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The DeWitt-Brehme equation of motion for a charged particle moving in a Riemannian space-time is
examined for the case of absence of an external electromagnetic field by decomposing it into four scalar
equations. This is done by introducing four orthonormal vectors along the world line of the particle and
decomposing every teim of the equation along them. It turns out, for example, that the "tail" has at most
two nonvanishing components. We discuss the condition for a geodesic motion. We show that the "tail"
and the local radiative damping term are not independent; the vanishing of the latter implies the vanishing
of one of the two components of the "tail" and determines the other one to be a constant. The DeWitt-
Brehme equation is then examined for the case of slow motion in a Schwarzschild gravitational field by
expanding every term of it in a power series in 1/c (Einstein-Infeid-Hoffmann method). It is shown that the
seventh-order (in 1/c} force term, which is the first radiative term, is exactly the traditional term (-',}e~83p/Dt3

in disagreement with a result obtained recently by DeWitt and DeWitt.

It should be emphasized that DeWitt-Brehme's work
was based on the assumption that the gravitational
Geld itself is given no dynamical properties, that the
geometrical structure of space-time is regarded as fixed,
and even the Einstein empty-space field equations are
not supposed to be satisGed.

Another important assumption was that e')&m', an
assumption which is essentially diferent from that used
in the Einstein-Infeld-Hoffmann (EIH) method. This
fact demands some caution when we discuss the be-
havior of Eq. (1.1) in the limit of small velocities.

In a recent publication by DeWitt and DeWitt' the
authors continue to discuss Eq. (1.1) by deriving from
it the detailed law of motion in the simple case of a
radiating charge moving at nonrelativistic velocities in
a weak static gravitational Geld.

The essential point of their paper is that the deviation
of the particle motion from a geodesic one, when
F „'"'=0, is caused not by the local Geld of the particle
but by a Geld which originates well outside the classical
radius, and which is manifested by the nonlocal term
f& in Eq. (1.1). So, the authors argued that the effect
of the local radiative damping force R& depends on the
existence of an external electromagnetic (or any other)
field, and when Ii„„' '=0, it may be completely ignored.
From this they conclude that to order e2, the vanishing
of the external electromagnetic Geld implies the
vanishing of R~.

Assuming the existence of the Einstein gravitational
field equations, the spatial component of f& was calcu-
lated for the special case in which the charged particle
moves in the gravitational Geld produced by a point-
like central mass (Schwarzschild field) at small velocity.
It was found that fs can be written as a sum of two
force terms, a conservative and a nonconservative one, '

1. INTRODUCTION

'HE equation of motion of a particle of charge e
and mass m moving in a Riemannian space-time

of arbitrary hyperbolic metric, and subjected to an
external electromagnetic field F„„'"', was found by
DeWitt and Brehme, ' and is given by'

trt(b'P/bs') F'"'&.(dg—/ds) =R&+f&. (1.1)

In this equation @=P(s) describes the world-line of
the particle, the parameter s being the proper time, R&

is a local radiative damping force term which looks like
that obtained by Dirac' for the Qat space-time case, 4

pbsP dP bsP d$.
R —=—;S~ (1.2)

k bs' ds ass ds

and f& is a nonlocal radiative damping force term in-
volving an integral over the past history of the particle

dp'
f p; ds',

ds

d(P s

fo=e2

ds

where the function f"pr. is the curl of the nonvanishing
component of the retarded vector Green's function
inside the light cone. This force (1.3) has been called
the "tail" in Ref. 1. In Eqs. (1.1) and (1.2), and
throughout this paper, the symbol b/bs denotes an
absolute derivative:

bP/bs= dP/ds,

br' d'P dg. dtP (1 &)
+P po , etc.

bs' ds' ds ds

~ Work supported by the Aerospace Research Laboratories of
the Ofhce of Aerospace Research, U. S. Air Force.

f Present address: Department of Physics, Temple University,
Philadelphia, Pennsylvania.' B. S. DeWitt and R. W. Brehme, Ann. Phys. (N. Y.) 9, 220
(1960).' We use units in which the velocity of light c and Newton's
gravitational constant G are equal to one. Greek indices run from
0 to 3, Latin from 1 to 3, and xo=—t.

P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938
4 Our metric is (+ ———).

fk= f s+f s

fc"= —(p'M/r) (1/r), fs,

(1.5)
where

(1.6)

' C. M. DeWitt and B. S. DeWitt, Physics 1, 3 (1964).
). Ordinary partial differentiation is denoted by a comma,

v, is=pv/pb—
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and

fNc'= oe'&'oo.8', (1.9)

where E. p~~ is the Riemann tensor.
To this form of the nonconservative force the authors

attribute great importance and emphasize its de-

pendence neither on the acceleration nor on the deriva-
tive of the acceleration but simply on the velocity of the
particle and the Riemann tensor. They then state: "It
is only the close relation which exists between the
Riemann tensor and the particle motion which, in the
case of free fall, permits the nonconservative force to
be recast in the form

(1.10)

From this the authors conclude that the phenomenon
of preacceleration does not occur with gravitational
forces since the primary expression for the noncon-
servative force involves jo rather than O'P/BP, and
that Eq. (1.10) cannot be used to argue that pre-
acceleration occurs, since Eq. (1.9) shows that it does
not.

From the point of view of the slow-motion-approxi-
mation method (EIH method' "), the force terms
given by Eqs. (1.6) and (1.7) are the sixth- and the
seventh-order terms of the tail (1.3), the sixth-order
term being the lowest order one.

In a previous paper" we have already shown that
the tail, in the case of an uncharged finite particle
with mass p moving in an external gravitational held
produced by mass M, has the lowest (sixth-order)
term"

which is exactly the term (1.6) when we replace p by e.
This term, however, originated from the nonlinearity
of the field equations; it is a relativistic correction term

Here JIt/I is the mass of the Schwarzschild field, r is
defined by r'=PP, and a dot denotes time differen-
tiation. The force term (1.7) was also written in terms
of Newton's gravitational potential V,

fNc' oe'——V-, o,j',
or, to the same accuracy and for arbitrary weak static
gravitational field,

(post-Newtonian force term) and, from the point of
view of slow motion, it has nothing to do with the
radiative damping phenomenon, in spite of the fact
that it is proportional to the square of the mass (charge).

That the radiative damping force has the form (1.7),
however, seems to be in disagreement with results
obtained by the EIH method, '~i5 in which this radi-
ative force was found to have the traditional form
(1.10). It seems to us that this disagreement is due to
the assumption that the local radiative term EI' can be
completely ignored.

The purpose of this paper is to examine the behavior
of the DeWitt-Brehme equation of motion in the
absence of an external electromagnetic field, for slow
motion and static gravitational field, without ignoring
a priori any term. As in Ref. 5 we shall assume that the
Einstein empty-space field equations are satisfied.

Before going to the limit of slow motion, however,
we discuss the DeWitt-Brehme equation by decom-
posing it into four scalar equations. In particular we
discuss the condition for a geodesic motion; it is shown
that the vanishing of the tail is both necessary and
sufhcient, apart from another solution which does not
seem to have any physical meaning. This is done in
Sec. 2 by introducing four orthogonal unit vectors along
the world line of the particle (extension of the Frenet
formulas to the Riemann space).

In Sec. 3 we discuss the consequences of the assump-
tion that El' can be completely ignored. We find that
this assumption determines the tail. We therefore
withdraw this assumption in the last section and
expand every term of the DeWitt-Brehme equation
(without external electromagnetic field) into a power
series in 1/e up to an accuracy of the seventh-order,
taking into account the additional condition m'«e',
thus assessing the force law of motion for a charge
moving at nonrelativistic velocity in the Schwarzschild
gravitational held. It is shown that this gives the
traditional result for the radiative damping force,
contrary to the result of Ref. 5.

2. THE GEOMETRICAL MEANING OF THE "TAIL" AND
THE CONDITION FOR GEODESIC MOTION

Following Synge and Schild" we introduce along the
world line of the particle P(s) four orthonormal
vectors ) (0)&, ~ ., ) (3)I'. ) (0)& is called the Nnit tangent
vector and is defined by

7 A. Einstein, L. Infeld, and B. Hoftmann, Ann. Math. 39, 66
(1938).

8 A. Einstein and L. Infeld, Can. J.Math. 1, 209 (1949).
9 L. Infeld, Rev. Mod. Phys. 29, 398 (1957).
~ L. Infeld and J. Plebanski, Jtt/lotion and Relativity (Pergamon

Press, Warsaw, 1960)."In Ref. 11,'this term was written with the opposite sign because
the tail was written in the left-hand side of the equation of
motion rather than in the right-hand side as in Eq. (1.1) in this
paper Lcompare C. M. DeWitt and J. L. Ging, Compt. Rend.
251, 1868 (1960)g."M. Carmeli, Ann. Phys. (N. Y.) 30, 168 (1964), Kq. (24).

(2.1)

The other three unit vectors are called the unit first,
second, and third normal. They are related by the

"B.Bertotti, Nuovo Cimento 2, 231 (1955).
'4 S. Baianski, Acta Phys. Polon. 15, 363 (1956).
'~ A. Peres, Ann. Phys. (N. Y.) 12, 86 (1961)."J.L. Synge and A. Schild, Tensor Calculus (University of

Toronto Press, Toronto, 1949), p. 72.
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Frenet formulas

5X
&p) "/5$ =E(i )X (i)",

5X(i) /5S=E(g)X(g)"+E(i)X(0)",

5X(2) /5$ E(3)X(3) E (2)X(i)

5X(3) /5$ E(3)X(2)

and satisfy the additional relations

~(o)"~(o)k = ~
~

~(&) ~(&)v

~(2) ~(2)s

X (3)~X (3)p,
—

(2 3)

obtain
s(dE(i)/dS) =E(i) ~

E(i)E(2)=o i (2.11)

E(&) (2.12)

which corresponds to a geodesic motion and implies
the vanishing of E(2) and E(3).

The most general solution of Eqs. (2.11), however,
is given by

E(1)=E&((t ~o)/
)

E(2) (2.13)

where u= 2e'/3m is the "classical radius" of the charge. )~

A possible solution of these equations is

5'P 5'P dP O'P dt.
ns = ~e +fu

bs' bs3 ds bs3 ds
(2 4)

From (2.1) and (2.2) we have

b $"/5$ =E(i)X(i)~)
b P/5$ = (dE(i)/ds)X(i)"

+E(»pE(»)((2)"+E(i)) (0)"j, (2.6)

(53+/5s') (d$./ds) = PE(i) jm.

Hence we get for Eq. (2.4)

(2.7)

&mE(i) —se (dE(i)/ds) jX(i)"
—-'e'E(i)E(»)((»"=f" (2 g)

Furthermore, we write the vector f)' in terms of its
components

f + f(n)~(n)
p~

Then Eq. (2.8) gives

E&i), , E&3& are invariants called the f)rst, second,
and third clre0tmre. E(;)——0 implies E(;)=0 for all
3&~ j&~ i+1. For example, E&i)=0 implies
E(~)——E(3)——0, i.e., the motion is geodesic.

We now return to the DeWitt-Brehme equation of
motion for the case of F. ~f""=0. Then we have the
equation

where E is a constant, the value of E(~) at the initial
proper time so. Of course E(3)=0 since E(2)——0. The
special solution (2.12) corresponds to putting Eequal'
to zero in the general solution (2.13).

Geometrically, the solution (2.13) means that the
particle will move in a hyperplane. If the constant E is
diferent from zero then E(~), which is the magnitude
of the vector 5'P/bs', will increase indefinitely with s.
In particular, if one takes so ———~ then E(j) will be
in6nite for any finite s if E/0. This is a runaway
solution which does not seem to have any physical
meaning. Hence one has to take E=O, and thus the
curve is a geodesic.

m(5'P/5s') =f~. (3 1)

The decomposition of this equation into its components
gives, using Eq. (2.5),

mE(i) f(i) )

0= f&2) ~ (3.2)

3. THE CONDITION R)"=0

We now return to the DeWitt-Brehme equation and
assume, as in Sec. 2, that there is no external electro-
magnetic field. Let us find the implication of the
assumption made in Ref. 5 that to order e' the local
force term Ep may be completely ignored.

From Eq. (2.4) we obtain under this assumption

0=f(0) )

mE(i) —.3e'(dE(, )/ds) = f(i) )

3 e E(i)E(g)= f(2) )

0= f(3) ~

(2.10)

Thus the assumption that E&=0 implies the vanishing
of the component of the tail in the direction of X(2)p.

Furthermore, using Eqs. (3.2) in Eqs. (2.10), we
obtain the two equations

Thus in the absence of external electromagnetic field
the vector f)' lies in the hyperplane of the two vectors
X(y)" and A, (2)".

Suppose now that the motion is geodesic. Then
E(i)——0 and from Eq. (2.10) we see that f)'=0. Thus
a geodesic motion implies the vanishing of the tail.

Let us see whether the vanishing of the tail implies
a geodesic motion. From Eqs. (2.10), when f)'=0, we

dE (»/ds =0,
'

E(~)E(2)=0
~

which have the solution

E(~)=const,

E(Q) —0 o

(3.3)

(3.4)

'7 This constant is related to the constant r, of Ref. 5 by e= -', r,.
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Thus the first curvature is a constant, and by Eq. (3.2), we see that its contribution to the third order is given
by I'koo, ,g&, where I'koo has to be calculated at its second

f& 8&
=COnSt. order. Now

The solution (3.4) may be called. a circle in Riemann
space. It will be noted that this circle is not a closed
curve. One might prefer to call it hyperbola of colstc8281

clrvutgre. "One can interpret it as a generalization of
the mell-known hyperbolic motion in the Rat space-
time. "

4. THE EQUATION OF MOTION AT
LOVf VELOCITIES

In order to derive the detailed law of motion in the
case of motion at nonrelativistic velocity from the
DeWitt-Brehme equation, when Ii„„' '=0, we have
simply to expand every term of Eq. (2.4), into a power
series in 1/c. In order to obtain a radiative damping
force, we have to continue our expansion to an accuracy
up to the seventh order in 1/c. Since the tail f& has
already been found up to the seventh order in Ref. 5,
we only have to expand the other two terms, b2)k/8s2

and R~.

Let us begin with R~. Since e' is of order four, " it
remains to expand P$&/fds3 up to the third order. The
other term in R~, namely,

dpk $3@d$

ds bs' ds

need not be expanded since it is of order 5.
A direct calculation gives

$8)k ds)k dna dip dp ds)a dip
+pk +3gk

bs' ds' ds ds ds ds' ds

dP dP 4'
+pk ppP (4.1)

8$ ds ds

The last two terms on the right of Eq. (4.1) will not
contribute up to the third order since both the
Christoffel symbols and d2P/ds2 are of order two. The
first term on the right side of Eq. (4.1), however, has
the third-order term 83)k/BP Writing the. second term
explicitly

I'
oo—22t "(2gko, o-goo, k)

~1—2goo, k. (4.3)

Thus we get, for the case of the Schwarzschild field

rko~ —(M/E), k, . (4.4)

where R is dehned by R'=x'x'. Hence we get for the
seventh order of R~

-risg /M~8~'= se'
ass &r)' (4.5)

where the index written as a subscript on the left of R~

denotes its order. But the second term on the right-hand
side of Eq. (4.5) is (except for a sign reversal) just the
nonconservative part (seventh-order term) of the
nonlocal force term, fNok t see Eq. (1.7)] found in
Ref. 5. Thus the contribution of the right-hand side
of Eq. (2.4) to the sixth-order term is

afi.'8+ 8fk = —(e2M/r) (1/r) 88,

/k+ fk 2csti8(k—/riP

(4.6)

(4.7)

where
m P m(M/r), 88 8P "+2F—k, ——(4.9)

~k =mM((5'(' —4(M!r))(1/r), k'

—4k'(1/ ), 5') —'M(1/ )(1/ ), ' (4 1o)
and

for the seventh-order term, which is the traditional
radiative damping force term.

Expanding the left-hand side of Eq. (2.4), and taking
into account the fact that m is a test particle (i.e.,
m(&M, in addition to m'(&e'), we get"

m(82&k/bs2)~m{ p (M/r) 82—
ML(l l-4(M/-))(1/) 8.

(4 /)r, I
—i'P j) (4.g)

We can finally write the equation of motion of the
charge in the form

Pk —ge2g3~k/gP (4.11)
p ' ddddd dd"(dr)

aP, y
pk

ds ds ds 8$ ds

df' dP dP dP d$' dP+I'-,~, (4 2)
ds ds ds

+2/k
ds 8$ ds

'8 J. L. Synge, Relativity: The General Theory (North-Holland
Publishing Company, Amsterdam, 1960), p. 12."T.Fulton and F. Rohrlich, Ann. Phys. (N. Y.) 9, 499 (1960).' See, for example, S. Bazanski, in Recent Developments in
General Relativity (Pergamon Press, Warsaw, 1962), p. 137.

Equations (4.9)—(4.11) are identical with that obtained

by Baianski. 22

We thus come to the conclusion that both the EIIJ

"See, for example, J. N. Goldberg, in Gravitation, an Intro-
dlction to Current Research, edited by L. Witten (John Wiley R
Sons, Inc., New York, 1962), Chap. 3, Kq. (3-3.20).

~ In fact, Bazanski derived the equation of motion for two
charged particles np to the seventh order in 1/c. In order to obtain
Kq. (4.9) from Baianski's equation one has, of course, to set e2

equal to zero as well as letting ns& tend to zero.
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and the DeWitt Br-ehme method give the same results for
slow motion, provided one does not negteet any term of the
DeWitt Bre-hme equation of motion when escpanding it in
a power series irs f/c.

Still another point should be clarified: the meaning
of neglecting E~ in the DeWitt-Brehme equation within
the framework of accuracy of the seventh order in 1/c.

We have already shown that the seventh-order term
of Rs is given by Eq. (4.5); lower order terms do not
exist. Equation (4.5) can also be written in the form

rRs = ,' e'(d/-. dt)

fats

(N—/r), fsf, (4.12)

the right-hand side of which is (except for a coefficient)
just the time-derivative of Newtons law of motion.
Thus neglecting E~ in this approximation implies the
use of Newton's law of motion, which is the lowest
order of the undamped equation of motion. This alone
enables us to write the result obtained, which is the
traditional radiative damping force, in the form given

by Eq. (1.7), rather than conversely, as has been stated
in reference 5 "'4
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"The same procedure of using Newton's law of motion in order

to write the traditional radiative damping force term in terms of
the Riemann tensor was used by Peres (Ref. 15). It can easily be
shown, however, that the form suggested by Peres LEq. (12) in
Ref. 15j for this term is not fully covariant.

24It will be noted that we conclude nothing about the phe-
nomenon of preacceleration since we feel that the slow-motion
approximation is not the proper tool for it.
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The processes described by generalized master equations (GME), derived from the Liouville equation
on the basis of various physical and dynamic arguments, have been termed Markovian or non-Markovian
depending upon whether the QME did not or did involve an explicit time integration. We show that these
designations are not in accord with the (very specific) mathematical deanitions of Markovian and non-
Markovian processes. We demonstrate that the GME does not contain sufhcient information to determine
whether or not the stochastic process described by it is Markovian or non-Markovian.

I. INTRODUCTION

NUMBER of generalized master equations have
been d,erived recently. ' Zwanzig' has shown that

all of these equations are equivalent if not identical.
These generalized master equations diGer from the
Pauli equation' in that they involve an explicit time

*This work was supported in part by the National Science
Foundation.

'L. Van Hove, Physica 2B, 441 (1957); S. Nakajima Progr.
Theoret. Phys. (Kyoto) 20, 948 (1938); R. Zwanzig, J. Chem.
Phys. 33, 1338 (1960); Lectures in Theoretical Physics (Boulder)
(Interscience Publishers, Inc. , New York, 1960), Vol. III; I.
Prigogine and P. Resibois, Physica 27, 629 (1961);P. Resibois,
ibid. 29, 721 (1963); E. W. Montroll in FNndamenral Problems in
Stptistical 3Eechanics, edited by E. G. D. Cohen (North-Holland
Publishing Company, Amsterdam, 1962), pp. 230—249.' R. Zwanzig, Physica 30, 1109 (1964).

W. Pauli, Probleme der kIodernen Physik (S. Hirzel, Leipzig,
1928), p. 30.

integration. On the basis of this time integration, these
equations have been termed "Now-Murkoniae" by the
various authors. We shall demonstrate that this
nomenclature is quite misleading and may, in fact,
lead to erroneous conclusions as to the nature of the
stochastic processes since it does not agree with the
well-defined mathematical usage of the terms Markoeiae
and non-3farkoeiue. We suggest, in view of the develop-
ment to be presented. below, that the physical gen-
eralized master equations (and the stochastic processes
described by them) be termed non-Paulian to distinguish
them from the Pauli equation (and processes) which
do not involve explicit time integrations.

In Sec. II we present definitions of joint and con-
ditional probabilities, we give the mathematical
definition of Markov processes an, d we derive equations
for the temporal development of the joint and con-


