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An expression for the minimum rotational energy of a nucleus is obtained assuming that any observable
quantity may be represented by a sum of contributions from the individual nucleons. The expression is
evaluated explicitly using the Fermi-gas model with two different potentials, and using the shell model.
Computation of selected effective moments of inertia indicate that the moment of inertia of the nucleus is
of the same order of magnitude as that of a rigid body.

I. INTRODUCTION

IN this paper a calculation of the minimal energy of a
nucleus having a specified angular momentum is
presented. The scope of this calculation is, however,
limited to nuclei which are spherically symmetric when
in their ground state. In addition, Coulomb forces and
pairing effects!? are not included. The latter effect is
of minor importance for states with high angular mo-
menta.?* Neglecting the electrostatic energy is an
unrealistic assumption except for the lightest nuclei.
The consequence of the inclusion of the electrostatic
energy in heavy nuclei in calculating the deformation is
an increase in the deformation. From the spin depend-
ence of the rotational energy effective moments of
inertia have been calculated.

It should be stressed that the rotational motion
studied in this paper differs from the rotational motion
studied by Bohr and Mottelson.® The pioneering work
of Rainwater® and Bohr and Mottelson,®? which was
soon followed by a number of other papers, concerned
itself with the calculation of moments of inertia of
nuclei having many nucleons outside of closed shells,
i.e., nuclei highly deformed even when in their ground
state. In the present paper, moments of inertia are
calculated only for nuclei which are spherical when in
their ground state.

The importance of nuclear states with high angular
momentum was realized from experimental data ob-
tained with heavy-ion accelerations. When uranium is
bombarded by 100-MeV oxygen nuclei, states with
angular momentum as high as 60 units of % are obtained.
It therefore is important to study the rotational states
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with high angular momentum. To carry out such a
study it is necessary to adopt a model for the nucleus.
The simplest model to use is the liquid-drop model.
Rotating liquid drops were studied in various degrees
of sophistication by Poincaré,® Lord Rayleigh,® Appel,1°
Pik Pichak," Hiskes,” Beringer and Knox,® Sperber,*
Cohen, Plasil, and Swiatecki,' Carlson and Pao Lu,®
and Chandrasekhar.’” In each of these papers the
nucleus was considered as an incompressible rotating
liquid drop with surface tension. An alternative treat-
ment which may be more realistic, is to consider the
nucleons as a Fermi gas moving in a potential. Such a
model is considered in the present paper. In these
calculations all observable quantities are calculated as
sums of contributions from single particles. Calculations
based on the Fermi-gas model are presented in Secs. IT
and IIT of this paper. In addition a calculation based on
the shell model is presented in Sec. IV.

It should be stressed that the validity of this calcula-
tion is limited to those values of the angular momentum
for which stable configurations exist. Carlson and Pao
Lu?® have shown that when the parameter A\* becomes
larger than 0.28, chargeless nuclei become secularly
unstable. For values of A2>0.28 the present calculation
refers to secularly unstable configurations. The ques-
tion of their significance, if any, would require an
analysis of the dynamics of small oscillations of the
system.
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NUCLEAR STATES WITH HIGH ANGULAR MOMENTA

II. THE SHAPE OF THE OCCUPIED REGION IN
MOMENTUM SPACE, AND THE SHAPE
OF DEFORMED NUCLEI

In a previous paper by the present author* a nucleus
with high angular momentum was viewed as a rotating
incompressible liquid drop. In the present treatment,
that of the Fermi gas, the incompressibility condition
is relaxed. One of the consequences of high angular
momentum according to this latter model is the mono-
tonic increase of the density of nuclear matter with the
distance from the center of the nucleus. However, the
energy associated with nuclear deformation is larger by
an order of magnitude than the energy associated with
the change in density.

For the case of nucleons moving independently, in-
side the nucleus and for a nucleus having no net angular
momentum, the Fermi-gas model predicts a spherical
shape.’8-2! The density of nuclear matter, in this case,
is spherically symmetric. Also, the occupied region in
momentum space is spherically symmetric, with the
center of the sphere at zero momentum. The variation
of density of nuclear matter (or the Fermi radius pr)
with the space coordinates depends on the single-
particle potential. For a spherically symmetric po-
tential this density depends only on the distance from
the center of the nucleus.

Now the shapes of the nuclei and the shapes of the
occupied region in momentum space are calculated for
nonvanishing angular momenta. The shape of the
occupied region in momentum space is calculated for a
spherically symmetric potential. This shape will be
obtained by minimizing the total energy subject to
the constraints of a specified number of particles and
specified angular momentum. First, all observable quan-
tities, which are due to sums of contribution from single
particles, are expressed as integrals over phase space.
Accordingly the following expressions are obtained for
the number of particles 4, the kinetic energy Ej, the
potential energy E, and the angular momentum 7:

A=££ / / / / / / dp.dpydpdadydz,
Mjh/ / / / / f (p2+p7+5)

Xdpdp,dp.drdydz, (2)

Ep=% [[[] / [vshapapapasias, @
Ih=% / / / / / / [xpy—vp.1dp.dp,dp.dxdydz. (4)

¢Y)

Ek=
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(The 2 direction is chosen as the direction of the angular
momentum.) To calculate the shape of the occupied
region in momentum space a knowledge of p, as a func-
tion of the other variables on the boundary of the
occupied region in momentum space is necessary. This
dependence is obtained by using Egs. (1) through (4)
and demanding that:

3(Ey+E,—a2A—28'T)

=5 / f / / / [(p,2+z>y2)1u+€;+2MV(lrl)p»

28'M
B

—2MVd'*p,— Exﬁy_y?z]?ﬂ}

Xdpdp,dxdydz=0. (5)

Here o’? and 8’ are Lagrange multipliers. Applying the
Euler-Lagrange equations to momentum space one
obtains:

M N\’ BM N\
(p4752) (o5 2) +o-

@4y =pr*. (6)

Qg

= 2Ma+2MV (|r])—

h2

The occupied region in momentum space consists of
spheres with a center at p,,., ,,. such that:

Pa:,cz - (ﬁ,M/h)yr
py.e=B'M/W)x.

It will be convenient to introduce cylindrical co-
ordinates in momentum space, such that p, is the
linear momentum in the direction of the unit vector
¢ indicating the increase of the aximuthal angle ¢ in
coordinate space and p, is perpendicular to ;. Using
these coordinates the equation of the boundary of mo-
mentum space becomes

O

’

(p..——h—p)zwl =2Ma"+2MV (|7])—

23

P . (8)

It can easily be seen that the boundary of the occupied
region in momentum space will be of similar shape for a
potential proportional to the surface having the form

By=o [ [onts)
X [1+ (%?)2'!‘ (5;)2(%%)2:'1/32(143 . 9)

In Eq. (9) pn is the value of p on the boundary of the
nucleus. In a similar way it can be shown (by solving
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the Euler-Lagrange equation in coordinate space)
that the nuclei under consideration are cylindrically
symmetric.

III. CALCULATION OF SHAPE AND ROTATIONAL
ENERGY BASED ON A FERMI-GAS MODEL

In the present section the minimal rotational energy
of a Fermi-gas nucleus is calculated. The calculation is
performed for two different potentials: (a) A square-
well potential supplemented by a potential propor-
tional to the surface area, (b) a harmonic-oscillator
potential.

A. Square-Well Potential Supplement
by Surface Potential

The accumulating evidence for a surface potential as
a supplement to the volume potential®-?8 suggests the
present calculation. After integrating p, in cylindrical
coordinates from the axis of the occupied region of
momentum space to the points on its boundary, one
obtains for the observable quantities:

8n?
A=——//fpfdpnpdpd2, (10)
78
Ey= hm[/[/(”“‘l‘?u )I’n dPllPdeZ (11)
—8n?V,
Ev= ///PJ?dP[U)deZ, (12)
h3
dpm\2 T2
Es=27ra/pml:l+(———) :l dz, (13)
dz
8n?
=‘h—3///Pl2P1|d?]|p2dde. (14)

The potential energy E, in Eq. (3) is replaced by the
volume energy E, and the surface energy E,. The equa-
tion for the boundary of the occupied region in mo-
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mentum space becomes

P (pu—Bp)’=a’+p%". (15)
Here the new Lagrange multipliers are defined as
=2M[+ Vo], B=MB'/h. (16)

For a vanishing angular momentum a becomes the
Fermi momentum. The integration over g, and p in
Egs. (10) through (14) can be carried out explicitly by
first integrating pi; between Sp— [+ (8p)* ]2 and Bp
[+ (8p)*]¥2 and subsequently integrating p from
zero to py,. This integration yields

15h362,[ [ (2+Bond)"2—ab]dz, .
327{'2 20 8
= 15Mk332/ {;[(a2+62pm2)7/2_a7]
0

—o?[(2+B0n2)"2—a"]tdz, (18)
64m2 20
=3h333-/; [[(a2+32pm2)7/2__a,]

2
_%[(a2+,@2pm2)5/2_a5] . (19)

Using the Euler-Lagrange equation in coordinate space
and Eqgs. (17) through (19), the differential equation
for the meridian cross section of the nucleus becomes

— (ME/2r)opm n 8
RERTWIESTM

105 b_z_[( 2+62 2)7/2_a ]

=const. (20)

Equation (20) was integrated numerically. This was
done by introducing dimensionless variables R and Z

such that
R=B/a)pn, Z=(B/a)z. (21)

Here R, is the highest value of R at the equator. Using
Eqgs. (17) through (19) one obtains

dR

(22)

R R,

=[(1+R};;’2— 1]/:6 [ [

(1+R2)7/2_

il

1]2_[(14-&2)7/2—

Equation (22) gives the shape of the nucleus. Similar equations are obtained for its properties by using Egs. (21)
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and (22).
287rch|" R, 3/2 rRe [(14-R2)52— 1]dR
T _—
g Lra+ram—11d J, R -2 R, 2y 172
{[(1+R2)7/2—1J _[(1+R62)7’2—-1:| }
o Mrd R P R[8/T04+R 1] (R - 1]}R
k= 8 _(1+Re2)7/2—1] /0 R 2 R, 2172 (24)
{[(1+R2)7/2—1:| —[(1—1—&2)7/2—1] }
droo? [Bey R\? (1+Re2)7/2——1‘| dR :
Ea= / (—) [ , (25)
62 0 Re (1+R2)7/2__1 J{[ R -2 — R —2y1/2
.14+ R2)12—1 - L (14+R2)72—1 ] ]
357m2Mal— R, 3/2 pRe 2/7[(1+R92)7/2__ 1]—%[(1+R2)5/2— lde
Th= ] [ : (26)
463 L(1+Re2)7/2__1 0 [ R -2 — Re -2y 1/2
{ (14 R2)12—1 _—(1+Re2)7/2'—1— }

Using Egs. (21) and (22) the meridian cross section of
a rotating nucleus was calculated (Table I). The rota-
tional energy is the total energy minus the sum of the
Fermi energy and surface energy of a nonrotating nu-
cleus. Equations (23) through (26) were used to evalu-
ate the rotational energy (Table II) of some typical
nuclei. These results are compared in Table IT with
similar results based on the liquid-drop model. The
calculated rotational energy using the liquid-drop model
exceeds the energy based on the Fermi-gas model. This
small difference is attributed to compressibility. The
nuclear density increases towards the nuclear surface
owing to rotation.

The numerical comparison in Table IT between a
compressible and incompressible fluid can be considered

TasLE I. Shape of meridian cross section of a rotating bag
filled with a Fermi gas of nucleons. The shape of the meridian
cross section is described by means of a relation between the
dimensionless surface coordinates R/R, and Z/R,. The rate of
rotation is given by the dimensionless angular-momentum pa-

only as illustrative of the effect. The best estimates of
nuclear compressibility coefficients are two or three
times higher than those obtained from the considera-
tions of the kinetic energy of a Fermi gas upon which
the present treatment is based.

B. Harmonic-Oscillator Potential

In the present section the nucleus again is treated
as a gas of noninteracting fermions, but this time the
nucleons are not constrained by a force acting at a well-
defined surface, but rather are forced to move in a

TasrLe II. The minimum rotational energy of a nucleus with a
specified angular momentum for some typical nuclei. Here Uz’
is the rotational energy according to the Fermi-gas model and Up
is the rotational energy according to the liquid-drop model (with
energies in MeV and angular momentum in units of %). The fol-
lowi‘rllg constants were used; 70=1.216X 10712 cm and 407,2=17.80
MeV.

rameter A?= (rotational energy)/(surface energy of rigid sphere). 4=100 4=150 ’
For any given choice of this parameter the deformation is most I Urf Ur I Ur’ Ur
quickly summarized by the ratio Z(0)/R,, i.e., the ratios between
the distance from the center to the pole to the distance from the 0 0.000 0.000 0 0.000 0.000
center to the center of the equator. 4 0.252 0.258 5 0.204 0.209
8 1.020 1.030 10 0.825 0.833
12 2.289 2.313 15 1.853 1.874
A2=0.000 A=0.502 A2=0.743 N=0.864 16 4.052 4.099 20 3.271 3.326
Z(0) Z(0) Z(0) Z(0) 20 6.296 6.376 25 5.122 5.184
——=1.000 =0.813 =0.621 ——=0.598
R, o . R, A=200 A=250
R/R, Z/R, R/R, Z/R. R/R, Z/R, R/R. Z/R. I Uz’ Uz I Uz’ Uz
0.000 1.000 0.000 0.813 0.000 0.621 0.000 0.598 0 0.000 0.000 0 0.000 0.000
0.200 0.980 0.281 0.778 0.322 0.607 0.334 0.581 7 0.258 0.253 8 0.234 0.228
0.400 0.917 0.502 0.696 0.560 0.564 0.576 0.546 14 1.000 1.010 16 0.901 0.910
0.600 0.800 0.812 0.509 0.840 0.482 0.871 0.471 21 2.257 221 24 2.147 2.047
0.800 0.600 0.945 0.342 1.142 0265 1.180 0.259 28 3.969 4.021 32 2.834 3.636
1.000 0.000 1.082 0.000 1.264 0.000 1.312 0.000 35 6.208 6.280 40 6.042 5.698
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harmonic-oscillator well.2*=%2 The potential is defined as:
U(x,y,2)=0 for 22434222 R¢,
U(#,3,2)=—Ust3Mo*(@*+y*+2), for
2249242 R,
Here R, is the radius of the nucleus while w is the
characteristic frequency corresponding to a nucleon in

a given potential. The frequency w is defined by the
relation

(27)

$Mw*Re*="U. (28)

The technique utilized in the present calculation is
equivalent to the one employed in the previous section.
Therefore many intermediate steps are omitted and
only final results are quoted for the nuclear properties.

642235
A =
15K M2 — B M w

1
/ (1—a2)2d
0 81r3a621/2
[ Mt —28 M

(29)

5127r321/2a8 1
I= / (1—a?)""dx
105 M2 — 285 1M w0 o
16 =* 82128
3 [M— 28T M
1/2 2 2 21,8 pl
_ 2644+ 128 T / sy
M5M2[ M2 — 26270 J
21/2647r2a8M2w2
!
1S M MPu?— 28I
21/287r3a8[M2w2_|_ %62]
MM — 28

(30)

E

1
/ (1—a2)5/2d
0

(31)

Here « and g8 are Lagrange multipliers to be chosen so
as to obtain the specified number of nucleons (they are
analogous to the previous ¢ and 8 but not equal to
them) and specified angular momentum, while the
dimensionless parameter # is defined as

x=Muwz/Vla. (32)

The energy E in Eq. (31) includes only that part of the
energy which increases with deformations. The equa-
tion of the meridian cross section of the cylindrically
symmetric nucleus becomes

M2 — 2 202
| 2

22 Pm”= .
Mo? M2?

(33)

20 G, P. Mayer, Phys. Rev. 75, 1877 (1948).

% E. Feenberg and K. C. Hammec, Phys. Rev. 79, 201 (1950).

31 G. P. Mayer and H. D. Jensen, Elementary Shell Structure
(John Wiley & Sons, Inc., New York, 1955), Chap. 4, p. 52.

# Q. Haxel, J. H. D. Jensen, and H. Suess, Z. Physik 128, 295
(1950).
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TasLE III. Energy of the lowest state of a rotating nucleus
with a specified angular momentum as a function of that angular
momentum. The calculation is based on the Fermi-gas model of
the nucleus with the nucleons moving in a harmonic-oscillator
potential with R=7A43, 7,=1.216)X 103 cm, fiw=56.2/A41/3 MeV.
All nuclear rotational energies Ug are in MeV and all angular
momenta are in units of %.

4=100 4=150 4=200 4=250

I Ur I Ur I Ur 1 Ur
0 0.000 0 0.000 0 0.000 0 0.000
4 0.467 5 0378 7 0.548 8 0.412
8 1.864 10 1.508 14 1.828 16 1.648
12 4.186 15 3.391 21 4110 24 3.705
16 7.419 20 6020 28 7278 32 6.581
20 11341 25 9.383 35 11367 40 10.242

Introducing a parameter 5 such that
1=8/Mo (34)

and using Egs. (29) through (31), the following para-
metric dependence between angular momentum and
energy is obtained:

38 sy

I=———| (35)
2106 [1— 22 218

l]hw .

31/3 1_],_172
Unm]
21/6 [1_2,'72]2/3
For a simpler physical picture, an approximate formula
can be obtained which yields an explicit dependence of
energy on angular momentum. This simplified expres-
sion is limited to #’s such that

<1, 37

Expanding Egs. (35) and (36) into a power series in 7
leaving only the lowest powers, and subsequently
eliminating #, one obtains:

(36)

522 f 2
Up=-——DI= . (38)
2 316 g453 2gets
Therefore,
31/6ﬁA4/3
Jett=—" 39)
5 X Zl/ﬁw (

may be considered as an effective moment of inertia.
Calculations of the lowest energy of a rotating nucleus
with a specific angular momentum using Eq. (38) are
shown in Table III.

IV. THE CALCULATION OF THE ROTATIONAL
ENERGY BASED ON THE SHELL MODEL

In this section a calculation of nuclear rotational
energy based on the shell model is presented. Assuming
a harmonic-oscillator potential, the single-particle en-
ergy including a spin-orbit interaction becomes

E=n[2(n—1)+1—¢(1-s)]. (40)
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Here # is the single-particle principal quantum number,
I and s are the orbital and spin angular momenta, ¢
measures the strength of the spin-orbit interaction. As
in the previous sections, the calculation is based on the
assumption that all observable quantities of the nucleus
as a whole are due to a sum of contributions from in-
dividual nucleons. For convenience, an occupation
function 7(n,l,j,m) is introduced which states the num-
ber of particles in each quantum state; so that the
number of nucleons 4, the energy E and the angular
momentum 7 become:

A = Z i’(n’l’j’m) ) (41)
n,l,5,m

E=hw ZZ [2(=1)+1=¢(A-8) Jo(nljm),  (42)

I= Z mv(n,l,j,m). (43)

Since this discussion is limited to nuclei with equal
numbers of protons and neutrons, as Coulomb forces
are neglected, it is convenient to introduce a new

occupation function
v=27. (44)

Here v can only be zero or one. If np, Iy, jr, and my are
the highest single-particle quantum numbers for oc-
cupied nucleon states in the nucleus, then

v(mdgm)y=1, if n<np, j<jr, I<lp,m<mp, (45)

v(n,l,7,m)=0, otherwise.

For the quantum numbers /, 7, m there is a highest
occupied state, characterized by a Fermi radial quan-
tum number 7z y so that

(46)

If npis a known function of the other quantum numbers,
then the state of the nucleus is determined. The func-
tion nr [Eq. (46)] is determined by using a variational
method. To do so, the terms appearing in (41) are split
into two groups, (a) those for which j=I4% and, (b)
those for which j=/—%. Then the summation over #»
is carried out so that

np=np(l,j,m; A,I) .

A:[ Z ”F(lﬂam,A)I)
1, j=0+1/2,m
+ Z nF(l7j7m;A7[):|’ (47)
l=I-12m
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I=[ Z Zmnp(l,j,m;A,I)
1,7=U+1/2,m
+ X

l,j=1-1/2,m

mnF(laj)m;Ayl)]y (48)

E=ho[ 2

1, 5=+1/2,m

an(l,j,m; A,I)-—np(l,j,m; A)I)

+lnl’1(l>];m7A)I)_%§l+ Z

l,7=1-1/2,m

(49)

nFZ(l;j:m; Ar[)

In order to use the methods of the calculus of varia-
tions, the summations (46)-(49) have to be replaced by
an integration with # becoming a continuous function
of its variables; thus, for example, 4 becomes

A=//npv(l,j=l+%,m;A,I)dmdj
—l—//m(l,j=l—%,m;A,I)dmdj. (50)

Similar expressions are obtained for the other observ-
able quantities in the continuous approximation. Since
the minimization of the energy is subjected to two
subsidiary conditions (a specified number of particles
and a specified angular momentum) it is necessary to
demand the following:

8(E—ad—BI)=0. (51)

Again a and 8 are Lagrange multipliers now to be chosen
so as to satisfy Eqgs. (47) and (48). In the continuous
approximation Eq. (51) yields:

nrp(l, j=1+3,m; 4, I)=3[a— (—1)+B]+5(N,
M'F(l) j=l—%’ m; 4, I)=%[O‘_ (l_ 1)+ﬂ]
=3 U+1).

Equation (52) shows that for the same /, the value of
ny for which j=14-3 is larger than the value of ny for
which j=!—%. This is in conformity with the shell
model. The constants & and 8 can be evaluated by intro-
ducing Eq. (52) into Eqgs. (47) and (48) and solving for
o and 8. The part of the energy which depends on
angular momentum becomes:

(52)

6liwl?

(53)

Ur= .
¥ (ry 1) (20p 24100 241515 46)F1p_(Ir_+1) (20 p 24 21p_—1)

Here Ir, is the highest / value for which j=/4%, and
lp_ is the highest / value for which j=/—3. At first
sight it may appear from Eq. (53) that Uz does not
depend on the strength of the spin-orbit interaction.

However, a more detailed analysis shows that this is
not the case since from Eq. (52) it can be seen that the
larger the spin-orbit interaction is, the larger Zp, will
be and the smaller /_ will be (for a specified number of
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TaBLE IV. Energy of the lowest rotational state of a nucleus
with specified angular momentum as calculated from the con-
tinuous approximation of the shell model with #uw= (56.2/4V3)
MeV. All rotational energies Ug in the table are in MeV and all
angular momenta are in units %.

A4=100 A4 =150 A4 =200 A=250

I Ur I Ur I Ur I Ur
0  0.000 0  0.000 0  0.000 0  0.000
4 0.547 5 0443 7 0.536 8 0483
8 2.183 10 01776 14 2141 16 1.931
12 4904 15 4814 21 4814 24 4340
16 8690 20  7.051 28 8524 32 7.708
20 13.517 25 10990 35 13313 40 12.018

nucleons). Since Ur depends on Ir, and /r_ in different
ways, the rotational energy depends on the spin-orbit
interaction. For a vanishing spin-orbit interaction, Eq.
(53) will reduce to

3 fiwl?
Up=-————o,
21r(lp+1)2(1p+2)
The quantity gets may be obtained from Eq. (53) as:

(54)

2%
Jott=—0r,+1)(Ur, 2+ 1005 2+ 155, +6)
w
4+ (Ur A1) 2p 24-20p_—1)ip_.

Jetr may be considered as an effective moment of
inertia.

As an example of the validity of the present method,
it can simply be applied to oxygen-16. For the case of
O'¢ the minimum rotational energy with angular mo-
mentum of 8% can be calculated easily. In this case
lr=1 so that Ugr=8%w. Indeed the lowest energy re-
quirement to obtain an angular momentum of 8%,
without violating Pauli’s principle, is achieved by
elevating four nucleons from the 1p to 2 state with an
energy of 2%w per nucleon.

(55)

TABLE V. The ratio of the effective moment of inertia dos; to
the rigid-body moment of inertia 4,i; as a function of \* according
to different nuclear models (here A2 is the dimensionless measure
of angular momentum) for 4 =175 and 7,=1.216X 10712 cm. The
angular momentum I7=>50 corresponds with these constants to
N=0.167. The effective moment of inertia is defined as

_ M 4 N
Ur Irig Jeffl ’
The moments of inertia are expressed in a dimensionless form as
the ratio between the calculated moment of inertia and the
moment of inertia of a rigid sphere.

Bag full  Fermigas Continuum

Liquid of Fermi in oscillator version of

A2 drop gas potential  shell model
0.000 1.000 1.015 0.540 0.471
0.148 1.219 1.243 0.604 0.471
0.445 1.498 1.536 0.662 0.471
0.567 1.572 1.621 0.684 0.471
0.750 1.705 1.765 0.710 0.471
1.008 1.862 1.934 0.739 0.471
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Table IV lists the minimum rotational nuclear energy
as a function of angular momentum for some typical
nuclei.

V. DISCUSSION

Expressions for the minimal nuclear rotational energy
Ur have been calculated using (a) the Fermi-gas model
with two different potentials and, (b) the shell model.
It is worthwhile to compare the results obtained by the
use of the three different methods. For this purpose the
effective moments of inertia are compared in Table V
and Fig. 1. In addition these moments of inertia are
also compared with calculated moments obtained in a
previous paper.™ It is seen that the calculated moments
of inertia using the various nuclear models are of the

2 - (b)
(a)

Ts,
// (c)

(CY

1
0 .5

Al
F1c. 1. The ratio of the effective moment of inertia des to the
rigid-body moment of inertia as a function of A? according to
different models. (Here A? is the dimensionless measure of angular

momentum for 4=175 and 7,=1,216 107% cm.) The effective
moment of inertia is defined as

H? 9rig
U R=§§Ti; Iﬁl 2,
order of magnitude of the moment of inertia of a rigid
body.

As mentioned previously each of the calculations is
based on a particular set of assumptions, which limits
its validity. A comparison between the moments of
inertia, as calculated using the different models, allows
one to draw some conclusions regarding these assump-
tions. First a comparison between the results for the
liquid-drop model and for a bag full of fermions is
made. The only difference between the two calculations
is that in the latter the compressibility condition is
relaxed. Table II shows that this relaxation decreases
the energy. It is also seen that the change of energy due
to compressibility is very small. Next a comparison
between the two calculations based on the statistical
model is considered. In both these calculations the
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compressibility conditions are relaxed in the same way,
but the potentials are very different. From a comparison
between the results of the two calculations one can
estimate the effect of the potential on the moment of
inertia. Table V shows that the moments of inertia for
a Fermi gas moving in a harmonic-oscillator potential
are smaller that those for a bag full of fermions. Finally
a comparison between two calculations assuming a
harmonic-oscillator potential is made. Here again the
difference stems from the difference in the assumed
models. The Fermi-gas model predicts slightly higher
moments of inertia which increase with angular mo-
mentum. The shell model predicts constant and smaller
moments of inertia. An attempt was made to study the
moments of inertia as one goes from the extreme case
of the liquid-drop model to the extreme case of the
shell model. In all calculations interactions are neg-
lected except as they show up in the surface energy.
Therefore, all calculations can be considered as single-
particle calculations. The two last calculations using a

B 1035

harmonic oscillator could become more realistic if the
potential would be allowed to deform. Such calculations
with the inclusion of electrostatic forces would approxi-
mate very well the behavior of real nuclei. Grover®
has already concluded that the latter results agree well
with moments of inertia derived by him from experi-
mental data.

The moments of inertia calculated from the depend-
ence of the density of levels on angular momentum ob-
tained by Bloch* and Ericson and Strutinski®® indicate
similar results to those obtained in this calculation.
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The Hartree-Fock problem for even-even nuclei in the s-d shell is solved without requiring the intrinsic
state to be axially symmetric. Two regions of axial asymmetry are found—around Mg and around S%.
The existence of an energy gap between occupied and nonoccupied single-particle states is established for
all cases. The moment-of-inertia tensor for the axially asymmetric cases is computed and provides an im-
provement over the axially symmetric results of former calculations.

I. INTRODUCTION

HE calculational limitations of the shell model in
treating nuclei with many nucleons (more than

four) outside closed shells led to the development of
the collective picture of nuclei. In this treatment, the
nucleus is described as performing some kind of collec-
tive motion, such as rotations and vibrations.! The
coordinates of the individual nucleons are replaced by
a smaller number of degrees of freedom, of a more
macroscopic nature. (In the unified model, which is an
extension of this, some individual nucleons are still
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considered.)? A small number of parameters is sufficient
to specify exactly the new Hamiltonian of the system.
In the case of a pure axially symmetric rotator, only
one such parameter—the moment of inertia—is neces-
sary. The initial justification of such a model was the
actual occurence of, say, rotational spectra in certain
nuclei. Moreover, the values of the parameters were
artificially adjusted to fit those observed spectra. From
this point of view, the model provides merely a phe-
nomenological presentation of experimental data. Its
qualitative and quantitative relations to the actual
many-body problem of the nucleus (or, at least, to the
shell-model version of it) are therefore of great interest.

The significance of the “intrinsic” state of the nucleus
was long recognized in this connection. The “intrinsic”
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