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Theoretical Asyects of Mixtures of Thermal and Coherent Radiation*
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Some of the statistical properties of a mode of propagation for an electromagnetic field which is a super-
position of thermal and coherent radiation are derived. It is found that the electric field and the magnetic
field have Gaussian probability densities. The variance of the mixed field is the same as the variance of the
thermal part of the field alone, while the average of the mixed field is the same as the average of the coherent
field alone. It is pointed out that this result diGers from the classical theory in that the zero-point field appears
only once in the variance for the mixed field while it appears once in the variance of each of the constituent
fields. This result is extended to a more general class of fields, and for that class it is shown that except for
the zero-point field, the quantum properties of superposition are the same as the classical properties of
superposition of noisy fields. The probability distribution for the number of photons in a mode of mixed
radiation is also derived. The results shows that there are fluctuations in the number of photons that arise,
because of interference effects.

I. INTRODUCTION

'HERE has been considerable discussion of the
quantum-mechanical description of the coherence

properties of light. ' 4 An outcome of this discussion has
been an increased understanding of particular states of
harmonic oscillators called "coherent states. " The ex-
pansion of the density operator in terms of these
coherent states is particularly useful for determining
the quantum-mechanical description of the super-
position of electromagnetic fields.

Section II serves as a technical introduction to the
subject matter. The properties of the expansion of the
density operator in terms of the "coherent states" that
will be of use are discussed briefly. The probability
distributions for position and momentum of harmonic
oscillators are found in terms of the above-mentioned
expansions, and the connection between these quantities
and the electric and magnetic fields is also discussed.

In Sec. III we apply the formulas of Sec. II to
derive some of the properties of radiation that is a
superposition of thermal radiation and coherent radi-
ation. The probability densities for the field components
and for the number of photons in a particular mode are
derived and discussed.

Some of the properties of radiation that is a super-
position of several other 6elds, are derived in Sec. IV.
The results are valid for a moderately general class of

fields.

II. I' REPRESENTATION AND PROBABILITY
DENSITIES

G.elds. ' ' These states have also been described recently
in connection with the quantum-mechanical description
of coherence. "4 The eigenstate equation for the
annihilation operator of a photon in the kth mode of
propagation is

~1 &a =O'I O'a . (2.1)

The range of the eigenvalue O.y is the entire complex
plane, and n~ is in general a complex number, since ul,

is not a Hermitian operator.
The density operator p for the electromagnetic fields

that are used in this paper can be expanded in terms of
these eigenstates. It is given by

where

p= P(n) in)(ni d'n,

d'n= dDm(n) jdLRe(n) j.

(2.2)

It has been shown by Glauber that, owing to the
Hermiticity of p, the function P(n) will be real, but it
can be negative. Even when P(n) is non-negative, it
will not be a probability density, because the e states
are not independent —another consequence of the non-
Hermiticity of tt&. The function P(n) in Eq. (2.2) has
been called the "I' representation" and the eigenstates
of uI, have been called "coherent states" by Glauber. '
We shall adopt this terminology throughout this paper.
A 6eld which is the result of superimposing two fields
with the P representations Pr(n) and Ps(n) will have a
resultant P representation that is given by'

P(n) = Pr(n')Ps(n —n')d'n'.
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The eigenstates of the photon annihilation operator
can be utilized to compute the quantum-mechanical (2.3)
description of the superposition of electromagnetic
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Inl 2'
Prob(N)= P(n) e ~ ~'d'n

e't
(2.11)—

Lp2
—(2~2)'"nr]2

(2.5)I(nl p2&l'= exp
(2rho)2)"2

In this paper we will use Eq. (2.3) to find the P
representation for a composite 6eld when the P repre-
sentation of the component 6elds is known. Then the
probabihty densities of P, q, and 22 will be found from
Eqs. (2.6), (2.8), and (2.11).

where ~&=angular frequency of the kth mode and
O.y=imaginary part of n. Therefore, by combining
equations (2.4) and. (2.5) we obtain

The scalar product (nip) has been computed by From Eqs. (2.9) and (2.10), we have
Glauber' and the result when properly normalized' is

Prob(P2) = E'(n)

(2r |2(o2)'~2
III. THE MIXTURE OF THERMAL AND

COHERENT RADIATION

-—(p2—(2ha) 2)'~2nr) 2

d2n. (2.6)

The quantum-mechanical properties of a radcat~on
6eld are the same as those of harmonic oscillators. ' In
particular, the electric 6eld can be expanded in the
following way:

E(r, t) =C Z p2(&)U2(r),

where C is a constant whose magnitude depends on the
units of measurement, and U2(r) is the normalized
spatial part of a modal expansion. Thus, by utilizing
Eqs. (2.6) and (2.7) we can obtain the probability
density of the electric Geld. In a similar way, one could
obtain the probability density of the magnetic Geld by
6nding and utilizing the probability density of the
position coordinate q of a harmonic oscillator. ' The
probability density of q can be found from"

P(n)
Prob(q2) =

(2rh/co2)"2

——
Lq2

—(2&/Oia)"'nrr'j'
d2n, (2.8)

k/M2

where O,g ——real part of 0,.
The probability distribution for the number of

photons in a particular mode is given by

In this section we shall derive some of the properties
of radiation that is the superposition of thermal and
coherent radiation. Vfe shall consider only a single
mode and drop the subscript k. The P representation
for an oscillator in a coherent state

I p) is given by

~(n) = &'(n p), —

P(n) =8LRe(n)gbLIm(n) j.
(3 1)

E(n) = exp
T' Nr — er

(3 2)

Substituting (3.1) and (3.2) into (2.3), one finds that
the E representation for the mixed thermal and co-
herent Geld is

P(n) = exp
2r(22'&

CE

(22r&
(3.3)

The probability densities for p and q are now found
by substituting (3.3) into (2.6) and (2.8) and performing
the integrations. The results are'

Prob (p) = exp
(2~~ 2)1/2

(p (2~)"—'pr)'—
(3.4a)

1 —(q—(2 h/a))"2Pr2)2-
Prob(g) = exp

(22',2)'"
i 20.22

, (3.4b)

The P representation for a mode of a thermal 6eld"
whose average number of photons is (22'&, is given by"

»ob(22) =(22IPI 22)= P(n) I (nl22) I
d'n (2 9) where Pr=imaginary part of P,

The term
I (n I

22&
I

' is the probability distribution of the
number of photons when the field is in a pure In& state.
This has been found to be'

l(nl~&l'=(lnl'"/~')e ~ ~', (2 10)

which is a Poisson distribution whose mean is lnl'.

~ G. Lachs, Ph.D. dissertation, Syracuse University, 1964
(unpublished).' I. R. Senitzky, Phys. Rev. 119, 671 (1960).

prr ——real part of p,
o „'=Ace ((22r)+-', ), (3.5a)

7In this paper the term "thermal Geld" has been used to
describe any Geld whose E representation is given by Eq. (3.2).
In reality, this includes spectrum lines emitted by gas discharges,
Gaussian radio noise, Cerenkov radiation, etc., as well as a ther-
mally excited Geld.

'=(&/ )(( )+l). (3.5b)

The probability densities given by Eqs. (3.4) are
Gaussian densities. The average values of p and q are
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functions of the coherent part of the field IP) only,
while the variances of p and q are functions of (mr) only.
The variances of p and q represent noise, since they
result in a stochastic uncertainty in the field quantities
E and H. %e have been using the Heisenberg repre-
sentation when we label the coherent state IP). In the
Schrodinger representation this becomes lpe '"') and
therefore Pr and Ps of Eqs. (3.4) are

where

pg= Ipl cos(rat+8),

pr —
I

——pl sin(a)t+8),

tt= —tan-'I Im(p)/Re(p)).

(3.6a)

(3.6b)

It can be seen from Eqs. (3.4) and (3.6) that the
average values of p and q perform simple harmonic
motion with a definite phase. Thus, one might consider
the coherent part of the radiation as a deterministic
signal. However, even when (nr&=0, the variances of

p and q will not be zero, owing to the zero-point field.
While it is not true that a pure coherent Geld by itself
is a deterministic signal, the fact that the variance of a
mixed field is the same as the variance of a pure thermal
field allows one to consider the coherent part of a mixed
field as the signal part, and its thermal part as random
Gaussian noise.

The probability distribution for the number of
photons in a mode of mixed radiation can be found by
substituting Eq. (3.3) into Eq. (2.11). In order to
evaluate this integral we convert the complex variables
into polar form.

Prob(e) = expl —
I pl'/(~ &j

(l~l'"e ! !")

Prob(m) =2 exp
(np)+1 0

—(l~l'+ Ipl'/((~ &+1))
Xexp

Xfo I&l dl&l (3 8)
(nr&+1

8 S.O. Rice, in Selected Pupers ol Poise und Stochust~c Processes,
edited by N. Wax {Dover Publications, Inc. , New Vork, 1954),
p. 239.

X exp sin(x+tt) lo. l dl nl dp, (3.7)
(nr)

where
y= tan —'LIm(P)/Re(P) j,
y= tan 'I Im(n)/Re(n) j,
b= 1+1/(nr).

The integral over g is well known, ' and the result can
be factored into the following form:

where Xp= (nr)/(sr)+1, and Io——modified Bessel
function of zero order. The integral represents the 2nth
moment of a modified Rayleigh distribution and this
has been evaluated by Rice." The final result is

Prob(e) =
- (~,) -- --Ipl2-

exp
1+(nr& 1+(mr& (nr)+1

kg —m; 1; (3.9)
nr ' eT

where yF~ is a confluent hypergeometric function. The
moments of the probability distribution in Eq. (3.9)
are computed in the Appendix. The mean and variance
are given by

Sp Sg (3.108)

0 „'=2(no)(nr )+(nq)+ (np&2+ (mr), (3.10b)

where (eo&= lpl'=average number of photons in the
coherent part alone. The general moment can be found
by repeated use of the following recursion relations
(derived in Appendix).

(B(e')
(n~') = (np) ((er)+1)I + (n'& ((nr&+ (no))

ka(eg&

2(er)+1 8(N")
Ipl

alpl

The positive correlation obtained in the experiments of
Hanbury Brown and Twiss' is due to the tendency of
photons to cluster together. "This bunching of photons
is due to the variance in the number of photons being
greater than that which would be obtained from a
Poisson distribution. For a Poisson distribution one has
0 „'=(e). It can be seen from Eq. (3.10b) that for mixed
radiation the photon bunching will be due to the Grst
and third terms on the right-hand side. The third term
represents the photon bunching of the thermal field
alone, while the first term represents bunching due to
interference effects. Equation (2.10) shows that the
probability distribution for the number of photons for
a mode in a coherent state is a Poisson distribution.
Therefore coherent radiation will yield a null result in
the experiment of Hanbury Brown and Twiss. Equation
(3.10b) shows, however, that because of interference
sects one can increase the correlation obtained in the
experiment of Hanbury Brown and Twiss by adding
coherent radiation to thermal radiation.

IV. SUPERPOSITION OF QUANTIZED FIELDS

In this section we shall derive the rules of super-
position for several moderately general cases. First, we
shall consider the superposition of two fields each of
which is of the mixed thermal and coherent type. Let

9 R. Hanbury Brown and R. Q. Twiss, Nature 177, 27 {1956).
I E. M. Purcell, Nature 1'78, 1449 {1956).
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the P representations of two independent mixed fields
be given by

Pz(~s) = P(~)«r) 0, (4.4b)
P(n') = exp

Spg

P (rr") = exp
7r nT2

(arri)

(nr2)

(4.1a)

then it will turn out that the zero-point field will enter
only once into 0 „'and 0,'. This can be seen by carrying
out the integration over n„ in Eq. (2.6). One obtains

The P-representation for the Geld that is the super-
position of the two mixed fields is obtained by sub-
stituting Eqs. (4.1) into (2.3). One obtains'

exp
7I 0

(4.2a)

—(P—(2h(v)'~'nr)'-
+exp dnr . (4.5)

where
O' = Rpj 'S+2 ~ (4.2b)

Hy comparing Eqs. (4.2) with Eq. (3.3), one can see
that the thermal part adds as the variance and the
coherent part adds as complex phasors. It would seem,
therefore, that the classical rules of superposition for
noisy fields would also hold in the quantum-mechanical
description, but this is not quite true.

The variance of P for the P(n) given in (4.2a) is
Lcompare (4.2a) with Eq. (3.3)j

0,'= 5(u((rid i)+(rrr2)+-', ) . (4.3)

The variance for each of the fields whose P represen-
tations are given in (4.1) can be found from (3.5a).
Clearly, the o.„' for the superimposed field is not equal
to the sum of the 0„' of each of the constituent 6elds.
The zero-point contribution ~~Ace appears only once in
the sum field, and it also appears once in each of the
constituent fields. Thus, although both P represen-
tations in Eqs. (4.1) are real and non-negative, they
are still not classical probability distributions. However,
if one considered the zero-point field as an independent
source of noise (not associated with any particular
constituent field) one could treat the superposition of
fields classically. The zero-point field would then be
considered only once, regardless of whether one were
measuring a single 6eld or the superposition of many
fields.

Vfe can extend the result for the superposition of
mixed thermal and coherent fields to a more general
situation. If the P representation for the field which is
the result of superimposing several 6elds is such that

P (rr)das) 0

Then, for a field that satis6es the condition expressed
by (4.4a), Eq. (4.5) will be similar to a convolution of
classical probability densities. Pi(nr) is not actually a
probability density for the same reasons that P(rr) was
not, but for purposes of evaluating the integral in (4.5),
let us consider it as such. Then, from the classical theory
of probability, the variance of p for the sum Geld will
be the variance of Pr(nr) plus i2Iird. Thus, —the zero-point
field arises only once, and its source is

~ (a~p) ~' which
appears in Eq. (2.4). Equation (4.4a) is a sufGcient
condition for the variance of Pr(nr) to be positive, but
it is stronger than necessary, and further extension to a
more general class of fields should be possible. An
analogous result would be obtained for the variance of q.

The conditions expressed by Eqs. (4.4) will include
any P(n) that is non-negative and, in particular, it
includes the special case of mixed radiation. It has been
shown by Glauber' that radiation fields produced by
current densities and at frequencies where the recoil
momentum (due to the emission of a photon) can be
neglected have non-negative P representations. In fact,
the P representations can be found directly from the
probability distribution of the current density. ' This
condition is satis6ed to good approximation by radi-
ation 6elds at frequencies less than or equal to common
microwave frequencies.

The results in this section show that for the special
cases considered LEqs. (4.4)j the Geld will add classi-
cally provided that one treats the zero-point field as
an independent field.
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APPENDIX: CALCULATION OF THE MOMENTS OF EQUATION (3.9)

In order to simplify the calculation we make the following substitutions:

(A1a)

(Aib)
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The rth moment will be given by

&e")=P n"F(ii),

GERARD LACHS

(A2)

b " c ) ( c
&I")=Z exp —

I iFil n; 1—;—
1+b 1+b b+1I 4 b'+b

C C ~f'+i ( b e

I
exp iFi —ii;1; — +

1+0 (1jb) 1+bi 5+L b'+0 b(1+5) -= 1+bkl+b)

(A3)

C C c' I"+' b )" c'-
)(exp — iFi —I; 1; — + exp-

b+1 b'+b (1+b)' 01+b 1+b) b+1
f

b ybi

where we have utilized"

(2b+1)c' ~ ii"+-' f b g2

,Fi —(e—1);2;—
b'(b+1)' ~~ 1+b (1+b b'+b

8—iFi(a; c; x) =—iFi(a+1, c+1,x) .
&S

exp —,(A4)
b+1

(A5)

The summations in the first three terms of Eq. (A4) can easily be substituted for by the use of Kq. (A3). In order
to substitute for the last term in Eq. (A4), we note

8%" eo S" 6 —2C C

exp — iFi —s; 1;—
Bc ~=o 1+b 1+b 1+b b+1 b'+bl

e~' b )" —c' 2c
+Z I

iFi —(n—1);2; c(—e~/H-i) (A6)
n-o 1+b 1+bj b'+b b(b+1)

Comhjning Eqs. (A3), (A4), and (A6), we obtain

a(e") (2b+1)c B&N")
&e' )+= b(b+1) +&I")(b+c')+— (A7)

Substituting Eqs. (A1) into Kq. (A7), we find

cj&N"& 8&ii")
& '&=& .&(&"&+1) +& )(& .)+I~i')+!(2& .&+1)IPI

a&iir)

In order to compute &m), we substitute into Eq. (A8) &e')=1. This yields

&~&= &»)+ IP I'

Next, we substitute Eq. (A9) into Eq. (A8) to obtain &I')

{ '&= III'+ III'(4& &+1)+2( )'+(
The fluctuation in n is given by

(A8)

(A9)

"%.Magnus and F. Oberhettinger, IlormN4s ad TIgeorems or the Specie/ Fggctiog of Mathematic/ I'hypos (Chelsea Publishing
Company, New York, 1949), p. 183.


