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A new semiclassical method for calculating the galvanomagnetic tensor is presented; it allows for the
inclusion of magnetic-breakdown effects, i.e., the possibility of coupled orbits is explicitly taken into ac-
count. Results of calculations for several cases based on various models of the Fermi-surface topology are
given; they include most of the cases of physical interest regarding changes in the connectivity of the orbits.
Tt is shown that in the very high-field region there exists an extra relaxation mechanism due to magnetic

breakdown, which is a function of the energy gap.

I. INTRODUCTION

HE galvanomagnetic properties of metals have
been widely used in the last decade to study the
motion of conduction electrons in periodic structures.!
In particular, measurements of the transverse magneto-
resistance in single crystals as a function of magnetic
field strength and as a function of angular orientation of
both magnetic field and electric current have yielded a
large amount of information on the topological proper-
ties of the Fermi surface. Two types of regimes have
been distinguished: (a) the semiclassical regime, in
which the electrons can be thought of as “classical”
particles obeying Fermi-Dirac statistics and a general
dispersion law e(k); (b) the quantum-mechanical
oscillatory regime, in which the quantization of the
magnetic orbits (Landau levels) results in the well-
known deHaas-Schubnikov and related effects.

Let us for the time being restrict ourselves to the
semiclassical behavior. For large magnetic fields, two
functional dependences of the magnetoresistance on
magnetic field strength have been found experiment-
ally?: (i) saturation, i.e., the resistance approaches a
constant value as H is increased; (ii) quadratic be-
havior; i.e., resistance increases without bound propor-
tionally to H?% These two dependences have been
interpreted in terms of the topology of energy surfaces
and the results are summarized in Table I. For the sake
of completeness, the behavior of the Hall voltage is also
included in the table.

The theory that led to the interpretation of these
experiments was based on the fundamental assumption
that interband transitions, i.e., transitions between
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1 For a complete summary of the theoretical and experimental
situation see, for instance, R. G. Chambers in Tke Fermi Surface,
edited by W. A. Harrison and M. B. Webb (John Wiley & Sons,
{lrllc., New York, 1962), p. 100 and the many references quoted

ere.

2 I. M. Litschitz, M. Ya. Azbel, and M. I. Kaganov, Zh. Eks-
perim. i Teor. Fiz. 30, 220 (1955) [English transl.: Soviet Phys.
—JETP 3, 143 (1956)]; 31, 63 (1956) [English transl.: Soviet
Phys.—JETP 4, 41 (1957)7]. I. M. Lifshitz and V. G. Peschanskii,
bid. 35, 1251 (1958) [English transl.:7bid 8, 875 (1959)7; 38, 188
(1960) [English transl.: Soviet Phys.—JETP 11, 137 (1960) ].

separate sheets of the Fermi surface, could be neglected
from the start. However, this condition cannot always
be met. Cohen and Falicov? and Blount* have proved
that in metals in which an energy gap A is small enough
to satisfy

KANmc/epeHh=KN/ erhn <1, (1.1)

where e is the Fermi energy, w the cyclotron fre-
quency, and K a numerical factor of order 1, the
electrons have a finite probability of making a transition
between the two energy bands separated by A. This
phenomenon has been called magnetic breakdown and it
has been found experimentally in various metals.5®
It has been recognized by the appearance at high fields
of orbits which can only be obtained by repeated
transitions between different pieces of the Fermi
surface.

TasLE I. Magnetic-field dependence of the galvanomagnetic
properties of metals in the high-field limit.

Transverse Transverse
magneto- Hall
resistance  voltage

Type of orbits and state
of compensation

I. All closed orbits
Uncompensated #.5n

H
Saturates «

Ne—Nh
II. All closed orbits
Compensated #,=mns oc H? ocH
III. Open in direction perpendicular
to H and making angle « with o< A2 cos’ «cH

current

(1; 6Ml) H. Cohen and L. M. Falicov, Phys. Rev. Letters 7, 231

4 E. I Blount, Phys. Rev. 126, 1636 (1962).

® Magnesium: M. G. Priestley, L. M. Falicov, and G. Weisz,
Phys. Rev. 131, 617 (1963); M. G. Priestley, Proc. Roy. Soc.
(London) A276, 258 (1963); R. W. Stark, T. G. Eck, and W. L.
Gordon, Phys. Rev. 133, A443 (1964).

6 Magnesium: R. W. Stark (private communication, and to be
published).

7Zinc: R. W. Stark, Phys. Rev. 135, A1698 (1964).

8 Thallium: A. R. Mackintosh, L. E. Spanel, and R. C. Young,
Phys. Rev. Letters 10, 434 (1963); M. G. Priestley, Bull. Am.
Phys. Soc. 9, 239 (1964) (and to be published); P. Soven, Bull.
Am. Phys. Soc. 9, 239 (1964) (and to be published).

9 Rhenium: A. S. Joseph and A. C. Thorsen, Phys. Rev. Letters
11, 67 (1963).
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The fact that the connectivity of the orbits can thus
be drastically changed, together with the enormous
differences that the connectivity produces in the
transverse magnetoresistance at high fields, immediately
points out that new types o f behavior should be expected
in the magnetic-field dependence of the resistivity
tensor, whenever magnetic breakdown is present.!

In this paper we present a new method for computing
the galvanomagnetic tensors in the semiclassical ap-
proximation for metals with magnetic breakdown, i.e.,
metals in which the orbits are coupled. The procedure
here employed is a suitable matrix generalization of
Chambers’ path-integral method!! for the solution of
the Boltzmann equation. Section II is concerned with
the details of the formalism. In Sec. ITI we present the
results of several calculations based on various models
of the Fermi-surface topology ; they include most of the
cases of physical interest as far as change in the con-
nectivity is concerned. The general conclusions drawn
from these calculations are discussed in Sec. IV. It
should be noted that throughout this paper all quantum-
oscillatory effects are neglected. These are in fact of
major importance when the magnetic field is such that
one or several pieces of the Fermi surface are in the
deHaas-Schubnikov regime. Oscillatory contributions
will be considered separately.!?

II. METHOD OF CALCULATION

In order to compute the conductivity and resistivity
tensors (o4 and p;;) in the presence of large magnetic
fields, the following assumptions will be explicitly
made: (a) The electron distribution function f satisfies
the Boltzmann equation, with the scattering term
given by a relaxation time approximation:

(9f/90)+/m)F-(af/9k)=—(f—fo)/7. (2.1)

Here F is the external force, fo the equilibrium Fermi-
Dirac distribution function, and 7 the relaxation time;
independence of f on the space coordinates (uniformity)
has been assumed.

(b) The force acting on the electron is the usual
Lorentz force, i.e.,

F=17k=—|e|[E+(1/c)vXH]. (2.2)

(c) The relaxation time is assumed to be constant on
surfaces of constant energy. This assumption is good
only in the high-magnetic-field region,! but since we are
solely concerned with properties in that region, the
approximation is introduced from the start.

(d) In the solution of (2.1), terms in the magnetic
field H are included to all orders, but only terms linear

01, M. Falicov and P. R. Sievert, Phys. Rev. Letters 12, 550
(1964).

1 R. G. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952);
Proc. Roy. Soc. (London) A238, 344 (1956).

27,, M. Falicov, A. B. Pippard and P. R. Sievert (to be pub-
lished).
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in the electric field E are kept throughout. (Ohm’s law
regime.)

When assumptions (a)-(d) are taken into account,
when use is made of Chambers’ path integral method?!!-13
for solving (2.1), and when the definition of the con-
ductivity tensor o,; is kept in mind, i.e.,

Ji= 2 oili=— ]el/‘vif(ﬁk, (2.3)

the well-known result!!

¢ dfo #(k) s—1
o= —— 2;(k)—d’k / 2;(s) exp[—:lds ,
4 J a1k € — T
(2.4)

is obtained. In (2.4) it is understood that the time de-
pendence of the velocity v;(s) is obtained from the set of
equations

k= —(|e| /c)vXH, (2.5)
v (k)= (1/m)[9e¢(k)/ 9k], (2.6)

where the “equation of motion” (2.5) does not include
the term due to the electric field.

In order to allow for the inclusion of magnetic-break-
down effects, two additional assumptions are made: (e)
At a finite number of points in the orbit there may exist
a finite probability of transition to (and from) another
point in other orbits. These are the points where the
energy gaps are small enough to permit an interband
transition; they can also be considered the points at
which the orbits become coupled to one another giving
rise to a network of possible trajectories. It should be
noted that two limits can always be defined, namely
H—0 and H— «; in both cases the orbits are
decoupled but they are different in each limit. The
orbits corresponding to H — « are those closer to the
free-electron behavior, i.e., are those which at the
transition points show no “Bragg reflection” due to the
lattice potential. The orbits corresponding to H — 0
are those obtained semiclassically by solving Eq. (2.5)
and (2.6) for separate, isolated sheets of energy surface
in which e(k) has been determined by a Schrodinger
equation in which the lattice potential is fully taken
into account.

(f) The probability of transition between orbits is
given by

P=exp[—Ho/H], 2.7

(2.8)

where
Hy= KA2mc/epeh )

and all other symbols are defined in (1.1). Equation
(2.7) was first derived by Blount* in the high-field
limit as well as in the low-field limit; it has been
proved!#15 that it is valid for all magnetic fields.

13 M. H. Cohen, M. J. Harrison, and W. A. Harrison, Phys. Rev.
117, 937 (1960).

4 J. R. Reitz, J. Phys. Chem. Solids 25, 53 (1963).

15 C. B. Duke and W. A. Harrison (private communication and
to be published).
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Fic. 1. Magnetoresistance for a
transition from open orbits plus elec-
tron orbit to a closed (electron) orbit.
(a) The orbits as # —0. (b) The
orbit as H— ». (c) The magneto-
resistance parallel to the open orbits.
All orbits refer to % space.

WeT =10
3 | wl |
N WoT=3
H H
' 4
3 = | Yot =0,
) ) 00 150 200 250 300
b) wr
c)

It is necessary now to include (e) and (f) in the
calculation of the path integral

t(k)

v;(s) exp(s/7)ds,
(2.9)

1K) = expl— 1(K)/] /

0

which is contained in (2.4). Once I;(k) is calculated the
second integration over all k (over the Fermi surface
only, in fact, due to the delta-function character of
dfo/de) can be carried on in a straightforward way.

In order to compute 7;(k) and ¢;; we first choose k to
be on a given energy surface (namely, the Fermi
surface) and, by calling the z axis the direction of the
magnetic field, restrict ourselves to a constant %,. This
choice of variables and application of (2.5) and (2.6)
gives

&k= (|e| H/W2c)dedidk., (2.10)

for each sheet of surface. In what follows only the
dependence of I;(e,k.,t) on ¢ will be made explicit.

We now relabel the variable ¢ in a more convenient
way. Consider the complete network of orbits for given

~ F16. 2. Magnetoresistance
for a transition from open
orbits plus an electron orbit
to a closed (electron) orbit.
The H — 0 relative size of
the open orbits (') and the
— closed electron orbit (8) are
varied. (a) defines the
parameters § and . (b) The
magnetoresistance parallel
to the open orbits for the
values wor =10 000 and wor
=100 of the breakdown
parameter and for 6=2¢’,
0=06", 20=0".

28=8" w,r =100
88" wor =100

8-20" w,r'=100 —

a) (<] 50

150 200 2650 300

b)
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F1c. 3. Magnetoresistance
for a transition from compen-
sated closed orbits to two inter-
secting open orbits. (a) The
orbits as H — 0. (b) Orbits as
H— ». (c) The magneto-
resistance perpendicular to the
open orbits.

¢, k, and divide it into a finite number # of isochronous
pieces, i.e., pieces that are travelled by the electrons
all in the same length of time to. All points at which
breakdown is possible should coincide with end-points
of the isochronous pieces.'® The pieces are now labeled
by an index / running from 1 to #. The variable ¢ is thus
labeled by two numbers ¢ and /, where [ indicates the
particular piece of orbit and # is measured from one of
the end points and reaches the value fy at the other.
With this new nomenclature (2.4) reduces to

to
/ e / dk., / v (¢ DI Dd .
0

If now we apply the formalism to the trivial case of
a single sheet of Fermi surface (with no breakdown) in
which the artificially divided pieces are numbered con-
secutively, (2.9) can be re-expressed as

e2mw n

41r3h2 =1

2.11)

t

L6 =exp(—/7) { f (') exp(s’/r)ds'+1<j(z)} ,

0

(2.12)

0 to
K= | u(i=9) expl(s'—plo)/71ds’, (2.13)

in which (I—p) is determined modulo #. It is now useful
to define K; a column vector of # components K;(l),

16 We have assumed that the times taken by the electrons to
travel between consecutive breakdown points are in rational ratios
to one another; this assumption is of course of no consequence from
the physical viewpoint, since a general irrational case can be
approximated as much as desired by rational ratios.
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u iz =Py =0

o] 50 100 150 200 250 300
wT
c)
V; another column vector of # components
to
Vitr)=[| vi(s'yy) exp(s’/7)ds’, r=12,---n, (2.14)
0
and M, and #X# square matrix of elements
Myu=68;r1, I, r modulo #. (2.15)
0*
0
oS
]
1)) ¢n<
B
<
0} o2 -
2
10 -
o
N
1
10
(o]
10 wor=10000
1 1 1 1 !
o 50 100 150 200 250 300
wT

F16. 4. Magnetoresistance for a transition from open orbits plus
closed orbits to closed compensated orbits. The orbits at both
limits, except for the compensating holes, are identical to Figs.
1(a) and (b), respectively. The graph shows the magnetoresistance
perpendicular to the open orbits.
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7 T IR AAS Fic. 5. Magnetoresistance
AR ) for a transition from open oribts
& & 3 o [ S to closed compensated orbits
. ) [E [ K with two simultaneous different
10~ oy -1 breakdown probabilities. (a)
3 defines the points of transition
{u.;,ﬁlxso and the breakdown probabili-
(aogr = 100 ties; (b) the magnetoresistance
perpendicular to the open
/ (woT); =10 (woT)7210 000 orbits for various values of the
10° | breakdown parameters.
(wot )y =(woT)z =10 000
(wor)=30 | /(wp7), =100
(woT1,=300 ) (woT)2=300
0" L :
10° 10' 10* 10°
a) wT
b)
In this fashion (2.13) is rewritten However, it is capable of immediate generalization to
. cases with magnetic breakdown by only changing the
K;= 3 M2.V; exp(— plo/7) definition (2.15) of thg matrix M. In this ggnerahzatlon
p=1 the element M, is given by the probability that the

_ _ i V. electron which goes into piece / will come from piece 7.
M exp(—to/7)-[1=M exp(to/7) Vi, (2.16) That is, in general the matrix elements M, will be

where 11is the #X# identity matrix. equal to 1, 0, P or Q=(1—P), depending on the
The final solution is given by insertion of (2.16) and network considered as well as on the pieces / and 7.

(2.12) into (2.11). This method in the trivial case In order to be specific we show in detail the example

discussed above is, of course, unnecessarily complicated. first discussed in connection with magnetic breakdown

(b) 9 L | 1 ] wr=0| 9
195 50 100 o 200 1% 56 00 B0 200 250

wr

© (@)

F1c. 6. Magnetoresistance for a transition from open orbits in a given direction to open orbits perpendicular to them. (a) The orbits
as H — 0; (b) the orbits as H — = ; (c) the magnetoresistance parallel to the original open orbits, i.e., those as H — 0; (d) the mag-
netoresistance perpendicular to the original open orbits.
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10
X
.
+ Y
H=Hz 0°
b)

Fic. 7. Magnetoresistance
and Hall resistance for transi- a)
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tions from closed compensated 50
orbits to open and closed (hole)
orbits. (a) The orbitsas H — 0;
(b) the orbits as H — «; (c)

wr

the magnetoresistance perpen- 50 100 150
dicular to the open orbits; (d) 0 —F '
. a % wyr =10 000 10
the Hall resistance. ; sy oy °
& AN %

100

1

d)

by Cohen and Falicov,® and Pippard.'” It is shown in
Fig. 1 and corresponds to the transition from two open
orbits and a ‘“lens”-shaped electron orbit at H—0
[Fig. 1(a)], to a circular electron orbit as H — o
[Fig. 1(b)]. For simplicity in the matrix calculation we
have assumed a constant Fermi velocity in the orbit and
pieces of equal length in the lens and the open orbits.
If the pieces are numbered counterclockwise as in Fig.
1(b), the sequences which give the uncoupled orbits
are

1-3-1-3-1-3-- - -
2-2-2-2-2-2---- H—0, (2.17)
4-4-4-4-44-. ..
and
1-4-3-2-1-4-3-2-1-- - - H — o0, (2.18)
These sequences correspond to a general matrix
0O0PQO
0OQPO
M= ¢ , (2.19)
Qoovrp
POOQ

where P is given by (2.7) and Q=1—P. Insertion of
(2.19) and (2.7) into (2.16), (2.12), and (2.11) gives
o;; and, by inverting the tensor, p;;. The final result
p1 is shown in Fig. 1(c).

Before concluding these general remarks on the
method it is worth noticing that the summation in
(2.16) always converges due to the general form of the
matrix M and the converging factor given by the ex-
ponential. The summation of the geometric series
results in a matrix inversion, as is apparent in (2.16)

17 A. B. Pippard, Proc. Roy. Soc. (London) A270, 1 (1962); Phil.
Trans. Roy. Soc. London A256, 317 (1964).

1
o] 50 100 150 200 250

wT
c)

and consequently the amount of computation required
is roughly proportional to #?. For most cases but the
trivial ones, calculations by hand become prohibitive
and it is necessary to invert the matrix and evaluate
the formulas numerically; for the examples described
in the next section the calculations were carried out in
the IBM 7094 complex of the University of Chicago
Computation Center.

Pu

P,

1 | wr=1dooo

Q 50 100 150 200 250
wT

Fic. 8. Magnetoresistance for a transition from a closed (elec-
tron) orbit to open orbits. The orbits at both limits, if the com-
pensating hole orbit is omitted, are identical to Figs. 7(a) and (b),
respectively. The graph shows the magnetoresistance parallel to
the open orbits.
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X
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Y
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+Nx
o
o of &
Y oo
) 20 eN1 N « s o T —
& E) o =
a) s
3000}— -
+ e o o+ Nx| B 7]
| o« o . N 1000~ — F16. 9. Magnetoresistance for a
transition from a closed extended
. b (electron) orbit constructed of 2V
o { ] 1 | semicircular orbits and N closed
0 50 100 150 200 250 (hole) orbits, to N closed (elec-
1900 tron) orbits and N compensating
I 1 s00 closed (hole) orbits. (a) The orbits
as H—0; (b) the orbits as
F 1 H — »; (c) the magnetoresistance
L N perpendicular to the major axis
1500k A of the extended orbit for N=2;
d) for N=4; (e) for N=6.
l - @ 5 (©) for N=6
« F a
N
1000}~ ° - 500
L & 4 N
3 &
L o .
! SIE
~N
- /) 4 300
500}~ & -
- - 100
o 1 ! 1 o
0] 50 100 150 200 250 o] 50 100 150 200 250
@wT wT
d) e)
2d- ] aol ] 4&_ wr =10000
35— -
s wer = 10000 10 N
r¥ wer =50 7 wer 210000
25+ wgr = 50 N
10} - 20| -
15! ~ 15t B
E N
o8 2> wr =0 ok — 104~ 7
o5 — oS- -
fep ugr0 2D uxco
% % &5 =5 % % 5 5 2 % 5 or %5
@ “F B “T ©

F1c. 10. Magnetoresistance for transitions from a closed extended (electron) orbit constructed of 2N semicircular orbits to N closed
(electron) orbits. (a) The magnetoresistance parallel to the major axis of the extended orbit for N=2. (b) N=4; (c) N=6.
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1000
woT =30
Fic. 11. Magneto- o100 (@or=10
resistance and Hall re- 100~ — 0
sistance for a transition 2) war=30 X
from a closed (hole) o8 2 &5 L
orbit to a closed (elec- o= o
tron) orbit. (a) The wor =10 -200|— —
orbit as H — 0; (b) the 10 — o
orbit as H — = ; (c) the L LoT 210000 - o 4
magnetoresistance; (d) w,T =37
the Hall resistance. -400|—- —
1 1 1 b T : o\ 1 1 1 L 1
0 100 150 200 250 300 O 50 100 150 200 20
b) Wt T wr
o) d)

III. MODEL CALCULATIONS

Figures 1 to 16 show the results of various calcula-
tions corresponding to several models. They include

When magnetic breakdown couples the orbits, sixteen
different possibilities appear; of these, twelve are
equivalent in pairs, giving a net number of ten essen-
tially different cases. All these are included in the

most of the cases of physical interest as far as con-
nectivity and symmetry are concerned. The figures
together with the figure captions are in general self-
explanatory.

Figures 1 to 10 include cases of low (twofold or
mirror) symmetry, Figs. 11 to 13 correspond to fourfold
symmetry, and Figs. 14 to 16 are sixfold symmetric.

For the case of uncoupled orbits, i.e., no magnetic
breakdown or complete magnetic breakdown, four
different cases of interest can be found:

I. compensated closed orbits, i.e., equal number of
electrons and holes;
II. uncompensated closed orbits of the electron
type;
IIT. uncompensated closed orbits of the hole type;
IV. open orbits.

studied cases and are divided in the following way:

I—- I

I— II (or I— III)

I—-1V
II— I(orIlI—1)
II— II (or ITI — III)
IT— TIT (or ITT — IT)
II— IV (or IITI— 1IV)
Iv— 1
IV— II (or IV — III)
IVv—-1v

Fig. 9

Figs. 12, 14, 15, and 16
Figs. 3and 7

Fig. 13

Fig. 10

Fig. 11

Fig. 8

Figs. 4 and 5

Figs. 1 and 2

Fig. 6.

F1c. 12. Magnetoresistance and
Hall resistance for a transition
from compensated closed orbits to
closed electron orbits. The orbits at

150,

100

both limits, except for the com-
pensating (electron) orbit are

identical to Figs. 12 (a) and (b),
respectively; (a) the magneto-

WoT =3

resistance; (b) the Hall resistance.

weTr=0 —]

0 50 lo¢ l

50 200 250

oT

a)

| |
300 0 50 100 150

200
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wer = |0000

S ! ! 1 | |
(o] 50 100 150 200 250

wr

F1c. 13. Magnetoresistance for a transition from closed (elec-
tron) orbits to closed compensated orbits. The orbits at both
limits, except for the compensating (electron) orbit, are identical
to Figs. 11 (b) and (a), respectively. The graph shows the mag-
netoresistance.

We have indicated by an arrow the transition between
the various types from that as H — 0 (before the arrow)
to that as H — o (after the arrow).

L. M. FALICOV AND P. R.

SIEVERT

All models computed and reported here correspond to
orbits formed by arcs of circle with Fermi velocities of
constant magnitude. In addition no %, dependence has
been included, i.e., all relevant contributions to ¢,; are
supposed to arise from a small “cylindrical” slab of the
Fermi surface. Each curve is labeled by a parameter
wor and is plotted as a function of wr, where

wr=(|e|Hr/mc), wor=/(|elHor/mc);

both parameters are dimensionless.

Figures 14 to 16 need some further explanation. The
three figures are sixfold symmetric. Figures 14 and 15
correspond to a 6X6 matrix M, while Fig. 16 is ob-
tained from a 1212 matrix. Figure 14 arises from the
unphysical assumption that at each corner a only two
possible trajectories exist; this results in a matrix

3.1)

(3.2)

which in turn gives rise to the
Hall resistance there shown.
Figure 15 on the other hand may correspond very
closely to the case of zinc for H parallel to the hexad
axis, if oscillations are neglected. In this case each
corner « of the hexagon [Fig. 14(a)] is supposed to
have an infinitesimally small triangular needle from
which a ‘“three-way switch” is obtained. The cor-

agnetoresistance and

g

200

100

wT
c)

-100
Q&
RS
-200
10
K\ wot=10
-300
— woT=3
fTod ™ — -400
weT=0
-500
9" 1 1 ] ] i 1 | 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300

wT

d)

F16. 14. Magnetoresistance and Hall resistance for a transition from closed compensated orbits to closed (electron) orbits. (a) The
compensated hole orbit as H — 0; (b) one electron orbit as H — « ; (c) the magnetoresistance; (d) the Hall resistance. The matrix M

for this case is given by (3.2).
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Q+ QPP
z’P’Q" 3064"‘

PZQ*sz“ PaQ7""

10— I 1 1 I
) (o] 50 100 150 200 250
a Wt wr
b) c)

Fi6. 15. Magnetoresistance and Hall resistance for a transition from closed compensated orbits to closed (electron) orbits. The orbits
at both limits, except for the compensating (electron) orbit, are identical to Figs. 14(a) and (b), respectively. This model includes
infinitesimal “needles” at the corners of the hexagon of Fig. 14(a). (a) The details of calculating the breakdown probabilities for the
“needle”; (b) the magnetoresistance; (c) the Hall resistance. The matrix M is given by (3.3) and (3.4).

responding matrix is A=0+PQ+PQ+- - - =0+PQ/ (1-0),
0BOCOA4 B=P+PQ*+PQ%- - =P/ (1-(7),
4050C0 C=PQ+PQ+PQ+---=PQ/(1-0),  (3.4)

M=| 04 0B0C (3.3)
“|CcC040BO %/ so that
0CO0A4O0B A+B+C=1. (3.5)
B0CO0OA40 In Fig. 16 the size of the triangular pieces is finite and
It is evident from Fig. 14(a) that the length of each side equal to the length of the central

AN

a)

b)

F16. 16. Magnetoresistance and Hall resistance for a transition from closed compensated orbits to closed (electron) orbits. This model
includes finite “cigars.” (a) The orbits as H — 0 neglecting a compensating (electron) orbit; (b) the orbit as # — «» again neglecting
the compensating (electron) orbit; (c) the magnetoresistance; (d) the Hall resistance.
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“hexagon.” This case is similar to the magnetoresistance
of magnesium for H parallel to the ¢ axis. It is worth
pointing out that Figs. 15(b) and 16(c), i.e., the trans-
verse magnetoresistances, have a very close resem-
blance, whereas Figs. 15(c) and 16(d), the transverse
Hall resistances, show considerable differences. These
effects have been found experimentally in Mg’ and
Zn." It should be added that inclusion of the oscillations
in these curves'® brings the theory into very good agree-
ment with experiment.

IV. CONCLUSIONS

From the results shown in the previous section,
several general conclusions can be drawn.

(a) Those cases which start with quadratic behavior
and break down to saturated magnetoresistance,
saturate at a value of p much higher in general than the
zero field value. Detailed calculations show that

psat < (7714Cuwq) ,

where 7 is the relaxation time, w is given by (3.1) and C
is a constant of order unity. This result can be inter-
preted in terms of an effective non-Markovian relaxa-
tion time 7.¢¢ given by

Vrere= (1/7)+Cuo

valid for high fields.!8

The constant C takes for instance the value 4/r in
Fig. 1, 1 in Fig. 11, V3/2 in Fig. 14 and V3_in Figs. 15
and 16.

As an interesting example, the case corresponding to
Fig. 2 with§ — 0,6’ — 180°, which is a 2)X 2 case, can be
computed analytically in closed form.' In particular, in
the limit 7— o the transverse resistivity tensor
reduces to

(4.1)

(4.2)

m H
enrty  mec
= 4.3
0 I ) (4.3)
—— 0
nec

18 The existence of the extra relaxation mechanism has been
previously pointed out by W. A. Harrison, Phys. Rev. 126,
497 (1962).

1 Tn the limit @ — 0 ¢’ — 180° the matrix M reduces to

2 P
mo|TTe  TFe|

P20

40 1+0

which is obtained in a fashion similar to the case of Fig. 15(a)
and formulae (3.4) and (3.5). We are grateful to Professor A. B.
Pippard for pointing this out.
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where m is the electron mass, # the number of electrons
per unit volume, and

1/71= (8/m)w(1—P)/P= (8/m)w[exp(wo/w)—1]. (4.4)

This additional relaxation time can be interpreted in
the following simple terms. As H — o the probability
of the electron being scattered off the free-electron
orbit at each transition point is given by

Q=1~P=l——exp(—wg/w)gwo/w. (45)

However, since the frequency o increases linearly with
H, the probability of scattering per unit time, i.e., the
inverse of the effective relaxation time, is proportional
to w(=%wy, that is, it approaches a constant value.

(b) The resistivity tensor as a function of wr does
not scale with the parameter wor. This gives rise to a
dependence of the “shape” of the curves on the purity of
the sample. For example, (4.1) shows that ps is only
slightly dependent on 7 for wer>>1; on the other hand
the position of the maximum w,, of the curves satisfied
a relation of the form

Wi Awn+ BonT,

(4.6)

where 4 and B are positive numerical constants. It is
seen that as 7 increases the maximum moves to smaller
values of w. This has also been found experimentally in
Zn" and Mg.®

(c) The position of the maximum wn= (eHwn/mc) is
not a good indication of the value of the magnetic-
breakdown parameter H, since Hyn, as shown in (4.6) is
only a fraction of H.

In conclusion we would like to point out that the
present formulation can be extended (i) to include
oscillations due to small pieces of the Fermi surface by
considering phase-coherence effects'>!7; (ii) to include
coupling of orbits at an infinite number of points by
changing the matrix formulation into an integral
equation formulation with a continuous probability of
transition between any two points of the generalized
orbit.

ACKNOWLEDGMENTS

The authors would like to acknowledge several stimu-
lating discussions and exchange of information with
Professor M. H. Cohen, Dr. E. Fawcett, Professor A. B.
Pippard, F.R.S., Professor M. G. Priestley, Dr. P.
Soven, and Professor R. W. Stark.

We are grateful to the National Science Foundation
and the Office of Naval Research for direct financial
support of this work. In addition, the research benefited
from partial support of related solid-state theory by
NASA and general support of the Institute for the
Study of Metals by ARPA and the NSF.



