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Theory of the Galvanomagnetic Effects in Metals with Magnetic
Breakdown: Semiclassical Approach*
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A new semiclassical method for calculating the galvanomagnetic tensor is presented; it allows for the
inclusion of magnetic-breakdown effects, i.e., the possibility of coupled orbits is explicitly taken into ac-
count. Results of calculations for several cases based on various models of the Fermi-surface topology are
given; they include most of the cases of physical interest regarding changes in the connectivity of the orbits.
It is shown that in the very high-field region there exists an extra relaxation mechanism due to magnetic
breakdown, which is a function of the energy gap.

I. INTRODUCTION

'HE galvanomagnetic properties of metals have
been widely used in the last decade to study the

motion of conduction electrons in periodic structures. '
In particular, measurements of the transverse magneto-
resistance in single crystals as a function of magnetic
field strength and as a function of angular orientation of
both magnetic Beld and electric current have yielded a
large amount of information on the topological proper-
ties of the Fermi surface. Two types of regimes have
been distinguished: (a) the semiclassical regime, in
which the electrons can be thought of as "classical"
particles obeying Fermi-Dirac statistics and a general
dispersion law c(k); (b) the quantum-mechanical
oscillatory regime, in which the quantization of the
magnetic orbits (Landau levels) results in the well-

known deHaas-Schubnikov and related eBects.
Let us for the time being restrict ourselves to the

semiclassical behavior. For large magnetic fields, two
functional dependences of the magnetoresistance on
magnetic field strength have been found experiment-
ally'. (i) saturation, i.e., the resistance approaches a
constant value as H is increased; (ii) quadratic be-
havior; i.e., resistance increases without bound propor-
tionally to H'. These two dependences have been
interpreted in terms of the topology of energy surfaces
and the results are summarized in Table I. For the sake
of completeness, the behavior of the Hall voltage is also
included in the table.

The theory that led to the interpretation of these
experiments was based on the fundamental assumption
that interband transitions, i.e., transitions between

TABLz I. Magnetic-field dependence of the galvanomagnetic
properties of metals in the high-field limit.

Type of orbits and state
of compensation

I. All closed orbits
Uncompensated n, NnJ,

II. All closed orbits
Compensated n, =n J,

Transverse Transverse
magneto- Hall
resistance voltage

Saturates
ne ng

oc I/2

III. Open in direction perpendicular
to B an, d making angle o. with cc H' cos'n
current

separate sheets of the Fermi surface, could be neglected
from the start. However, this condition cannot always
be met. Cohen and Falicov' and Blount' have proved
that in metals in which an energy gap 6 is small enough
to satisfy

KA'mtc/epeHA=Khs//er Ace& 1,
where ep is the Fermi energy, co the cyclotron fre-
quency, and E a numerical factor of order 1, the
electrons have a finite probability of making a transition
between the two energy bands separated by A. This
phenomenon has been called magnetic breakdown, and it
has been found experimentally in various metals. ' '
It has been recognized by the appearance at high fields
of orbits which can only be obtained by repeated
transitions between different pieces of the Fermi
surface.
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The fact that the connectivity of the orbits can thus
be drastically changed, together with the enormous
differences that the connectivity produces in the
transverse magnetoresistance at high fields, immediately
points out that renew types of behavior should be expected
in the magnetic-6eld dependence of the resistivity
tensor, whenever magnetic brea, kdown is present. '

In this paper we present a new method for computing
the galvanomagnetic tensors in the semiclassical ap-
proximation for metals with magnetic breakdown, i.e.,
metals in which the orbits are coupled. The procedure
here employed is a suitable matrix generalization of
Chambers' path-integral method" for the solution of
the Boltzmann equation. Section II is concerned with
the details of the formalism. In Sec. III we present the
results of several calculations based on various models
of the Fermi-surface topology; they include most of the
cases of physical interest as far as change in the con-
nectivity is concerned. The general conclusions drawn
from these calculations are discussed in Sec. IU. It
should be noted that throughout this paper all quantum-
oscillatory effects are neglected. These are in fact of
major importance when the magnetic field is such that
one or several pieces of the Fermi surface are in the
deHaas-Schubnikov regime. Oscillatory contributions
will be considered separately. "

I
e

[ LE+ (1/c) vXH]. (2 2)

(c) The relaxation time is assumed to be constant on
surfaces of constant energy. This assumption is good
only in the high-magnetic-field region, but since we are
solely concerned with properties in that region, the
approximation is introduced from the start.

(d) In the solution of (2.1), terms in the magnetic
field H are included to all orders, but only terms linear

"L.M. Falicov and P. R. Sievert, Phys. Rev. Letters 12, 550
(&964)."R.G. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952);
Proc. Roy. Soc. (London) A238, 344 (1956).

"L.M. Falicov, A. B. Pippard and P. R. Sievert (to be pub-
lished).

II. METHOD QF CALCULATION

In order to compute the conductivity and resistivity
tensors (o.;, and p;,) in the presence of large magnetic
fields, the following assumptions will be explicitly
made: (a) The electron distribution function f satisfies
the Boltzmann equation, with the scattering term
given by a relaxation time approximation:

(~f/~t)+(1')F (8 f/ak) = (f fp)/r. (2—.1)—
Here F is the external force, fp the equilibrium Fermi-
Dirac distribution function, and r the relaxation time;
independence of fon the space coordinates (uniformity)
has been assumed.

(b) The force acting on the electron is the usual
I,orentz force, i.e.,

in the electric Geld R are kept throughout. (Ohm's law
regime. )

When assumptions (a)—(d) are taken into account,
when use is made of Chambers' path integral method" "
for solving (2.1), and when the definition of the con-
ductivity tensor o.,; is kept in mind, i.e.,

J;= Q o,~J;= —
~e~ v,fd'k, (2.3)

the well-known result"

g2 dfp
e, (k)—d'k

aii ~

t(k) s—t'
e, (s) exp ds,

(2 4)

where
P=exp L

—Hp/H],

H p EA'mc/e peh, ——

(2.7)

(2.8)

and all other symbols are defined in (1.1). Equation
(2.7) was Grst derived by Blountp in the high-Geld
limit as well as in the low-field limit; it has been
proved'4 "that it is valid for all magnetic fields.

M. H. Cohen, M. J.Harrison, and W. A. Harrison, Phys. Rev.
117, 937 (1960).' J. R. Reitz, J. Phys. Chem. Solids 25, 53 (1963)."C. B.Duke and W. A. Harrison (private communication and
to be published),

is obtained. In (2.4) it is understood that the time de-
pendence of the velocity v;(s) is obtained from the set of
equations

hk= —(hei/c)vXH, (2.5)

v(k) = (1/a)Lap(k)/ski, (2.6)

where the "equation of motion" (2.5) does cot include
the term due to the electric field.

In order to allow for the inclusion of magnetic-break-
down effects, two additional assumptions are made: (e)
At a freite number of poirsts in the orbit there may exist
a Gnite probability of transition to (and from) another
point in other orbits. These are the points where the
energy gaps are small enough to permit an interband
transition; they can also be considered the points at
which the orbits become coupled to one another giving
rise to a network of possible trajectories. It should be
noted that two limits can always be de6ned, namely
H —+0 and H —+ ~; in both cases the orbits are
decoupled but they are different in each limit. The
orbits corresponding to H —+ ~ are those closer to the
free-electron behavior, i.e., are those which at the
transition points show no "Bragg reQection" due to the
la, ttice potential. The orbits corresponding to B—+0
are those obtained semiclassically by solving Eq. (2.5)
a,nd (2.6) for separate, isolated sheets of energy surface
in which e(k) has been determined by a Schrodinger
equation in which the lattice potential is fully taken
into account.

(f) The probability of transition between orbits is
given by
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FIG. 1. Magnetoresistance for a
transition from open orbits plus elec-
tron orbit to a closed (electron) orbit.
(a) The orbits as H ~0. (b) The
orbit as II —+ ~. (c) The magneto-
resistance parallel to the open orbits.
All orbits refer to k space.
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It is necessary now to include (e) and (f) in the
calculation of the path integral

s, (s) exp(s/r)ds,

(2 9)

which is contained in (2.4). Once l;(k) is calculated the
second integration over all k (over the Fermi sur ace

f t, d t the delta-function character of
d fs/de) can be carried on in a straightforward way.

In order to compute I,(k) and o@ we first choose to
be on a given energy surface namey, eel the Fermi
surface) and, by calling the s axis the direction of the
magnetic Geld, restrict ourselves to a constant k, . 7 is
choice of variables and application of (2.5) and (2. )

d'k= (~ e
~
H/tr'c)dedtdk„(2. 10)

for each sheet of surface. In what follows only the
dependence of I;(e,k„t) on t will be made explicit.

We now relabel the variable t in a more convenient
way Consider the complete network of orbits for given

5
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4
IO

3
l) g lo

2
IO

FIG. 2. Magnetoresistance
for a transition from open
orbits plus an electron orbit
to a closed (electron) orbit.
The EI —+ 0 relative size of
the open orbits (8') and the
closed electron orbit (8) are
varied. (a) defines the
parameters 6'and 0'. (b) The
magnetoresistance parallel
to the open orbits for the
values ~pT =10000 and Q)pT
= 100 of the breakdown
parameter and for 0=29',
8=8', 28=8'.
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FIG. 3. Magnetoresistance
for a transition from compen-
sated closed orbits to two inter-
secting open orbits. (a) The
orbits as H-+0. (b) Orbits as
H ~ ~. (c) The magneto-
resistance perpendicular to the
open orbits.
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e, k. and divide it into a Pnite number n of isochronous
pieces, i.e., pieces that are travelled by the electrons
all in the same length of time ts All poin. ts at which
breakdown is possible should coincide with end-points
of the isochronous pieces. "The pieces are now labeled
by an index / running from l to e. The variable t is thus
labeled by two numbers t' and l, where / indicates the
particular piece of orbit and t' is measured from one of
the end points and reaches the value to at the other.
With this new nomenclature (2.4) reduces to

V; another column vector of n components

V, (r) = $0

s, (s', r) exp(s'/r)ds', r= 1,2, n,

~lr ~l, r—1y l, r modulo e.
IO

and M, and e)&e square matrix of elements

(2.14)

(2.15)

e'duo ~ dfo
o,;=— g —de dk,

3/2 l=1 d6

$0

(2.11)

IO

If now we apply the formalism to the trivial case of
a single sheet of Fermi surface (with no breakdown) in
which the artificially divided pieces are numbered con-
secutively, (2.9) can be re-expressed as

IO

I;(t', I) = exp( —t'/r) v;{s',I) exp(s'/r)ds'+it;(l) I
IO

(2.12)
cp $0

E;(t)= P s, (s', I—p) expDs' pts)/r Jds', (2—.13)
@=1 p IO

in which (t p) is determined m—odulo n. It is now useful
to define K; a column vector of n components E;(t),

I

50
1

IOO I 50
40T

200 250

"We have assumed that the times taken by the electrons to
travel between consecutive breakdown points are in rational ratios
to one another; this assumption is of course of no consequence from
the physical viewpoint, since a general irrational case can be
approximated as much as desired by rational ratios.

Fn. 4. Magnetoresistance for a transition from open orbits plus
closed orbits to closed compensated orbits. The orbits at both
limits, except for the compensating holes, are identical to Figs.
1(a) and (b), respectively. The graph shows the magnetoresistance
perpendicular to the open orbits,
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FxG. 5. Magnetoresistance
for a transition from open oribts
to closed compensated orbits
with two simultaneous different
breakdown probabilities. (a)
de6nes the points of transition
and the breakdown probabili-
ties; (b) the magnetoresistance
perpendicular to the open
orbits for various values of the
breakdown parameters.
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In this fashion (2.13) is rewritten

K;= Q M" V, exp( —pts/r)
y=1

=M exp( —ts/r) I
i —M exp(ts/r)] —', , 2.16

here I is the e)&e identity matrix.
The final solution is given by insertion o ( . ) a

(2.11). This method in the trivial case
discussed above is, of course, unnecessari y comp ica

able of immediate generalization to
cases with magnetic breakdown by on y c anging e

~ .15~&of the matrix M. ln this generalization
the element 3f&„ is given by the pro a i i y a

hich oes into piece l will come from piece r.
That is, in general the matrix elements ~„wi
e ual to 1, 0, I' or Q= (1—E), depending on the
network considered as well as on t e piieces l and r.

d t b speci6c we show in detail the example
first iscusse ind' d connection with magnetic brea ow

H= Hz
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I n. 11. Magneto-
resistance and Hall re-
sistance for a transition
from a closed (hole}
orbit to a closed (elec-
tron) orbit. (a) The
orbit as II —&0; (b) the
orbit asII —+ ~; (c) the
magnetoresistance; (d)
the Hall resistance.
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III. MODEL CALCULATIONS

Figures 1 to 16 show the results of various calcula-
tions corresponding to several models. They include
most of the cases of physical interest as far as con-
nectivity and symmetry are concerned. The figures
together with the figure captions are in general self-
explanatory.

Figures 1 to 10 include cases of low (twofold or
mirror) symmetry, Figs. 11 to 13 correspond to fourfold
symmetry, and Pigs. 14 to 16 are sixfold symmetric.

For the case of uncoupled orbits, i.e., no magnetic
breakdown or complete magnetic breakdown, four
different cases of interest can be found:

I. compensated closed orbits, i.e., equal number of
electrons and holes;

II. uncompensated closed orbits of the electron
type;

III. uncompensated closed orbits of the hole type;,
IV. open orbits.

I -+ II (or I~ III)
I —+ IV

II~ I (or III -+ I)
II -+ II (or III —+ III)
II —+ III (or III —+ II)
II~ IV (or III —+ IV)

IV~ I
IV -+ II (or IV -+ III)
IV —+ IV

Fig. 9

Figs. 12, 14, 15, and 16

Figs. 3 and 7

Fig. 13

Fig. 10

Flg. 11

Fig. 8

Figs. 4 and 5

Figs. 1 and 2

Fig. 6.

When magnetic breakdown couples the orbits, sixteen
diGerent possibilities appear; of these, twelve are
equivalent in pairs, giving a net number of ten essen-
tially diGerent cases. All these are included in the
studied cases and are divided in the following way:

IO 150

l0

FIG. 12. Magnetoresistance and
Hall resistance for a transition
from compensated closed orbits to
closed electron orbits. The orbits at
both limits, except for the com-
pensating (electron) orbit are
identical to Figs. 12 (a) and (b),
respectively; (a) the magneto-
resistance; (b) the Hall resistance.

lo

IOO

50

0
to QJpC= 0

(0 0
t

%0
l l l

lOC' l50 200 250 500 0
'UT

a)

50 l00

b)

l50 200
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IO

I0

All models computed and reported here correspond to
orbits formed by arcs of circle with Fermi velocities of
constant magnitude. In addition no k, dependence has
been included, i.e. , all relevant contributions to 0,; are
supposed to arise from a small "cylindrical" slab of the
Fermi surface. Each curve is labeled by a parameter
coor and is plotted as a function of ~7, where

&r= (I el Hr/rnc), oIsr= (I el Her/mc); (3.1)

both parameters are dimensionless.
Figures 14 to 16 need some further explanation. The

three Ggures are sixfold symmetric. Figures 14 and 15
correspond to a 6X6 matrix M, while Fig. 16 is ob-
tained from a 12&(12 matrix. Figure 14 arises from the
unphysical assumption that at each corner o, only two
possible trajectories exist; this results in a matrix

IO

50
t

IOO l50
I I

200 250

OPOOOQ
QOP000
OQOPOO
OOQOPO
OOOQOP
POOOQO

(3.2)

Fro. 13. Magnetoresistance for a transition from closed (elec-
tron) orbits to closed compensated orbits. The orbits at both
limits, except for the compensating (electron) orbit, are identical
to Figs. 11 (b) and (a), respectively. The graph shows the mag-
netoresistance.

%e have indicated by an arrow the transition between
the various types from that as H —+ 0 (before the arrow)
to that as H —& oo (after the arrow).

which in turn gives rise to the magnetoresistance and
Hall resistance there shown.

Figure 15 on the other hand may correspond very
closely to the case of zinc for II parallel to the hexad
axis, if oscillations are neglected. In this case each
corner n of the hexagon I Fig. 14(a)] is supposed to
have an infinitesimally small triangular needle from
which a "three-way switch" is obtained. The cor-

10 200

IO

10@

a)

IO

Cuo7 = 30

-IOO

C
C7l

II

C4

-200

10
aoo7 = IO

CUo7= 5

-300

IO
Cuo7 =0

-400

5
IO

I

50
I

IOO

I I

l50 200 250 X)0

c.)

i I 1 I

IOO l50 200 250 500
Cd 7

d.)

Fro. 14. Magnetoresistance and Hall resistance for a transitron from closed compensated orbtts to closed (electron) orbits. (a) The
compensated hole orbit as ff ~ 0; (b) one electron orbit as ff -+ s&; (c) the magnetoresistance; (d) the Hall resistance. The matrix M
for this case is given by (3.2).



GALVANOMAGNETI C EFFECTS IN METALS

Q+P*Q' P*Q' P'CI"-
IO l50

IO

sscv

IO
«p= IO

@IOO

0
IO

a.)

lol l I

0 50 l00 l50 200 250
«lz

b.)
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Fro. 15. Magnetoresistance and Hall resistance for a transition from closed compen, sated orbits to closed (electron) orbits. The orbits
at both limits, except for the compensating (electron) orbit, are identical to Figs. 14(a) and (b), respectively. This model includes
iniinitesimal "needles" at the corners of the hexagon of Fig. 14(a). (a) The details of calculating the breakdown probabilities for the
"needle"; (b) the magnetoresistance; (c) the Hall resistance. The matrix M is given by (3.3) and (3.4).

responding matrix is

080 COA
A OBOCO
OA OBOC
COAOBO
OCOA OB
BO COB 0

It is evident from Fig. 14(a) that

~=Q+~ Q'+~ Q+ =Q+~'Q'/(1-Q),
8=P'+E'Qs+P'Qs+ =P'/(1 —Q'),
C= ~'Q+~'Q'+&'Q'+ ".=&'Q/(& —Q')

so t at
cl+8+C= 1. (3.5)

In I'ig. 16 the size of the triangular pieces is 6nite and
the length of each side equal to the length of the central
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4
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IO

10
50

1IO—

«loz= IO

fdoz= 3

0
IO

b.)
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0 000
I I I I I I
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FIG. 16. Magnetoresistance and Hall resistance for a transition from closed compensated orbits to closed (electron) orbits. This model
includes 6nite "cigars." (a) The orbits as B~ 0 neglecting a compensating (electron) orbit; (b) the orbit as H —& ~ again neglecting
the compensating (electron) orbit; (c) the magnetoresistance; (d) the Hall resistance.
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"hexagon. "This case is similar to the magnetoresistance
of magnesium for B parallel to the c axis. It is worth
pointing out that Figs. 15(b) and 16(c), i.e. , the trans-
verse magnetoresistances, have a very close resem-
blance, whereas Figs. 15(c) and 16(d), the transverse
Hall resistances, show considerable differences. These
effects have been found experimentally in Mg' and
Zn. ~ It should be added that inclusion of the oscillations
in these curves" brings the theory into very good agree-
ment with experiment.

psst, ~ (& +Coro) r (4.1)

where r is the relaxation time, or 0 is given by (3.1) and C
is a constant of order unity. This result can be inter-
preted in terms of an effective non-Markovian relaxa-
tion time 7, ~g given by

1/r, g ) (1/r)+——Corrr (4.2)

valid for high fields"
The constant C takes for instance the value 4/rr in

Fig. 1, 1 in Fig. 11, %3/2 in Fig. 14 and %3 in Figs. 15
and 16.

As an interesting example, the case corresponding to
Fig. 2 with 0 —+ 0, 0' —+ 180', which is a 2)& 2 case, can be
computed analytically in dosed form. "In particular, in
the limit r —& ~ the transverse resistivity tensor
reduces to

8 Sly SCC

H
0

wee

(4 3)

' The existence of the extra relaxation mechanism has been
previously pointed out by . A. Harrison, Phys. Rev. 126,
497 (1962)."In the limit 8 —& 0 8' -+ 180' the matrix M reduces to

p
1+Q

2Q
1+Q,

which is obtained in a fashion similar to the case of Fig. 15(a)
and formulae (3.4) and (3.5). %e are grateful to Professor A. B.
Pippard for pointing this out.

IV. CONCLUSIONS

From the results shown in the previous section,
several general conclusions can be drawn.

(a) Those cases which start with quadratic behavior
and break down to saturated magnetoresistance,
saturate at a value of p much higher in general than the
zero field value. Detailed calculations show that

where ns is the electron mass, m the number of electrons
per unit volume, and

orp—Roam, +Bor~7' r (4.6)

where 3 and 8 are positive numerical constants. It is
seen that as r increases the maximum moves to smaller

values of cv. This has also been found experimentally in
Zn' and Mg. '

(c) The position of the maximum or = (eH /mc) is
not a good indication of the value of the magnetic-
breakdown parameter H p, since H, as shown in (4.6) is

only a fraction of Ho.
In conclusion we wouM like to point out that the

present formulation can be extended (i) to include
oscillations due to small. pieces of the Fermi surface by
considering phase-coherence effects" "; (ii) to include

coupling of orbits at an infinite number of points by
changing the matrix formulation into an integral
equation formulation with a continuous probability of
transition between any two points of the generalized
orbit.
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This additional relaxation time can be interpreted in
the following simple terms. As H —+ ~ the probability
of the electron being scattered off the free-electron
orbit at each transition point is given by

Q= 1 I'= —1—exp( —or 0/or) =or p/or. (4.5)

However, since the frequency co increases linearly with

H, the probability of scattering per unit time, i.e., the
inverse of the effective relaxation time, is proportional
to org—orrr, that is, it approaches a constant value.

(b) The resistivity tensor as a function of orr does
not scale with the parameter copT. This gives rise to a
dependence of the "shape" of the curves on the purity of
the sample. For example, (4.1) shows that p„, is only

slightly dependent on ~ for cvov-))1; on the other hand
the position of the maximum ~ of the curves satisfied
a relation of the form


