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and the DeWitt Br-ehme method give the same results for
slow motion, provided one does not negteet any term of the
DeWitt Bre-hme equation of motion when escpanding it in
a power series irs f/c.

Still another point should be clarified: the meaning
of neglecting E~ in the DeWitt-Brehme equation within
the framework of accuracy of the seventh order in 1/c.

We have already shown that the seventh-order term
of Rs is given by Eq. (4.5); lower order terms do not
exist. Equation (4.5) can also be written in the form

rRs = ,' e'(d/-. dt)

fats

(N—/r), fsf, (4.12)

the right-hand side of which is (except for a coefficient)
just the time-derivative of Newtons law of motion.
Thus neglecting E~ in this approximation implies the
use of Newton's law of motion, which is the lowest
order of the undamped equation of motion. This alone
enables us to write the result obtained, which is the
traditional radiative damping force, in the form given

by Eq. (1.7), rather than conversely, as has been stated
in reference 5 "'4
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"The same procedure of using Newton's law of motion in order

to write the traditional radiative damping force term in terms of
the Riemann tensor was used by Peres (Ref. 15). It can easily be
shown, however, that the form suggested by Peres LEq. (12) in
Ref. 15j for this term is not fully covariant.

24It will be noted that we conclude nothing about the phe-
nomenon of preacceleration since we feel that the slow-motion
approximation is not the proper tool for it.
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The processes described by generalized master equations (GME), derived from the Liouville equation
on the basis of various physical and dynamic arguments, have been termed Markovian or non-Markovian
depending upon whether the QME did not or did involve an explicit time integration. We show that these
designations are not in accord with the (very specific) mathematical deanitions of Markovian and non-
Markovian processes. We demonstrate that the GME does not contain sufhcient information to determine
whether or not the stochastic process described by it is Markovian or non-Markovian.

I. INTRODUCTION

NUMBER of generalized master equations have
been d,erived recently. ' Zwanzig' has shown that

all of these equations are equivalent if not identical.
These generalized master equations diGer from the
Pauli equation' in that they involve an explicit time

*This work was supported in part by the National Science
Foundation.

'L. Van Hove, Physica 2B, 441 (1957); S. Nakajima Progr.
Theoret. Phys. (Kyoto) 20, 948 (1938); R. Zwanzig, J. Chem.
Phys. 33, 1338 (1960); Lectures in Theoretical Physics (Boulder)
(Interscience Publishers, Inc. , New York, 1960), Vol. III; I.
Prigogine and P. Resibois, Physica 27, 629 (1961);P. Resibois,
ibid. 29, 721 (1963); E. W. Montroll in FNndamenral Problems in
Stptistical 3Eechanics, edited by E. G. D. Cohen (North-Holland
Publishing Company, Amsterdam, 1962), pp. 230—249.' R. Zwanzig, Physica 30, 1109 (1964).

W. Pauli, Probleme der kIodernen Physik (S. Hirzel, Leipzig,
1928), p. 30.

integration. On the basis of this time integration, these
equations have been termed "Now-Murkoniae" by the
various authors. We shall demonstrate that this
nomenclature is quite misleading and may, in fact,
lead to erroneous conclusions as to the nature of the
stochastic processes since it does not agree with the
well-defined mathematical usage of the terms Markoeiae
and non-3farkoeiue. We suggest, in view of the develop-
ment to be presented. below, that the physical gen-
eralized master equations (and the stochastic processes
described by them) be termed non-Paulian to distinguish
them from the Pauli equation (and processes) which
do not involve explicit time integrations.

In Sec. II we present definitions of joint and con-
ditional probabilities, we give the mathematical
definition of Markov processes an, d we derive equations
for the temporal development of the joint and con-
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ditional probabilities. In Sec. III we discuss the physical
generalized master equation and describe the basis of
its derivation. In Sec. IV we compare the equations
obtained from the "mathematical" and "physical"
derivations and critically discuss their relationships.
On the basis of this comparison, we demonstrate that
the physical generalized master equation does not con-
tain sufhcient information to determine whether or not
the stochastic process described by it is 3farkoeiae or
woe-3f arborist.

P„)0, (2.1)

P„dy&=P, &(x,t; y2,s2, , y„&,s„&), (2.2)

II. DERIVATION OF THE "MATHEMATICAL
MASTER EQUATIONS"

We begin this section by defining joint and condi-
tional probabilities. We consider a set of random
variables y(t) which can assume a continuous set of
values as a function of the continuous time t. We
denote the rth-order joist probability that the variable
y(t) is in the range x to x+dx at time t, in the range

y& to y&+dy& at time s), , in the range y, & to
y„&+dy, & at time s, ). by P„(x,t; y&,s), ~,y, &,s, &)

Xdxdy& dy„&. The function P„has the properties

We shall now use Eq. (2.8) to derive an expression
which describes the temporal behavior of the joint
probability density P &. It follows from Eq. (2.8) that'

P 1(x,—t y2$2 ''' y —1$ —1)

dylA)'(x)yl&t & y2&$2 &

' ' ' j yr 1&sr 1)— —

XP) 1(y—i, t; y~, $2; ' ' '; yr 1, $) 1)— —(2 9)

where I'„~ is the derivative of P„j with respect to t
and where

A&(x)yl)t j y2)$2j ' ' '
j y)'—1)$)'—1)

W (x, t+5/y&, t; ' ' '; y -i, s.—))—b (x—y) )

(2.10)

is the transition probability per unit time for a tran-
sition from y& to x at time t if the variable y (t) had the
value y2 at time s2, , and y„& at time s, &. The
transition probability A „has the properties

A„(x,y&,t; ys, ss, ~,y„~,s„&)&0 for y&Wx (2.11)

P& (x)t j yl)t j y2)$2 &

' ' '
j yr 1)sr 1)——

=P g( tx; y„s~; . ; y„,,s„,)b(x—yi). (2.3)

The rth-order oorlditi oval Probability that the variable
y(t) will assume a value between x and x+dx at time t
if it had the value y& at time s&, and y2 at time s2,
and y, & at time s, &, with t) s&)s2 )s, &, is denoted
by W„(x,t/y&, s&, y2, $2, ~ ~, y, ),s, &)dx. The function
W, has the properties

dx A( ,x&y, t; y2,s2, , y„),s„))=0. (2.12)

P(x, t) = dy&A (x,y&,t)P (y&,t), (2.13)

Equation (2.9) is the general form of the kinetic equa-
tion for the joint probabilities P,. It is the starting
point for the special cases discussed below.

When r= 2, Eq. (2.9) reduces to

8"„)0, (2 4)

(2.5)

P) (x&t& yl&$1 &

' ' ' j yr 1&$) 1)——
=P) 1(yl)$1 j ' '

& y) 1)$) 1)

XW) (x)t/yl&$1 j y2&$2 j
' ' j yr 1)sr 1)~——

From (2.2), it then follows that

P)' )(x&t j y2)$2j '—' j y)' 4$) &)-(2.7)

dye', ~(yl, sl ''' yv —1,$r—1)

XW„(x,t/y„s, ;;y, „s„,). (2.8)

r 2 3 0

W„(x,t/y&, t;y2, $&, , y, &,s„&)=b(x—y&). (2.6)

The rth-order joint probability density E„can be
written as

where we write P~= Pand As —=A—. We shall refer to
Eq. (2.13) as the "P-mathematical master equation"
(PMME). Note that the development leading to Eq.
(2.13) requires a knowledge of the conditional proba-
bility Ws(x, t+6/y~, t) )see e.g. , Eq. (2.10)j or,
alternatively, of the joint probability Ps(x, t+A; y&, t)
which is related to IF& by Eq. (2.7). In the derivation
of Eq. (2.13) no assumptions have been made about
the nature of the probabilistic process. In fact, Eq.
(2.13) applies for all probabilistic processes for which A

LEq. (2.10)j exists.
For r=3, Eq. (2.9) reduces to

P2(x, t; y2, $2) = dylA 3(x yl t '
y2 $2)

XP2(y), t; y2, s2) . (2.14)

Using Eq. (2.7), the above can be rewritten in terms

4 A. Kolmogorov, Math. Ann. 104, 415 (1931).
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of the conditional probabilities as

W(x, t/y2, »)= eiAs(x, yi, t;yr, sz)W(yt, t/yz, ») (2 15)

with 8'2—=S".
A Markov process is dined by'

W, (x, t/yrs i, yz, sz, y„ i,s„ i) = W(x, t/yi, si) (2.16)

for all r Eq.uation (2.16) is the precise mathematical
statement for a process in which the conditional proba-
bility W„ that the stochastic variable y(t) will assume
a value between x and x+dx at time t depends only on
the fact that the stochastic variable y has the value y~
at time s~. The conditional probability W, does not
depend on the values of the stochastic variable y at
times previous to the time s~. The usual identification
of "processes without memory" with Markov processes,
as found so frequently in the physical literature, is
based on a loose interpretation and extension of the
condition (2.16). In the subsequent sections, we shall
show that this loose identification often leads to
erroneous conclusions as to the nature of the stochastic
processes involved.

Equations (2.16) and. (2.10) imply that for a Markov
process

A „(x,y, t; yz, s&, ~, y„ i,s„ i)=A (x,y, t) . (2.17)

If Eq. (2.17) is substituted into Eq. (2.15) we obtain

W(x t/y2 s2) = &yrA (x,y&, t)W(yr, t/y&, sz) . (2.18)

By analogy with (2.13), Eq. (2.18) is the "W-mathe-
matical master equation" (WMME). Equation (2.18)
is frequently used as a criterion for a Markov process. '
The WMME (2.18) is a closed equation for the con-
ditional probabilities W' since A in turn is dered in
terms of W $Eq. (2.10)j.Thus W is completely deter-
mined by Eq. (2.18) and. the condition (2.6).

' See e.g., A. Y. Barucha-Reid, Elements of the Theory of j/Iarkov
Processes and Their Applications (McGraw-Hill Book Company,
Inc. , New York, 1960),p. 11;J.L.Boob, Stochastic Processes (John
Wiley 8t Sons, Inc. , New York, 1953),p. 80; W.

'

Feller, Probability
Theory hand its Application (John Wiley 8z Sons, Inc., New York,
1956), p. 338; M. Kac, Probability and Related Topicsin Physical
Sciences (Interscience Publishers, Inc. , New York, 1959), p. 145;
M. Rosenblatt, Random Processes (Oxford University Press, New
York, 1962), p. 122; R. L. Stratonovich, ToPics its the Theory of
Random Poise (Gordon and Breach Publishers, New York, 1963),
Vol. 1, p. 55; M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys.
17, 323, 325 (1945). In none of these references, and a number of
others consulted but not listed here, is there to be found any
reference which speci6cally associates A; A. Markov with the
condition (2.16).

'We do not consider here so called "pseudo-Markovian"
processes whose conditional probabilities obey the WMME (2.18)
but do not obey condition (2.16) for all r. For the purpose of
this paper, Eq. (2.18) can be taken as the definition of a Markov
process. For a discussion of pseudo-Markovian processes see, e.g.,
P. Levy, Compt. Rend. 228, 2004 (1949);W. Feller, Ann. Math.
Stat. 30, 1252 (1959).

P(y, s) =b(y z), —(2.19)

where z is some fixed value of the stochastic variable.
When Eq. (2.19) is substituted into Eq. (2.8) for r= 2

one finds
P(x,t) =W(x, t/z, s) .

Substitution of Eq. (2.20) into (2.13) yields

(2.20)

W(x, t/z, s) = A (x,y, t)W(y, t/z, s)dy. (2.21)

While Eq. (2.21) is of the same form as the WMME
(2.18), it should be noted that it is valid only for the
special time s at which the initial condition (2.19) holds.
The WMME (2.18), which has been derived from the
Markovian condition (2.16), however, holds for al/

times s~.

III. THE "PHYSICAL" GENERALIZED MASTER
EQUATION

The "mathematical" master equations presented in
the previous section have been derived by purely

We can now make the following statements which
form part of the central thesis of this paper:

(1) GivettA (x,y, t) and tto other ieformatiort, it is not
possible to determine whether the stochastic process is
Markovian or non-Markovian. It is clear [compare
Eqs. (2.15) and (2.18)7 that it is not possible to find

W(x, t/y, s) On. the other hand, it follows from Eq.
(2.13), that it is possible to determine P(x,t) once
P(x,0) is given.

(2) Givett A (x,y, t) artd theirtformatiote that the process
is Nort Murk-oviart $Eq. (2.17) is not obeyed) it is not
possible to determine W(x, t/y, s) since its time de-
pendence is described by Eq. (2.15) which involves

Az(x, yi, &; yz, sz). Again, P(x,t) can be determined from
Eq. (2.13) for a given P(x,0).

(3) Givett A (x,y, t) ttrtd the irtformtttiott that the process
is Markoviart Las defined in Eq. (2.16)] it is possible to
determine W(x, t/y, s) by makin, g use of Eq. (2.18) and
condition (2.6). Also, P(x,t) can be determined from
Eq. (2.13) and P(x,0).

The above statements imply that it is not possible to
ascertain whether a stochastic process is Markovian or
non-Markovian if the only information available is
that the probability density P(x,t) obeys the PMME
(2.13). On the other hand, if it is known that the con-
ditional probability W (x,t/y, s) obeys the WMME
(2.18) then the stochastic process is Markovian. If
W(x, t/y, s) does not obey the WMME (2.18) but
instead some equation such as (2.15), the underlying
process is clearly non-Markovian.

We now consider briefly the form of the time de-
pendence of the conditional probability t/t/' for a non-
Markovian process for which the probability density
P at some special time s is a delta function, i.e.,
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probabilistic arguments involving the existence of
various types of probability densities and of a transition
probability density per unit time which can be obtained
from the conditional probability densities by a limiting
process. The "physical" master equations, to be dis-
cussed in this section, have been derived from an
entirely different viewpoint and by entirely different
methods.

The usual starting point of these derivations is the
Liouville equation

i (Bp(t)/Bt) =Lp(t) . (3 1)

For classical systems, p=p(p, q, t) is the phase-space
distribution function; for quantum systems, p is the
density matrix with elements p „.In either case, p is
an Ã-particle distribution function. Equation (3.1)
is a deterministic equation of motion which describes
the time evolution of the quantity p. The Liouville
operator I. is a purely dynamical quantity whose
explicit form depends entirely on the Hamiltonian of
the system under consideration.

A number of derivations of the generalized master
equation (GME) from the Liouville Eq. (3.1) can be
found in the literature. ' ~ These derivations all contain,
as an essential element, a decomposition of the Liouville
operator into an unperturbed part and a perturbation
and thus they rest on a physical, mechanistic basis.
We shall not repeat these derivations here but instead
present the final result and then discuss its form and
implications. We will follow here primarily the ex-
position of Zwanzig. '

The GMK derived by Zwanzig is

dp„„(t)
dt Q E „„(t)p„„(t—t ). (3.2)

Here, p „is a diagonal element of the density matrix

p and E „(t) is the "memory kernel" which can be
written in the form

K~~~~(t) = [Ige (1 D)Lg]magee' (3 3)

where D is a projection operator Lsuch that (Dp) „
=p b „]and L~ is the perturbed part of the Liouville
operator, L=Lo+L, with Le the unperturbed part.
The kernel E is a purely deterministic dynamical
quantity since it is obtained directly from the appli-
cation of a projection operator to the Liouville operator.

Equation (3.2) has been derived for a specific initial
condition, namely, that at the special time t=0 the
density matrix is diagonal. This initial condition, which
is commonly referred to as the assumption of initial
random phases, implies that there are no phase corre-
lations at time t=0. When more general initial con-
ditions are assumed, the kinetic equation for the

dp-(t)

dt 0

Under conditions spelled out clearly by Prigogine (7.8)
and Zwanzig' (weak coupling, t;„q&(relaxation times,
etc.) the integration in (3.4) can be performed explicitly
for a given physical system or model to yield

dp „(t)
P +mmrnpnn(t) ~ (3.5)

In the literature cited above, Eq. (3.5) is termed. a
"Markovian" master equation (ME) on the basis that
it no longer involves the time history of the kernel or
of the distribution function. The evolution of p„„ for
all times t'& t is now uniquely determined by the values
of E and p at time t. It should again be noted that

„„is a purely physical "dynamic" quantity and
has no probabilistic antecedents, and that the above

evolution of the elements of the density matrix (or the
phase-space density, or its Fourier-expansion coefE-
cients) can no longer be written in the form of (3.2).
I'robabilistic concepts enter into ErJ. (3.Z) only through
this initial condition of random phases at the special time
t=0.

It will be noted that the kernel IC „„which governs
the rate of transitions from state e to m is an explicit
function of the time-integration variable tj as is the
element p of the density matrix. The evaluation of
p at time t requires a time integration from the
initial time t~=0 to t~

——t. The value and the evolution
in time of p at time t thus is not determined by the
knowledge of the values of I „and p at time t
alone; instead the time history of the kernel and of the
distribution function must be explicitly taken into
account. The future (t') t) therefore does not depend
solely on the present (t'=t) but also involves the past
(0&t'&t). It is essentially on the basis of these con-
siderations that GME of the form (3.2) have been
termed woe-3f arkoviun. ' '

The passage from a so-called "non-Markovian" form
to a so-called "Markovian" form of the physical GME
is very instructive in illuminating the usage and
meaning of these terms as employed in the above
context. Such a passage has been discussed in detail
by Prigogine and his co-workers ' and we shall outline
their approach here. We consider that the "memory"
contained in the kernel E and distribution function p
is of the order of the duration t;„~ of a mechanical inter-
action, such as a collision, for instance. If we are now
interested only in the long-time behavior of the matrix
element p for times t))t;„&, we can rewrite Eq. (3.2)
as

'I For a very comprehensive account of the work of the Brussels
school see I. Prigogine, Eog-Equilibrium Statistical Mechanics
(Interscience Publishers, Inc. , New York, 1962).

I. Prigogine, P. Resibois, and G. Severne, in Proceedings of the
Internatsoaat Serasnar ol the Transport Propertses of Gases (Brown
University, Providence, Rhode Island, 1964).
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development depends crucially on the special diagonal
properties of p at time 3=0.

A (x,y, t)P (y, t)dy

dt&E(x,y, tr)p(y, t t&)dy, —(4.1)

where we replaced the summation over discrete states
in Kq. (3.2) by an integration over the continuous
variable y. The transition probability A(x,y, t) may
well involve a time integration of the form

IV. COMPARISON OF "MATHEMATICAL" AND
"PHYSICAL" MASTER EQUATIONS

We are now in a position to study the connection
between the "physical" and "mathematical" master
equations. The first thing to note is that the phase
distribution function p(t) is the physical analog of the
probability d.ensity P(x,t) dined in Sec. II. The
equation describing the time dependence of P(x,t),
i.e., the PMME (2.13), contains the transition proba-
bility density A (x,y, t), which is related to the condi-
tional probability density W by Eq. (2.10) for r=2,
and the probability density P(y, t). The equation de-
scribing the time dependence of p(t), i.e., the GMK
(3.2), contains the convolution of the dynamical kernel
E(t') and the phase-space distribution function p(t —t').
To show the relationship between the GMK and the
PMlVlE, it is necessary to establish the connection
between A and E. Formally, the equivalence between
the PMME (2.13) and the GME (3.2) would imply
the necessary and sufhcient condition

transition probability A(x,y, t) and the dynamics of
the process we may refer to the work of Montroll and
Shulere and of Toda' and George" on the derivation of
the PMME and the GME for the time evolution of a
system of harmonic oscillator.

The GME (3.2) or the MK (3.5) describes the time
dependence of p(x, t) and provides information, via
Eq. (4.1), concerning the form of A (x,y, t). We maintain
the the GAIIE contains no other information about the
nature of the stochastic process and therefore statement
(1) of Sec. II applies. To reiterate, given A(x,y, t) and
no other information, it is not possible to determine
whether the process is Markovian or non-Markovian.
In order to determine whether the physical process
described by the Liouville equation is Markovian or
non-Markovian it would be necessary to derive a
kinetic equation for the conditional probability 8' or
the joint probability density I'2 rather than a GME
(3.2) or a ME (3.5) for the probability density P(x,t).
In summary, neither the GMP. (3.Z) which involves an
sntegration over time nor the ME (3.5) which contains no
explicit time integration contain sufhcient information to
determine whether the processes described by them are
3furkoniue or roe-3Iarkoeias.

In light of the above discussion we suggest the
following nomenclature for "physical" master equations
to replace the terms Markovian and non-Markovian.
We propose that processes described by master equa-
tions of the form of Eq. (3.5) be termed Pauli processes.
This is in accord with the fact that the first detailed
physical derivation of the ME (3.5) was presented by
Pauli. ' Processes described by a G1VlE of the form of
Eq. (3.2) involving explicit time integration could then
be termed eorI;I'uzdi ue processes.
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