20.547 —21.179 —24904 —23.152
1.000 —0.411 0 —0.819 0 0.793 0 0.168 0 —0.310
0 —0.912 0 0.304 0.723 0.260 0 0.674 0 —0.139
0 —0.015 0 0.062 —0.691 0.408 0 —0.152 0 —0.159
0 0 0.465 —0.390 0 0.126 0.610 —0.228 —0.637 —0.196
0 0 0.771  —0.126 0 0.393 —0.221 0.420 —0.024 —0.092
0 0 —0.436 0.255 0 —0.129 0.761 0.516 0.770 —0.901
—6.569 —6.004 —10.166  —9.004 —10.400 —11.008 —18.721 —18.693 —21.327 —22.697
0 0 1.000 —0.544 0 0.110 0 0.068 0 —0.017
0 0 0 —0.418 0.691 0.381 —0.831 —0.077 0 —0.703
0 0 0 —0.053 0.723 0.201 0.556 0.796 0 0.241
0.552 0.329 0 0.379 0 —0.390 0 0.447 0.594 0.524
0.321 0.223 0 0.431 0 —0.398 0 0.264 0.621 —0.416
—0.769 0.918 0 —0.445 0 0.701 0 0.295 0.511 0.000
—3.405 —3.835 —6.187 —6.173 —10.298 —9.979 —13.361 —12.024 —19474 —18.601
0 —0.365 0 —0.094 0 0.306 0 0.098 0 —0.022
0 0.149 0 0.260 0 0.322 0.556 —0.348 0.094 —0.009
0 0.919 0 —0.262 0 —0.444 0.831 —0.575 0.996 0.850
0.155 0 —0.250 0.189 —0.774 0.069 0 0.599 0 —0.014
0.867 0 0.586 —0.681 —0.343 —0.648 0 0.146 0 0.491
0.473 0 0.771  —0.597 —0.533 —0.426 0 0.399 0 —0.188
—1.297 —1.996 —4,069 —3.400 —5.296 —17.984 —11.120 —8.785 —11.985 —13.922
0 0 0 —0.002 0 0.311 0 0.091 0 —0.001
—0.080 0 —0.226 0.139 0 —0.043 0 0.283 0 —0.392
0.997 0 0974 —0.935 0 —0.748 0 0.067 0 —0.438
0 —0.035 0 —0.046 —0.087 0.112 —0.373 0.163 0.491 0.278
0 0.974 0 0.220 0.891 0.353 —0.928 —0.854 —0.784 0.759
0 —0.224 0 0.235 —0.446 0.452 0.030 0.388 0.381 0.000

(H) —46.233 —43.190 —94.414 —97.986 —155.37 —152.30 —213.47 —215.83 —281.89 —279.45
91 1.864 1.042 3.242 2.119 2.352 2.067 2.674 2.374 1.783 1.215
g2 1.864 1.042 3.242 2.400 2.352 2.116 2.674 2.007 1.783 2.169
d3 0 3.274 0 0.924 0 2.645 0 1.234 0 1.215

(Qo) 64.7 —33.5 71.5 79.3 —95.6 36.0 —24.6 —72.2 —61.4 —16.3
(Q2) 0 0 0 =201 0 —15.7 0 —21.2 0 —19.9

around Mg? and ‘around S®. The curve displays a
striking symmetry about the middle of the shell.

The analysis of the deformation of the lowest in-
trinsic state, in terms of the asymmetric rotator pa-
rameters B and v is shown on Fig. 5. For the nonaxially-
symmetric case, the three moments of inertia cannot
be fitted exactly by the two irrotational-flow param-

eters. The extent to which such a fit can be achieved
is indicated by the crosses through the corresponding
points. Here, again, an approximate symmetry about
the middle of the shell may be noticed. Experimentally,
however, no rotational spectrum has been found in the
upper half of the shell.

In the case where two of the principal moments of
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inertia are approximately equal and the third one is
small,

91=9,, 93<9,

the ground-state rotational band may still be approxi-
mated by a pure rotator with

9=3(91191).

The position of the excited rotational bands will then

3 O 7o\ b
\ / \
\ FA Va
2 - \ \ / 7]
\ / \ /
\ ! /
s \ I | / )
\ , { /
2 o0 | ! - ; ,'° +—MASS
H 20 ?\ 24 /0 2o 32 / 36 \omeer
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Fic. 4. The difference between the lowest axially sym-
metric and nonaxially-symmetric intrinsic state energies, AE
= (¢nonax | H | $nonax)— {bax | H | $ax), as a function of mass number.
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Fic. 5. An analysis of the lowest energy intrinsic states in
terms of the irrotational-flow parameters v and 4Bg2. The axially
symmetric cases lie on the y=0° line. For the nonaxially-sym-
metric cases Mg2 and S®, a best fit is given and the fit is indicated
by the crosses through those points.
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Fic. 6. The moment-of-inertia parameter #2/29 as a function
of the mass number for the present calculations. For comparison,
the Nilsson spectrum values, the previous axially symmetric re-
5ﬁlts for Mg# and S®, and the average experimental values are
shown.

depend on the ratio 95/9.. Since this is the situation
for Mg and S®, we could plot %#?/29 as a function of
mass number throughout the shell. For Mg?, where a
rotational spectrum is experimentally clearly observed,
the asymmetric result provides an important improve-
ment over the former axially symmetric calculation.
The #2/29 values calculated using equivalent Nilsson
energies and wave functions are considerably smaller.

The parameters used throughout the calculations
were V=50 MeV for the two-body interaction strength,
=1.37X10" cm for the range, and ap.g =2.8 MeV,
a?=0 in the single-body part of the Hamiltonian.
All the calculations were done with oscillator functions
of range 1.65X 10~ cm. Although there are indications
that these values may change over the wide range of
nuclei treated, it was found that the results reported
above are qualitatively the same for reasonably large
deviations from those values.
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