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The theory of excitation and charge exchange in proton-hydrogen collisions is discussed within the frame-
work of the impact-parameter method. Consideration is given to the importance of proper boundary condi-
tions. The time-dependent equations linking the amplitudes of the target with those of the rearranged
system are written in matrix form. By eliminating the rearrangement amplitudes from these equations, a sec-
ond-order matrix equation is derived which may be used as a basis for successive approximations which are
automatically second order. The theoryis generalized with the aid of a two-center expansion of the electronic
wave function. The method is illustrated by computing erst-and second-order distortion approximations for
the reactions H++H(1s) ~ H++H(2s) and H++H(1s) —+ H(1s)+H+, and the results are compared with
previous calculations.

I. INTRODUCTION

'
N this paper we shall be concerned with methods of

- - calculating the excitation and charge-exchange
cross sections of proton-hydrogen collisions. Our
interest will lie mainly in the kilovolt region and for
this purpose it is sufficient to use the well-known
"impact-parameter method'" (IPM) in which the
protons are treated. as classical particles moving with
constant relative velocity. Thus only the electron need
be treated quantum mechanically as it moves in the
time-dependent field of the "infinitely massive"
protons.

Unfortunately, the apparent simplicity of this
problem is plagued by the usual bugbear of atomic-
scattering theory; the necessity of accounting for the
infinite number of hydrogenic states. Specifically, the
strong coupling found. in calculations based on expan-
sions in atomic orbitals seems to indicate a strong
coupling with states excluded from the calculation and
the subsequent slow convergence of this approach. '
This difhculty is somewhat aggravated by the fact that
virtually all inelastic channels are energetically permis-
sible. However, relatively little is known about this

coupling and detailed investigations are only now being
made. ' At high energies recent studies indicate that the
inQuence of the continuum may we11 be decisive. 4

Moreover, since it is not clear how this latter effect
could be incorporated in the usual expansion methods,
it is possible that these methods may converge to an
incorrect result. In order to investigate this possibility
we have devised an approximation scheme based on an
expansion in atomic orbitals but which simultaneously
includes an eQect from all those states (including the

'See, for example, J. W. R. Fennema, in Proceedings of the
Third INterzzutzozzut Comferelce oI the Physics of Electrozzzc urzd

Atomic Collision (North-Holland Publishing Company, Amster-
dam, 1964).The IPM is here understood as a method of computing
total cross sections and we shall not be concerned with differential
cross sections. See, for example, D. R. Bates and D. A. Williams,
Proc. Phys. Soc. (London) 83, 425 (1964).

2T. Y. Wu and T. Ohmua, Quanturl Theory of Scattering
(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1962), pp. 225.

' S. E. Lovell and M. B. McElroy, Space Division, Kitt Peak
National Observatory, Tucson, Arizona, 1964 (to be published).

4 I. M. Chesire, Proc. Phys. Soc. (London) 84, 89 (1964).
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continuum) which have not been explicitly included in
the calculation. Thus, to parallel the usual "first-order
methods" we derive a set of "second-order methods. "

A partial review of first-order methods is given in
Sec. III using a matrix notation introduced in Sec. II.
In contrast with previous authors' we place particular
emphasis on the importance of correct boundary
conditions. For resonant charge transfer we introduce a
distortion approximation and a modification of the
Brinkman-Kramers approximation both of which have
the correct boundary conditions. However, the main
purpose of the review is to show clearly the analogies
between the first-order methods and the second-order
methods introduced in Sec. IV and to present the matrix
equations necessary in the derivation of these second-
order methods. I'inally, in Sec. V, we calculate cross
sections for the reactions

H++H(1S) ~ H(1S)+H+

H++ H(1S) —+ H++ H (2S),

according to the distortion approximation in both the
first- and second-order methods, and we discuss the
significance of the results.

II. NOTATION

Let e, A, and 8 denote the electron, the target
proton, and the incident proton, respectively. Let R be
the position vector of 8 relative to A and let r~, r~,
and r be the position vectors of e relative to 3, 8, and
the midpoint of AB. In the IPM it is assumed that A
remains fixed while 8 moves in a straight line with a
constant speed tz. Thus R=tz+vt where t is the time,
chosen such that at 1=0 the protons, A and 8, have a
minimum separation y, which is the impact parameter
for the collision.

~ Previous treatments stress the importance of correcting for
the lack of orthogonality between the initial and 6nal states in
charge transfer. D. R. Bates, Proc. Roy. Soc. (London) A247,
294 (1958); M. H. Mittleman, Phys. Rev. 122, 499 (1961).For a
more comprehensive review of the Geld, see D. R. Bates, Atomic
and Molecular Processes (Academic Press Inc. , New York, 1962),
p. 549.
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The time-dependent Schrodinger equation (in atomic
units)' for the complete electronic wave function
C(r, t) is

or

where

(T~+Vg)4=0

(T~+Vg)4=0,

(la)

(1b)

(-,'V'+1/r+e„)P„(r) =0,
then

C „"=P„(rg)exp( —i{-',v r+'sv't+ e„t})

C„~=y„(rs)exp(+if-,'v r g'v't —e„t))—

are exact solutions of the unperturbed equations

TgC =0

T~C „~=0,

(3)

(4b)

(Sa)

(3b)

and form two mutually exclusive complete orthogonal
sets. Consequently we may expand 4' as

(6a)
or

O'=C~8 ) (6b)

where C~ and C~ are row matrices with elements 4 „~
and C„~, while 3 and J3 are column matrices with
elements a„(t) and b„(t). The scalar products (6a),
(6b) imply integration over the continuum as well as
summation over all bound states.

If (1a) and (1b) are solved subject to the boundary
condition'

T~ = si V„'+1/rg+i(8/Bt), Vg = 1/r~, (2a)

Tii s rtt,'+ 1/rz+i (8/Bt), Vz ——1/rz .(2b)

If P„(r) denotes a hydrogenic eigenfunction with
eigenenergy e„so that

(C ~ i'Isle)= drC ~ s*(r t)z(r, t)e(r, t). (11)

Equations (10a) and (10b) are entirely equivalent to
(1a) and (1b) and form a convenient starting point for
our discussion of first-order methods.

Substituting (6a) in (10a) and (6b) in (10b) gives

dA/dt=i(C"
I ViilC~)A (12a)

dB/dt=i(Csl V&ICs)B (12b)

where (C I ViilC ) and (C I V~IC ) are square
matrices whose (e,m)th elemen. ts are (C'„~l ViilC'~")
and (C'„~l V~IC'~~). Approximations to (12a) may be
made by retaining only a few speci6c elements of
(C'"

I
Vii

I
C ~). For example, by retaining only the

diagonal elements the equation is uncoupled and
solved by

a =8 „exp i (C„"IV&IC ")dt' (13)

which satisfies (7). To obtain an estimate of a, (gWp)
we neglect all terms containing states other than (p)
and (q), to give

where
a, = Vssa.+V„a„,

v..=(c. Iv~lc. ).
Equation (14) is solved by~

t t

a,=exp i V«dt' dt'V, „g„

III. FIRST—ORDER METHODS

By projecting the states C" and C ~ on (1a) and (ib)
we obtain

(10a)

(10b)
where

r, (p,q) = lim
I a, (t) I (Sa)

then the probability of excitation of the target from an
initial state (p) to a final state (q) is

Xexp —i Vvgt", (16)

which, from (Sa), leads to the excitation probability

t 2

and the probability of charge transfer to a state (q) is
Eg (p, q) dt t/'„c„exp —i Veldt' . (17)

Pe(p, q) = lim
I b, (t) I'. (Sb)

Q~.s(p, 9) = deI'~, s(p, 9)

Atomic units wi]l be used throughout this paper: 1 a.u. of
time=2. 42.10 '7 sec; 1 a.u. of energy=27. 2 eV; 1 a.u. of length
=a0 ——0.53 A; 1 a.u. of velocity=2. 18&(10' cm/sec. It is useful
to note that the energy of the incident proton in the laboratory
frame of reference is F=25 e' (keV).

The corresponding cross sections are obtained by
integrating over all possible impact parameters

Substituting (13) for u„ in (17) gives the well-known
distortion approximation introduced by Bates~ in his
calculations of Q~(is, 2s) and Qg(is, 2p). Approximation
(17) will prove useful when further methods of comput-
ing a„are discussed later in this paper.

To proceed further with (12a) we may solve numer-
ically the coupled equations which result when certain
speci6c elements are retained. For example, Qg(is, 2s)
has been calculated. in the' 1sA/2sA and in the'

D. R. Bates, Proc. Phys. Soc. (I.ondon) 72, 227 (1959);
A77, 59 (1961).' M. H. Mittleman, Phys. Rev. 129, 190 (1963l.
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isA/2sA/2pA approximations to (12a). By including
higher states more accurate results may be expected.
However, the convergence is likely to be slow since no
allowance has been made for coupling with rearrange-
ment states. Moreover, since the boundary condition (7)
is embedded in the continuum of 8 the usefulness of
(12b) is greatly restricted', indeed from a computational
point of view it is virtually useless.

As an alternative to (12a) and (12b) we interchange
the substitutions of (6) in the right-hand side of (10)
to obtain

dA/dh=i(C"
I
VelC )B (18a)

dB/dh=i(C 'I V,
I
C')A. (18b)

Clearly, if we already have a knowledge of A, (18b) may
be integrated to give the charge-exchange amplitude

00 2

(19)dh(C elvglC")A~e(P,C) =

The well-known Brinkman-Kramers" (BK) approxima-
tion is obtained from (19) by making the substitution
u„=5„„.This is inconsistent with (7). Instead of 3 v
we substitute b v(vR v'h) ""for—a in (19) to obtain a
modified Brinlanan-Kramers (MBK) approximation
which is consistent with (7). The situation may be
further improved. by substituting (13) for a„ in (19)
to give a distortion approximation analogous to that
described above for excitation.

As a basis for successive approximations, however,
(18a) and (18b) are defective. This is illustrated by
considering the diagonal approximation

a„=i(c„
I
V. lc„)b„,

b„=i(C„elVgIC ~)a„,

which has the general solution

Gn= ct expi"rn+Gs exp ivn q

b„=c&expipn c2 exp &pn,
where

(20a)

(20b)

(21a)

(21b)

(C.~l Ve
I
C.")dh'

(C.'I V&
I
C.')dh', (22)

@=C "A+C sB, (23)

'Note, however, the rather elegant usage of (12b) by M. H.
Mittleman, Phys. Rev. 122, 499 (1961).' H. C. Brinkman and H. A. Kramers, Proc. Acad. Sci. Amster-
dam 33, 973 (1930).

and c& and c2 are arbitrary constants. It is easily shown
that p„vanishes rapidly for large negative t so that
(21a) is inconsistent with (7). This fundamental dis-

crepancy cannot be resolved by the inclusion of further
bound states.

To overcome the defects of (12a) and (12b) we

expand 0' in an overcomplete set

a~=3„„(vR v'h) ""e'~—" cosP„)

b~=ba (vR —v'h) 'h"e' " sinP

(25a)

(25b)

where n„and p„are real and vanish as h tends to —~.
The boundary condition (7) is therefore sa,tisfied by
(25a) in contrast with (21a).

IV. SECOND-ORDER METHODS

Broadly speaking, the methods discussed so far may
be considered in the following way: By restricting the
number of available states to a select few we obtain
a tractable model which may be treated precisely by
numerical methods. This is equivalent to allowing for
an infinite number of transitions between a limited
number of states, and it neglects completely effects due
to all other inelastic processes. Thus the continuum,
which may play an extremely important role in the
intermediate stages of the collision, is neglected.
Methods which attempt to take account of such transi-
tions are loosely termed "second order. " For example,
the second Born," the impulse, " and the continuum

"D.R. Bates, Proc. Roy. Soc. (London) A247, 294 (1958).
'~ R. McCarroll, Proc. Roy. Soc. (London) A264, 547 (1961).
"R.M. Drisko, thesis, Carnegie Institute of Technology, 1956

(unpublished)."B.H. Bransden and I.M. Cheshire, Proc. Phys. Soc. (London)
81, 820 (1963);I.M. Cheshire, @id. 82, 113 (1963);see also R. A.
Mapleton, ibid. 83, 35 (1964).

where A and B are to be determined by (10a) and (10b).
The beauty of this two-center expansion is that it makes
explicit allowance for each reaction path and thus
circumvents the defects of the single-center expansions
(6a) and (6b) where rearrangement states are awk-
wardly contained in the continuum and thus confused
with ionizatio'n states. Perhaps an even better expansion
would result if, for example, the second term on the
right-hand side of (23) were restricted to a summation
over bound states only. We would then have a clearer
physical interpretation for the continuum elements of
A which would correspond to pure ionization. This
introduces a slight complication, however, and since
we are here mainly concerned with excitation and
charge transfer we shall simply exploit the symmetry
of (23). Clearly the bound-state coefficients of (23)
must coincide with those of (6a) and (6b) at infinite
proton separation and there is no need to alter the
probability definitions (8a) and (8b).

Substituting (23) in (10a) and. (10b) gives

dA/dh+ (C"
I
C s) (dB/dh)

=i(C"
I V~I C")A+i(C"

I V~ IC")B (24a)

dB/dh+ (C.s
I
C.~) (dA/dh)

=i(C
I
VglCv)B+i(C

I
VelC")A. (24b)

Again it is instructive to consider the diagonal approxi-
mation. This approximation coincides with the two-
state approximation of Bates" and has been solved by
Mccarroll. "The solution may be put in the form
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where zz is a small (and for our purposes, insignificant)
constant, and Qs~x(is, is) is the Brinkman-Kramers
cross section

256
Qs x(ls)ls) = (1+-'z')—'(mao')

Se2
(27)

This is in very sharp contrast with the high-energy
behavior of first-order methods. The two-state Bates-
McCarroll approximation behaves like" Q~~x(is, is) at
high energies, and there is no reason to suspect that this
will be significantly altered by the inclusion of further
bound states. However, the second-order methods
mentioned above give poor results at low energies
(below 30 keV) and seem to be incapable of systematic
improvement. Moreover, one's confidence in (26) is, to
some extent, undermined by the likelihood that the
Born series diverges for rearrangement collisions. '6

Clearly it would be advantageous to devise an approxi-
mation scheme which includes effects from all inelastic
processes and which may simultaneously be treated by
successive approximations based on the inclusion of the
more signifKant discrete states. %e now proceed
towards this end.

First, let us consider how we could, in principle, solve
the coupled equations (18a) and (18b). Suppose we
start by substituting a given first-order approximation
to A in (18b). We could then calculate each element of
B and substitute the result in (18a). This would involve
an in6nite number of coeKcients b„corresponding to the
infinite number of availab1e hydrogenic states. More-
over, the most important of these (corresponding to
re arrangements) are embedded in the continuum.
NevertheIess, having surmounted these barriers we
would now perform the in6nite sum implied in the
right-hand side of (18a) and proceed to calculate the
second-order approximation to A. Ke would then
repeat this process and hope that A would. converge in
successive iterations. However, if we could somehow
elinunate 8 from (18a) and (18b) the intermediate

stages described above wou1d automatically be con-
tained in the resulting equation for A. This is the
central idea of the present paper. The process of
eliminating B from (18a) and (18b) is now performed.

Assuming the existence of the matrix (CsI Vs 'IC"),
'5 Relativistic corrections have been made by M. H. Mittleman,

Proc. Phys. Soc. (London), 84, 453 (1964).At extreme relativistic
energies the charge-exchange amplitude breaks down and (26) no
longer applies. R. A. Mapleton, ibid. A264, 272 (1964)."R.Aaron, R. D. Amado, and B.W. Lee, Phys. Rev. 121, 319
(1961).

distorted wave4 approximations may be thought of in
this light. The significant feature of these approxima-
tions is that, for resonant charge transfer from the (is)
state, they all predict the high-energy behavior"

Q~(is, is)~(0.2946+zzv)Q~sx(is, is), (26)

we consider the product

(c Ivy 'Ic")(c~IvgIcs)=(C Ivy 'vsIC )
=(C IC )=I, (28)

where I denotes the unit matrix. In the derivation of
(28) we have made use of the closure property of C"
together with the orthogonality of C . Similarly, we
can show that

(@A
I
V

I
g)B) (@Jz

I
V —1

I
g&A) I

so that, formally,

(C I
Vs—'IC")=(C

I VsIC )
—'

This enables us to write (18a) as

B= z(C—sI Vg-'IC")A

and, differentiating both sides,

(29)

(30)

(31)

(@BIv 1I@A)

d2A—z(csI v;~Ic~) . (32)
d']2

Making use of (Sb) and. assuming the validity of Green's
theorem, we have

z(d/dt)(4sIV& 'IC")=(CsI2'+vs 'IC"), (33)

whence (32) becomes

dB d2A dA= (c"
I vs 'Ic'") —z(c"

I
2'~v~ 'Ic") (34)

dI, dP dt

We now substitute (18b) for dB/dh in (34) and pre-
multiply by (C "I V& IC~), making use of (30) and the
closure property of C~, to obtain

d w/dP z(c. I v, rs—vs Ic )(da/di-)

+ (C»I V,V, IC»)a=o (35a)

which is the desired result. Thus, we have replaced two
coupled first-order matrix equations by a single second-
order matrix equation. A similar analysis, in which A
is elimina, ted from (18a) and (18b), yields

d'B/d P z(C.s I
V&T&V&

'—
I C») (dB/dt)

+(CsI V,V, IC~)B=0. (35b)

If we now perform calculations in which only a limited
number of elements of C~ are retained in the matrices
&C"IV~&~V~ 'IC'"& and (C"IV~V~IC") we already
include continuum e8ects due to the intermediate
transitions of (18). Equation (35a) is most useful for
calculating excitation amplitudes while (35b) suffers
from the diKculty of including the proper boundary
conditions and in this respect it resembles (12b). The
usefulness of (35a) and (35b) is therefore restricted.
To overcome this limitation we must use (24a) and
(24b) as our starting equations rather than (18a) and
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(18b). In this case the derivation of the second-order
equations is somewhat more complicated although the
principles involved are similar to those employed above.
A simpler derivation, which has the additional advan-
tage of avoiding assumptions about the existence of the
inverse matrix, follows from the identities

(4"
I
VsT~Vs 'T~le) = (4"

I V~V~I@, (36a)

(Cs[ VATs, vA TB[+)= (Cs( Vav~)C'), (36b)

which may easily be verified with the aid of (1a) and
(1b). Equations (36a) and (36b) may be considered
as the starting point of the second-order theory replac-
ing (10a) and (10b) of the first-order theory. For
example, by substituting (6a) in (36a) and (6b) in
(36b) we obtain (35a) and (35b), which are the second-
order analogs of (12a) and (12b). Similarly, by substitut-
ing (23) for 4 in (36a) and (36b), we obtain the second-
order analog of (24a) and (24b). The result is

(O'A/dt') —i(4~) VttTtivtt '~ 4")(OA /dt)+(4"
~
VgvttjC")A

= —(4"~4 )(d'8/dt')+i(C~~UttTgvtt '~4 )(OB/Ch)+(4"~vt3Tavt3 'Vz Vavg~C—' )P (37a)

(O'8/dt') —i(Cs( V~Tgv~ '(Cs)(OB/ct)+(C~( Vgvtt(C )8
= —(Cs(4")(O'A/dt')+i(Csj VgTttvg '[4 )(dA/ch)+(4 [ U~Tgvg 'Vs Viiv~[4'"—)A. (37b)

Finally, we note the following useful relationships which may easily be veri6ed

(4'~ V~T, V
~
Z) = t(d(C. —~lnVs~ Z)/Ct)+(4"

~

', V,'+(1-+lnV~)T, ~Z), (38a,)

(4"
I
V~T~V~ 'I &)= —i(d(4"

l
»V~

I &)/Ch)+ (4"lk V~'+ (1+»V~)Ts
I &) . (38b)

P= —(d/Ch)(Ci, ~lnU~~Cr, "),
Q= (4'i.

I
Va —V~+2Vs'~4'i. "),

II= (Ci. ( Vzvtt(4'»").

(4o)

1.0

0.9—

V. DETAILED CALCULATIONS

To illustrate the method we calculate ai, (t) by apply-
ing the diagonal approximation to (35a). The solution

may be regarded as the second-order analog of (13) and
is used to calculate inelastic cross sections by substitut-
ing it into the appropriate first-order matrix elemen'ts.
This procedure is slightly inconsistent and the results
obtained are not truly representative of the second-
order approach. For example, by applying the diagonal
approximation to (37a) and. (37b), we would have
obtained a second-order equivalent of the two-staI;e
Bates-Mc Carroll approximation. However, such a
calculation would be rather complex and @rill therefore
be delayed to a later date.

Our equation for ai, (t) is

(d'ar, (t)/dhr)+ (P—iQ) (dai, (t)/dt)+IIai, (t) =0, (39)

where

It must be solved subject to

ai, (t) —+ (vR —v't) —'t". (41)

TAaLz I. Cross sections for H++H(1s) —+ H++H(2s)
in units of mao'.

Details are given in the appendix. We denote the result
of this second order calculation by ai, &" (t) to distinguish
it from the corresponding first-order result, (13), which
we denote by ai."&(t).

Figure 1 shows ~ai, "'(t)
~

for p=0.1305 and @=1.
Note the deep trough which occurs just after impact and
the slight decaying oscillation which follows as the
interproton distance increases and ~ar, &'&(t)

~

settles to
a constant, somewhat less than unity. This behavior is
typical, the depth of the trough decreasing with increas-
ing impact parameter and velocity. ~ar, &'&(t)

~
is, of

course, everywhere unity since, unlike ~ar, "&(t) ~, it
does not share probability with competing inelastic
channels.

First- and second-order distortion approximations to
the excitation probability Pz(1s,2s), are obtained by
replacing ai, (t) of (17) by a»&" and ai, "' and the corre-
sponding cross sections Q~~'()'hs, 2s) and Qg~'(1s, 2s)
are tabulated, together with the erst Born cross
section, " in Table I. Q~n'(1s, 2s) is smaller than Qzs

0.8—
lO

0.7—

0.6—

-10

log LEnergy (keV)g

1.00
1.25
1.50
1.75
2.00
2.50

Qg~ (1s,2s)

5.37X10 '
4.10X10 '
2.76X10 '
1.72X10 '
1.03X10 '
3.42X10 2

Q&~ (1s,2s)

6.79X 10-2
131X10 '
1.46X10 '
1.21X10-1
8.42 X 10~
3.22X10 2

QAD2(1s, 2s)

2,57X 10-2
5 70X10 '
8.08X 10-2
7.88X 10~
6.07X 10-2
2.58X10 '

Fzo. 1. (u~, &'&(t)
~

for e=1 and p=0.1305.
"D.R. Bates and G. W. Grifling, Proc. Phys. Soc. (London)

A66, 961 (1953).
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TABLE II. Cross sections for H++H(1s) -+ H(1s)+H+ in units of wag.

Energy (keV}

QBBK(1s 1s)
QBMBK {1$1s)
QB~ (»,»)
QB &(1S,1s)
QBBM (1s 1s)

2.01X10'
5.02
4.38
4.02

11.3

1.68X10'
3.81
4.87
3.08
3.13

50

3.37
1.19
1.52
1.00
7.70X10 '

100

4.0OX10-
183X10 '
231X10 '
1.55X10 '
1.15X10-1

400

1.02X10 '
615X10 '
7.86X10 4

529X10 4

5.38X30 4

1000

7.94X10 '
6.87X10 '
8.77X10 '
5.5 X10 '
5.82X 10-6

X (1s,2s), especially at low energies. This results from
the presence of the phase factor in the overlap integral
of the former. Q~D'(1s, 2s) is smaller than Q~n'(1s, 2)s
as a consequence of the allowance for inelastic processes
inherent in ut, &" (1). For comparative purposes, the
above results are shown in Fig. 2 together with some
calculations of previous authors. It is seen that the
distortion approximations are in broad agreement with
the 1sA/2sA approximation to (12a) and the 1sA/2sA/
1sB approximation to (24a) and (24b) but show a
marked disagreement with treatments which take
account of excitation to the 2p levels, '" where the
computed cross sections are larger than Q~e(1s,2s).
This is not too surprising, for the optically allowed 1s-2p
transitions are expected to have large cross sections, and
since the 2p and 2s states are degenerate we may expect
a strong coupling between these states and a consequent
increase in the computed cross section Q~(1s,2s).
However, as we have seen, the second-order treatment
has the effect of reducing the cross section in the distor-
tion approximation, and if a similar effect should occur
in a second-order calculation with allowance for inter-
media, te 2p states it appears likely that the final result
may be close to that of the first Born approximation.

For resonant charge transfer we calculate the MBK
and distortion cross sections, Qa~ex(1s, 1s) and

CROSS SECTIONS FOR H 'H()s)-H" H(2s)

cv es
III

3
CS

C4

lO 2

Cf

Qen&(1s, 1s), described in Sec. III. The second-order
distortion approximation is obtained by substituting
8s, t,at, "&(/) for A in (19). The resultant cross section
Qen'(1s, 1s) is tabulated together with Qe~~x(1s, 1s),
Qeax(1s, 1s),Qen&(1s, 1s),and the Bates-McCarroll cross
section Qe~~(1s, ls) in Table II. Of the above cross
sections only Qzex(is, ls) is derived with incorrect
boundary conditions for at, (t) and, as may be seen from
the table, it is in considerable disagreement with the
other tabulated cross sections over most of the energy
region considered. The difference between QeD'(1s, ls)
and QeDs(1s, 1s) illustrates the distinction between first-
and second-order effects. Q&n'(1s, 1s) is in extremely
good agreement with Qea~(1s, 1s) and this seems to
indicate that the back coupling effects of Qe ~(1s,1s)
are largely accounted for in. Qan'(1s, 1s). However, it
should not be concluded from this that these cross
sections provide an accurate representation of the exact
result since the methods considered have taken no
account of contributions from terms other than ar, (t).

Such contributions, if important, should be apparent
in a proper two-state calculation based on (37a) and
(3/b).
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APPENDIX

The coefficients of (40) are found to be

p I

1.5 2.0
I.O6 IINCIOENT PROTON ENER6Y (keVII

2.5

lR)3 3K, R l d 1
Ko ~=—lnR+ (K—o+—Kr) ~, (A1)

R &2 4R 2 ) Ch 4R )

Q = 1+e
—'s —(1/R) (1—e

—'s) —(1/2R)K „
II= (1/R) (1—e—'")

with
Ko =e'~E (2R) e'"E( 2R), — —

I iG. 2. Cross sections for IX++H(1s) —+ H++II(2s). 1—Second
Born approximation (Ref. 18); 2—1sA/2'/2' approximation
(Ref. 8); 3—erst Born approximation (Ref. 17); 4—erst-order
distortion approximation (Ref. 7); 5—1'/2' approximation
(Ref. 3);6—second-order distortion approximation; 7 1sA/1sB/—2' approximation (Ref. 3).

(A2)

(A3)

(A4)
~ A. E. Kingston, B.L. Moiseiwitsch, and B. G. Skinner, Proc.

Roy. Soc. (London) A258, 237 (1960). Kt=-,'Ko —RLes"E(2R)+e '"E(—2R)], (A5)
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Z(x) =
"1

—e ~dy.

and to replace (AS) and (A9) by three coupled first-

(A6)
order equations

Writing

we have

where

ul, ——ae",

iii+Pa+ (H n Qn—s)a—=0,
n+ ((2/a) d+P)n =E(a/u),

(A7)

(AS)

(A9)

a= (1/R)exp( —Z)b, (A13)

j=—Qab, (A15)

Qx
b= + exp( —2)—RaH exp', (A14)

a a'R

(A10)

The boundary condition (7) implies that as t~ —~
a~ 1 and n-+ 1/R. With these considerations in
mind it was found convenient to introduce

and to solve these numerically with the boundary
conditions

lim @=1,
gazoo

where
y =no'E exp',

2 = (1/4R) (ED+El),

(A11)

(A12)

lim y=1,g~|o

lim &=0.

(A16)
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Formula for the Asymmetry in Double Scattering of Fast Electrons
by Thomas-Ferrxii-Dirac Field

T. TIETZ1

Chemistry Department, Indiana University, Bloomington, Indiana
(Received 25 November 1964)

This note facilitates the calculation of the asymmetry in the double scattering of fast electrons by a
Thomas-Fermi-Dirac field.

HE purpose of this note is to give an analytical formula for the asymmetry 8 in double scattering' of fast elec-
trons by a Thomas-Fermi-Dirac (T.F.D.) field. Using Dirac s equations as well as first and second Born

approximation it can be shown that 8 is given by'

/nZ )2 W(e0 el)W(el e2)

k 4ir 3 (1—P' sin'-,'8l) (1—P' sin'-', z4) N(eo, el) u(el, em)

where Z is the atomic number, 8l and 8." are the scattering angles in double scattering, o. is the Sommerfeld 6ne-
structure constant and P = n/c, 8 and c are the velocities of electron and light, respectively. The expressions I and
8' are connected with the 6rst and second Born approximation for the scattering amplitude. The unit vectors eo,

el, and e2 give the direction of the electron momentum before the scattering, after first and second scattering, re-
spectively. Bonham and Strand' have shown that the T.F.D. held can be very well approximated by a series of
exponential functions

Ze Ze'
l'(~) =- f(~) = Zv'--"'", (2)

where e is the electron charge and y; and 9; are potential parameters depending on Z. The numerical values of
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