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Nuclear States with High Angular Momenta According to the
Single-Particle Model

DANrzl. SPzRazR

Physics Division, IIT Research Institute, Chicago, Illinois
(Received 14 January 1963; revised manuscript received 21 January 1965)

An expression for the minimum rotational energy of a nucleus is obtained assuming that any observable
quantity may be represented by a sum of contributions from the individual nucleons. The expression is
evaluated ezplicitly using the Fermi-gas model vrith two different potentials, and using the shell model.
Computation of selected eftective moments of inertia indicate that the moment of inertia of the nucleus is
of the same order of magnitude as that of a rigid body.

I. INTRODUCTION
' 'N this paper a calculation of the minimal energy of a
- ~ nucleus having a specihed angular momentum is
presented. The scope of this calculation is, however,
limited to nuclei which are spherically symmetric when

in their ground state. In addition, Coulomb forces and

pairing effects" are not included. The latter eQ'ect is

of minor importance for states with high angular mo-

menta. " Neglecting the electrostatic energy is an
unrealistic assumption except for the lightest nuclei.

The consequence of the inclusion of the electrostatic
energy in heavy nuclei in calculating the deformation is

an increase in the deformation. From the spin depend-
ence of the rotational energy effective moments of
inertia have been calculated.

It should be stressed that the rotational motion
studied in this paper divers from the rotational motion

studied by Bohr and Mottelson. 5 The pioneering work,

of Rainwater' and Bohr and Mottelson, 5 7 which was

soon followed by a number of other papers, concerned

itself with the calculation of moments of inertia of
nuclei having many nucleons outside of closed shells,

i.e., nuclei highly deformed even when in their ground
state. In the present paper, moments of inertia, are
calculated only for nuclei which are spherical when in

their ground state.
The importance of nuclear states with high angular

momentum was realized from experimental data ob-

tained with heavy-ion accelerations. When uranium is
bombarded by 100-MeV oxygen nuclei, states with

angular momentum as high as 60 units of k are obtained.

It therefore is important to study the rotational states

' N. N. Bogoliubov, Prooeedhngs of the Seoond Unstetf buttons
Intern@tioncl Conference on the Peaceful Uses of Atomic Energy,
Geneva, i@58 (United Nations, Geneva, 1958), Vol. 30, p. 59.

~ S. T. Belyaev, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 31 (1959).

3B. R. Mottelson, J. G. Valatin, Phys. Rev. Letters 5, 511
(1961).

4 B.R. Mottelson, Proceedings of the International Conference on

Nuclear Structure, 1960, edited by D. A. Bromley and E. . Vogt
(University of Toronto Press, Toronto, 1960), p. 625.

' A. Bohr and B.R.Mottelson, Kgl. Danske Videnskab. Selskab,
Mat. -Fys. Medd. SO (1955).

6 J. Rainwater, Phys. Rev. 79, 432 (1950).
7 A. Bohr and B.R.Mottelson, Kgl. Danske Videnskab. Selskab,

Mat. -Fys. Medd. 27 (1953).

with high angular momentum. To carry out such a
study it is necessary to adopt a model for the nucleus.
The simplest model to use is the liquid-drop model.
Rotating liquid drops were studied in various degrees
of sophistication by Poincare, ' Lord Rayleigh, 9 Appel, '0

Pik Pichak, "Hisses, ' Beringer and Knox, "Sperber, '
Cohen, Plasil, and Swiatecki, '5 Carlson and Pao Lu, '6

and Chandrasekhar. " In each of these papers the
nucleus was considered as an incompressible rotating
liquid drop with surface tension. An alternative treat-
ment which may be more realistic, is to consider the
nucleons as a Fermi gas moving in a potential. Such a
model is considered in the present paper. In these
calculations all observable quantities are calculated as
sums of contributions from single particles. Calculations
based on the Fermi-gas model are presented in Secs. II
and III of this paper. In addition a calculation based on
the shell model is presented in Sec. IV.

It should be stressed that the va1idity of this calcula-
tion is limited to those values of the angular momentum
for which stable con6gurations exist. Carlson and Pao
Lu" have shown that when the parameter X' becomes
larger than 0.28, chargeless nuclei become secularly
unstable. For values of X'&0.28 the present calculation
refers to secularly unstable con6gurations. The ques-
tion of their signi6cance„ if any, would require an
analysis of the dynamics of small oscillations of the
system.

8 H. Poincare, Capri'te, edited by George Carre (Paris, 1895),
p. 118.

9 Lord Rayleigh, Phil. Mag. 28, 161 (1914).
'o P, Appel, Trite de 3Acenique Rationelle (Ganthue-Villars,

Paris, 1932), Vol. 4, Chap. I, p. 295.
"Q. A. Pik-Pichak, Zh. Eksperim. i Teor. Fiz. 34, 341 (1958}

LEnglish transl. : Soviet Phys. —JETP 7, 238 (1958}j.» J. A. Hiskes, University of California Radiation Laboratory
Report UCRL—92'tt'5, 1960 (unpublished}.» R. Beringer and W. J. Knox, Phys. Rev. 121, 1195 (1961).

'4 D. Sperber, Phys. Rev. 130, 468 (1963).» S. Cohen, F. Plasil, and J. W. Swiatecki, Proceedings of the
Third Conference on Reactions J3etareen Complex Nuclei, edited by
A. Ghiorso, R. M. Diamond, and H. E. Conzett (University of
California Press, Berkeley, 1963),p. 325.

~6B. C. Carlson and Pao Lu, Proceedings of the Rutherford
Jubilee International Conference, lPN, edited by J. B. Birks
(Academic Press, Inc., New York, 1961),p. 291.

r' S. Chandrasekhar (private communication).
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and (22).
28m o-M

ps t'(1+R a)TIR

—3/2 Re L(1+R')'"—1)dR

E e

(1+R')'"—1 (1+R,s) r/' —1
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P2 (1+R s)7/2

n (t 8//(1+R)'" —1]—L(1+R')'/s —1])dR

-2 1/2

-(1+R')'"—1- -(1+R')""—1-

(24)

4vroos s'/ R s (1+R, ) / 1—
E.=

P' e kR. (1+R')'"—1
(25)

4P' (1+R,s)'/' —1

(1+R')'"—1 (1+R,s)'/s —1' 2/&C(1+R.')'"—1j—sL(1+R')'"—17'
-2 1/2
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(26)

Using Eqs. (21) and (22) the meridian cross section of
a rotating nucleus was calculated (Table I). The rota-
tional energy is the total energy minus the sum of the
Fermi energy and surface energy of a nonrotating nu-
cleus. Equations (23) through (26) were used to evalu-
ate the rotational energy (Table II) of some typical
nuclei. These results are compared in Table II with
similar results based on the liquid-drop model. The
calculated rotational energy using the liquid-drop model
exceeds the energy based on the Fermi-gas model. This
small difference is attributed to compressibility. The
nuclear density increases towards the nuclear surface
owing to rotation.

The numerical comparison in Table II between a
compressible and incompressible Quid can be considered

X2=0.000
Z50 =1.000
Ee

R/R Z/R, .

@2=0.502
Z{0)

=0.813
Re

R/R, Z/R,

)P=0.743

Z(0)
=0.621

R,
R/R, Z/R,

M=0.864
Z(0)——=0.598
E,

R/R Z/R

TABLE I. Shape of meridian cross section of a rotating bag
filled with a Fermi gas of nucleons. The shape of the meridian
cross section is described by means of a relation between the
dimensionless surface coordinates E/R, and Z/E, . The rate of
rotation is given by the dimensionless angular-momentum pa-
rameter X'= (rotational energy)/(surface energy of rigid sphere).
For any given choice of this parameter the deformation is most
quickly summarized by the ratio Z(0)/R„ i.e., the ratios between
the distance from the center to the pole to the distance from the
center to the center of the equator.

only as illustrative of the eGect. The best estimates of
nuclear compressibility coeKcients are two or three
times higher than those obtained from the considera-
tions of the kinetic energy of a Fermi gas upon which
the present treatment is based.

Tzm.E II. The minimum rotational energy of a nucleus with a
speci6ed angular momentum for some typical nudei. Here 0'g~
is the rotational energy according to the Fermi-gas model and 0'~
is the rotational energy according to the liquid-drop model (with
energies in MeV and angular momentum in units of it). The fol-
lowing constants were used; ro ——1.216X10 '3 cm and 4~/ =17.80
MeV.

A =100

0

12
16
20

0.000
0.252
1.020
2.289
4.052
6.296

0,000
0,258
1.030
2.313
4.099
6.376

0
5

10
15
20
25

0.000
0.204
0.825
1.853
3.271
5.122

0.000
0.209
0.833
1.874
3.326
5.184

3. Harmonic-Osci11ator Potential

In the present section the nucleus again is treated
as a gas of noninteracting fermions, but this time the
nucleons are not constrained by a force acting at a well-
defined surface, but rather are forced to move in a

0.000 1.000
0.200 0.980
0.400 0.917
0.600 0.800
0.800 0.600
1.000 0.000

0.000 0.813
0.281 0.778
0.502 0.696
0.812 0.509
0.945 0.342
1.082 0.000

0.000 0.621
0322 0.607
0.560 0.564
0.840 0.482
1.142 0.265
1.264 0.000

0.000 0.598
0.334 0.581
0.576 0.546
0.871 0.471
1.180 0.259
1.312 0.000

0.000
0.258
1.000
2.257
3.969
6.208

0.000
0.253
1.010
2.271
4.021
6.280

0

16
24
32
40

0.000
0.234
0.901
2.147
2.834
6.042

0.000
0.228
0.910
2.047
3.636
5.698
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U(x,y, s) =0 for x2+y'+z2 &~R62,

U(x,y, s) = —Up+-2'Mo12(x'+y'+s'), for
g2+y2+s2( g 2

(27)

harmonic-oscillator well. '~32 The potential is defined as: Tmx, z III. Energy of the lowest state of a rotating nucleus
with a speciied angular momentum as a function of that angular
momentum. The calculation is based on the Fermi-gas model of
the nucleus with the nucleons moving in a harmonic-oscillator
potential with R=rpA /8 rp=1.216&&103 cm, Ace=56.2/A'/3 MeV.
All nuclear rotational energies Ug are in MeV and all angular
momenta are in units of A.

—'MoPE '= Uo (28)

The technique utilized in the present calculation is
equivalent to the one employed in the previous section.
Therefore many intermediate steps are omitted and
only final results are quoted for the nuclear properties.

Here Eo is the radius of the nucleus while ~ is the
characteristic frequency corresponding to a nucleon in
a given potential. The frequency co is defined by the
relation

A =100
Ua

0 0.000
4 0.467
8 1.864

12 4.186
16 7.419
20 11.541

A =150
I Ug

0 0.000
5 0378

10 1.508
15 3.391
20 6.020
25 9.383

A =200
I
0 0.000
7 0.548

14 1.828
21 4.110
28 7.278
35 11.367

Introducing a parameter g such that

A =250
I Ug

0 0.000
8 0.412

16 1.648
24 3.705
32 6.581
40 10.242

15183$3P462 p2]M—ol 6

(1—x') 6/2dx (34)

8~3~62~/2 and using Eqs. (29) through (31), the following para-

(29) metric dependence between angular momentum and
3h'LM' '—2P']M energy is obtained:

+32&/2~8

~821/2P16 m4

(30)
3 h4 $M2o12 —2p2]2Mol

I= (1—x')'/2dx
105h4LM2o12 —2p2]M40 6

3l/3 g 4/3

2"' [1—21i2]2/3

31/3 — 1+~2
1 hG0.

21/6 [1 2~2]2/8

(35)

(36)

21/264&2$4M2~2+ 12P2]&8 1

(1 g2) 7/2

415M2/d pf so12 2p2]2/43—

2&/264~2~8~2(g2

(1—x') 6/2dx

15M2ol[M2o12 —2p']'h' 6

2'/282rsns[M2o12+ -'P2]

3M2o1)M2402 —2p2]2I48

For a simpler physical picture, an approximate formula
can be obtained which yields an explicit dependence of
energy on angular momentum. This simplified expres-
sion is limited to g's such that

(37)

Expanding Eqs. (35) and (36) into a power series in ri

(31) leaving only the lowest powers, and subsequently
eliminating g, one obtains:

x= M40s/4248. (32)

Here 48 and P are Lagrange multipliers to be chosen so
as to obtain the specified number of nucleons (they are
analogous to the previous u and p but not equal to
them) and specified angular momentum, while the
dimensionless parameter x is defined as

Therefore,

eff

31/6' 4/3

5X2»6~

5 2~/2
PRES 1252

2 31/6 Q4/3
(38)

(39)

Mso12 —2P' 2n2
s2+ p

2—
Mao' M'o)'

(33)

29 G. P. Mayer, Phys. Rev. 75, 1877 (1948).
30 E. Feenberg and K. C. Hammec, Phys. Rev. 79, 201 (1950).
3' G. P. Mayer and H. D. Jensen, Elementary SheQ Strmture

(John Wiley 8r Sons, Inc. , New York, 1955l, Chap. 4, p. 52.
32 Q. Haxel, J. H. D. Jensen, and H. Suess, Z. Physik 128, 295

(1950).

The energy E in Eq. (31) includes only that part of the
energy which increases with deformations. The equa-
tion of the meridian cross section of the cylindrically
symmetric nucleus becomes

may be considered as an effective moment of inertia.
Calculations of the lowest energy of a rotating nucleus
with a specific angular momentum using Eq. (38) are
shown in Table III.

Z= holL2(n —1)+l—t (1 s)]. (4o)

IV. THE CALCULATION OF THE ROTATIONAL
ENERGY BASED ON THE SHELL MODEL

In this section a calculation of nuclear rotational
energy based on the shell model is presented. Assuming
a harmonic-oscillator potential, the single-particle en-

ergy including a spin-orbit interaction becomes
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Here rs is the single-particle principal quantum number,
I and s are the orbital and spin angular momenta, f
measures the strength of the spin-orbit interaction. As
in the previous sections, the calculation is based on the
assumption that all observable quantities of the nucleus
as a whole are due to a sum of contributions from in-
dividual nucleons. For convenience, an occupation
function r(n, /,j,m) is introduced which states the num-
ber of particles in each quantum state; so that the
number of nucleons 3, the energy E and the angular
momentum I become:

I=[ P P mnp(/, j,m; A,I)

+ P map(1, j,m; A,I)], (48)

E=k~[ P ep'(/ j,m; A,I) mp—(lj,m; A,I)
l, j=l+1/2, m

+/Np(/, j,m; A,I) ,'pl+——P mp'(/, j,m; A,I)

mp(/, —j,m;; A,I)+/Np(/, j,m; A,I)+-,'f'(/+1)].

A = P r(n, /, j,m),
n, l, j,m

E=fz~ p [2(e—1)+l—f(1 s)]P(m, /j, m),

I= P mv(n, /j, m).
n, l, j,m

(41)
In order to use the methods of the calculus of varia-

(42) tions, the summations (46)—(49) have to be replaced by
an integration with n p becoming a continuous function
of its variables; thus, for example, A becomes

Since this discussion is limited to nuclei with equal
numbers of protons and neutrons, as Coulomb forces
are neglected, it is convenient to introduce a new
occupation function

esp(/, j=l+-'„m; A, I)dmdj

np(/, j=l——,', m; A, I)dmdj. (50)

V=2V. (44)

n p= ep(l,j,m; A,I) . (46)

If ng is a known function of the other quantum numbers,
then the state of the nucleus is determined. The func-
tion Ip [Eq. (46)7 is determined by using a variational
method. To do so, the terms appearing in (41) are split
into two groups, (a) those for which j=l+-', and, (b)
those for which j=l—~~. Then the summation over e
is carried out so that

A=[ Q ep(/ jm;A I)
l, j=l+1/2, m

~p(/, q,m; A,I)], (47)

Here v can only be zero or one. If ep, lp, jp, and mp are
the highest single-particle quantum numbers for oc-
cupied nucleon states in the nucleus, then

(pn, j/, m)=1, if e&ep, j&j p, l&/p, m&mp, (45)

p (e,l,j,m) =0, otherwise.

For the quantum numbers l, j, m there is a highest
occupied state, characterized by a Fermi radial quan-
tum number ep so that

5 (E nA PI)=0.— — (51)

Again n and // are Lagrange multipliers now to be chosen
so as to satisfy Eqs. (47) and (48). In the continuous
approximation Eq. (51) yields:

mp(/, j=l+ '„m; A, I)=--,'[n—(l 1)+P]—+ ', (f)/, -
ttp(/, j=l——,', m; A, I)=-,'[n —(l 1)+l/7—

—-'(t )(/+ 1).
Equation (52) shows that for the same l, the value of
ep for which j=l+ ', is larger than -the value of ep for
which j=l——,. This is in conformity with the shell
model. The constants n and P can be evaluated by intro-
ducing Eq. (52) into Eqs. (47) and (48) and solving for
n and P. The part of the energy which depends on
angular momentum becomes:

Similar expressions are obtained for the other observ-
able quantities in the continuous approximation. Since
the minimization of the energy is subjected to two
subsidiary conditions (a specified number of particles
and a specified angular momentum) it is necessary to
demand the following:

Uz=
(/p++1) (2/pi'+10/pi'+15/p++6)+/p (lp +1)(2/p 2+2/p —1)

(53)

Here lp+ is the highest / value for which j=l+~, and
l~ is the highest l value for which j=l——,'. At first
sight it may appear from Eq. (53) that Ua does not
depend on the strength of the spin-orbit interaction.

However, a more detailed analysis shows that this is
not the case since from Eq. (52) it can be seen that the
larger the spin-orbit interaction is, the larger lg+ will
be and the smaller lp will be (for a speci6ed number of
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A =100
Uz

0 0.000
4 0.547
8 2.183

12 4.904
16 8.690
20 13.517

A =150
I Ug

0 0.000
5 0.443

10 0.1776
15 4.814
20 7.051
25 10.990

A =200
I Ug

0 0.000
7 0.536

14 2.141
21 4.814
28 8.524
35 13.313

A =250
Uz

0 0.000
8 0.483

16 1.931
24 4.340
32 7.708
40 12.018

nucleons). Since Ua depends on /p+ and /I in different
ways, the rotational energy depends on the spin-orbit
interaction. For a vanishing spin-orbit interaction, Eq.
(53) will reduce to

TAm, z IV. Energy of the lowest rotational state of a nucleus
with specified angular momentum as calculated from the con-
tinuous approximation of the shell model with ~= (56.2/A'/')
MeV. All rotational energies Ug in the table are in MeV and all
angular momenta are in units A.

Table IV lists the minimum rotational nuclear energy
as a function of angular momentum for some typical
nuclei.

V. DISCUSSION

Expressions for the minimal nuclear rotational energy
U~ have been calculated using (a) the Fermi-gas model
with two different potentials and, (b) the shell model.
It is worthwhile to compare the results obtained by the
use of the three different methods. For this purpose the
effective moments of inertia are compared in Table V
and Fig. 1. In addition these moments of inertia are
also compared with calculated moments obtained in a
previous paper. '4 It is seen that the calculated moments
of inertia using the various nuclear models are of the

3
Uz=--

2 /p (/p+1)'(/p+2)
(54)

(b)

The quantity g,«may be obtained from Eq. (53) as:

2k
y.« ———(/p++1) (/p+'+ 10/ p~'+ 15/ p ~+6)

+(/p +1)(2/p '+2/p —1)/p . (55)

g ff may be considered as an effective moment of
inertia.

As an example of the validity of the present method,
it can simply be applied to oxygen-16. For the case of
0" the minimum rotational energy with angular mo-
mentum of Sh can be calculated easily. In this case
/+=1 so that U&=8ko. Indeed the lowest energy re-
quirement to obtain an angular momentum of SA,
without violating Pauli's principle, is achieved by
elevating four nucleons from the 1p to 2p state with an
energy of 2' per nucleon.

0 f

Oo$
L

FIG. 1. The ratio of the effective moment of inertia d, ff to the
rigid-body moment of inertia as a function of X' according to
different models. (Here X' is the dimensionless measure of angular
momentum for A =175 and r0=1,216 10 " cm.) The effective
moment of inertia is dered as

0.000
0.148
0.445
0.567
0.750
1.008

Liquid
dl op

1.000
1.219
1.498
1.572
1.705
1.862

Sag full Fermi gas Continuum
of Fermi in oscillator version of

gas potential shell model

1.015
1.243
1.536
1.621
1.765
1.934

0.540
0.604
0.662
0.684
0.710
0.739

0.471
0.471
0.471
0.471
0.471
0.471

TABLE V. The ratio of the effective moment of inertia d, ff to
the rigid-body moment of inertia 8„,as a function of X according
to different nuclear models (here X' is the dimensionless measure
of angular momentum) for A =175 and ro ——1.216X10 "cm. The
angular momentum I@=50 corresponds with these constants to
X'=0.167. The effective moment of inertia is dered as

BrigUg =——P.
&rig jeff

The moments of inertia are expressed in a dimensionless form as
the ratio between the calculated moment of inertia and the
moment of inertia of a rigid sphere.

Ug = —P.
2~kg &en

order of magnitude of the moment of inertia of a rigid
body.

As mentioned previously each of the calculations is
based on a particular set of assumptions, which limits
its validity. A comparison between the moments of
inertia, as calculated using the diferent models, allows
one to draw some conclusions regarding these assump-
tions. First a comparison between the results for the
liquid-drop model and for a bag full of fermions is
made. The only difference between the two calculations
is that in the latter the compressibility condition is
relaxed. Table II shows that this relaxation decreases
the energy. It is also seen that the change of energy due
to compressibility is very small. Next a comparison
between the two calculations based on the statistical
model is considered. In both these calculations the
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compressibility conditions are relaxed in the same way,
but the potentials are very different. From a comparison
between the results of the two calculations one can
estimate the effect of the potential on the moment of
inertia. Table V shows that the moments of inertia for
a Fermi gas moving in a harmonic-oscillator potential
are smaller that those for a bag full of fermions. Finally
a comparison between two calculations assuming a
harmonic-oscillator potential is made. Here again the
difference stems from the difference in the assumed
models. The Fermi-gas model predicts slightly higher
moments of inertia which increase with angular mo-
mentum. The shell model predicts constant and smaller
moments of inertia. An attempt was made to study the
moments of inertia as one goes from the extreme case
of the liquid-drop model to the extreme case of the
shell model. In all calculations interactions are neg-
lected except as they show up in the surface energy.
Therefore, all calculations can be considered as single-
particle calculations. The two last calculations using a

harmonic oscillator could become more realistic if the
potential would be allowed to deform. Such calculations
with the inclusion of electrostatic forces would approxi-
mate very well the behavior of real nuclei. Grover"
has already concluded that the latter results agree well
with moments of inertia derived by him from experi-
mental data.

The moments of inertia calculated from the depend-
ence of the density of levels on angular momentum ob-
tained by Bloch~ and Ericson and Strutinski" indicate
similar results to those obtained in this calculation.
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The Hartree-Pock problem for even-even nuclei in the s-d shell is solved without requiring the intrinsic
state to be axially symmetric. Two regions of axial asymmetry are found —around Mg2' and around SN.
The existence of an energy gap between occupied and nonoccupied single-particle states is established for
all cases. The moment-of-inertia tensor for the axially asymmetric cases is computed and provides an im-
provement over the axially symmetric results of former calculations,

I. INTRODUCTION

HE calculational limitations of the shell model in
treating nuclei with many nucleons (more than

four) outside closed shells led to the development of
the collective picture of nuclei. In this treatment, the
nucleus is described as performing some kind of collec-
tive motion, such as rotations and vibrations. The
coordinates of the individual nucleons are replaced by
a smaller number of degrees of freedom, of a more
macroscopic nature. (In the unified model, which is an
extension of this, some individual nucleons are still
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considered. )' A small number of parameters is sufficient
to specify exactly the new Hamiltonian of the system.
In the case of a pure axially symmetric rotator, only
one such parameter —the moment of inertia —is neces-
sary. The initial justification of such a model was the
actual occurence of, say, rotational spectra in certain
nuclei. Moreover, the values of the parameters were
artificially adjusted to fit those observed spectra. From
this point of view, the model provides merely a phe-
nomenological presentation of experimental data. Its
qualitative and quantitative relations to the actual
many-body problem of the nucleus (or, at least, to the
shell-model version of it) are therefore of great interest.

The significance of the "intrinsic" state of the nucleus
was long recognized in this connection. The "intrinsic"
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