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Relaxation by Slow Notional Processes. Effect of Molecular Rotations
in Pure Quadrupole Resonance*
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Slow motional processes for which there is no motional narrowing can be important in spin-lattice relaxa-
tion. These relaxation mechanisms cannot be treated by perturbation theory. It is shown that the relaxation
times are directly proportional to the motional correlation times. It is suggested that they can be used very
effectively to measure the rate of motional processes in solids. A theory of the direct e8ect of molecular
rotations on longitudinal spin relaxation in pure quadrupole resonance is described. The theory is applied to
the N" resonance in hexamethylene tetramine. Measurement of the longitudinal relaxation times in this
molecule were carried out by a steady-state pulse method, and the rotational correlation times were deter-
mined. The results are in agreement with previous nmr measurements.

~N a recent note' the authors have pointed out that
~- slow molecular rotations can have a very large
direct CGect on the logitudinal relaxation times in pure
quadrupole resonance (pqr). It was shown that the
measurement of these relaxation times can be used to
determine the rate of rotation. The purpose of this
paper is to discuss in detail the theory of the relaxation
processes and the experimental techniques used.

We discuss the general problem of longitudinal re-
laxation by slow motional processes, develop a theory
of pqr relaxation by molecular rotations and describe
measurements of the longitudinal relaxation in the N"
pqr of hexamethylene tetramine (HMT).

The effect of random motional processes on nuclear
magnetic resonance (nrnr) is well understood. ' In par-
ticular, the effect of hindered rotations and diffusion
in solids on the hne shape and spin-lattice relaxation
time has been studied. ' It is in fact mell known that
nmr can be used very CHectively to measure the rate
of such processes. The study of longitudinal relaxation
(TI) in pqr has tended to concentrate on the effects
of vlbratlons. ' Motlonal ploccsscs hRvc so fRI' rccclvcd
relatively little attention. The only detailed studies'~
deal with the CHect of rotations on the linewidth.

In 1953 Ayant, Buyle-Budin, and Lurcat' pointed
out that one should expect R line broadening in pqr
when the direction of the field gradient changes rapidly
between definite directions in space. Their argument
was based on the uncertainty principle. Later Ayant~
was able to calculate the expected line broadening in
certain cases. Simultaneously Buyle-Budin measured
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the linewidths of the Cl quadrupole resonance lines in
a number of materials. His results agree very well with
the theory of Ayant. Dodgen and Ragle' observed the
large effect of molecular rotations on the pqr frequency
and linewidth. Recently such observations" have led
Woessncr and Gutowsky" to study the temperature
dependence of longitudinal relaxation times in C/ pqr
in a number of Inaterials. In several cases they ob-
served rapid exponential temperature changes. To ex-
plain these CBects Woessner and Gutowsky developed
a theory of the effect of the rotation of remote molecular
groups (e.g., methyl groups) on the pqr longitudinal
relaxation time. They also mention the existence of a
direct effect of the rotations on the relaxation time.
Tatsuzaki et al" and more recently Tokuhiro" have
also observed line broadening which they attribute to
a change in Tl because of molecular rotations.

The usual approach to longitudinal (spin-lattice)
relaxation uses perturbation theory. Following the
classical work of Bloembergen„Purcell, and PouncP
(BPP), the spin Hamiltonian is divided into a secular
part (Hp) and a fluctuating nonsecular perturbation
(HI). OIlc calclllR'tcs 'tllc 'tl'Rllsltloll probabllltlcs be-
tween the states of Ho induced by the perturbation H~.
This approach is always justified in the motional-
narrowing limit, i.e., when the observed transition fre-
quencies are indeed the frequencies of Ho. This is
ccI'tRlnly thc morc common sltuRt1on Rnd probably thc
only one of practical interest when H» is small com-
pared to Ho. When the time dependence of Hl can be
described by a single correlation time (7) BPP theory
gives the well-known result

7-
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9 H. %'. Dodgen and J.L.'Ragle, J. Chem. Phys. 25, 376 (1956).

J. L. Ragle, J. Phys. Chem. 63, 395 (1959).
'0 H. S. Gutowsky and D. W'. McCall, J. Chem. Phys. 32, 440

(1960).
'~ D. K. %oessner and H. S. Gutowsky, J. Chem. Phys. 39,

440 {1963).
~~ I. Tatsuzaki and Y. Vokozawa, J. Phys. Soc. Japan 12, 802

(1957)."T.Tokuhiro, J. Chem. Phys. 41, 438 (1964).



S. ALEXAN DER AN D A. TZALMONA

where cop and ao» arc typical frequencies of Hp and 8»,
respectively.

When there is no motional narrowing, i.e, ,

a)»r» j.; (2)

the observed resonance frequencies are the frequencies
of the total Hamiltonian (Ho+H1) and not the fre-
quencies of the secular part (H0). In this case the
details of the motional process become important.

Consider erst a uniform motional process. The
Hamiltonian changes slowly and one has

d(HO+H1)/dt Hc/r (3)

at all times. The inequality (2) then assures that the
nuclear-spin wave functions (P(t)) follow the changes
in the Hamiltonian adiabatically. A nucleus in a given
eigenstate of H&+H1 stays in the same eigenstate and
the energy

&(/) =Q(~) IHo+H (~) l&N& (4)

does not change appreciably. The changes in the wave
function induced by H» are those required to keep the
nucleus in the same state for a changing Hamiltonian.
They do not contribute to the nuclear spin-lattice Ielax-
ation. Real thermal transitions only result because the
wave function cannot quite follow the Hamiltonian and
there is therefore a 6nite probability of transitions to
diferent eigenstates of Hg+H1. These transitions are
induced directly by the lime depc, mdeece of H1 (1/r) "and
therefore

1 r t i~'

T1 ((do+cd1) T +1Er)

(dp (d»

where we have used (2). As expected this is smaller
than the BPP result (1) for slow rotations.

Thc sltuRtlon ls altogether different when thc Dlotlon
is nonuniform and consists of rapid transitions between
positions of relative equilibrium. The changes in the
Hamiltonian can then become very rapid momentarily
and the nuclei cannot follow them. When the jumps
ale vcly I'Rpld

d(Hp+H1)/dt)) ((ao+cv1)', (6)

one can use the sudden approximation. The nuclear-
spin wave function stays constant during the jump
while the Harniltonian changes. The probability of a
transition to an elgenstate with a diferent energy is
determined by the overlap between an eigenfunction
of the initial Hamiltonian and an eigenfunction of
the new total Hamiltonian with a different energy.
When H1 is small (c01/coo&(1) the overlap is of the order
co1/(oo alld 'tllel'efol'e

1 fu1) 1

T1 (c0P)

'4 See also Appendix A for a more d.etailed discussion of a
spec»6c exmnple.

This is identical to the slow-motion limit of the BPP
expression (1).

When H» is large it is of course necessary to calculate
the overlap more carefully. It should approach unity
when a major part of the Hamiltonian participates in
the motion and one therefore expects

1/T1-1/r
in this limit.

Rotations in solids are very eRective in causing pqr
relaxation because the motion consists of fast jumps
between equilibrium positions and is accompanied by
large changes in the quadrupolar Hamiltonian. Our
general considerations can of course apply to various
other cases when a large part of the spin Hamiltonian
participates in a motional process. The motional proc-
ess could, for example, be diffusion. One would also
expect very similar relaxation processes in nuclear
magnetic resonance in magnetic materials where the
motional process could be electronic relaxation or
atomic diffusion.

In Sec. II of this paper we discuss the theory of the
effect of slow molecular rotations on the longitudinal
relaxation times in pure quadrupole resonance. The
theory is applied to some special cases and in particular
to the pqr of N" in hexamethylene tetramine (HMT)
which we have studied experimentally. We also discuss
an example which is related to the eRect of slow e1ec-

tronic relaxation on nuclear magnetic resonance.
To measure longitudinal relaxation times we used a

steady-state pulse technique. This technique is de-
scribed in Sec. III.

Section IV discusses measurements of the longi-
tudinal relaxation in the pqr of N»4 in hexamethylene
tetramine (HMT) from 7"/ to 32/'K. The N" pqr in
this molecule was 6rst observed by Watkins and
Pound" who also measured T» at room temperature
and at 77'K. Recently, Smith" has studied molecular
rotations in this material using proton nmr. Our results
show that the N" longitudinal relaxation is dominated

by molecular rotations above 250'K. The rotational
correlation times calculated from our measurements are
in good agreement with the results of Smith, and it
seems certain that the two techniques measure the
same physical effect.

II. RELAXATION OF THE NUCLEAR
SPIN POLARIZATION BY SLOW

MOLECULAR ROTATIONS

A. Magnetic Resonance with Random
Reversals of the Field

It is illuminating to start by discussing a simple
example suggested by Abragam. »~ A nucleus of spin 2

18 plRccd ln R 1TlRgnctlc Acid of magnitude Bp which
reverses its direction by a, random thermal process

"G. D. Watkins and R. V. Pound, Phys. Rev. 85, 1062 (1951}."G. W. Smith, J. Chem. Phys. 36, 3081 (1962}.
'7 A. Abragam, %edgar/ Muglefises (Oxford University Press,

Oxford, England, 1961},Chap. X, pp. 477-479.
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with a correlation time r. What is the eRect of these
reversals on the nuclear magnetization'

The problem is obviously closely related to that of
the effect of electronic relaxation on nmr in magnetic
materials and to the eRects of diffusion in antiferro-
IDRgnets.

There are two Hamiltonians:

H.= 7H o(I a)

Ho=yHo(& b), (9b)

H, has two eigenstates ~+o), and
~

——,'), with
eigenvalues +-21yHo and —-', yHo, respectively. Simi-
larly Ho has the eigenstates ~+Io)o with eigenvalues
+-,'yIIO, In this simple case one obviously has the
relationship:

between the two sets of eigenstates. If the fmld reverses
rapidly

(12)

the nuclear wave function cannot change during the
reversal. As a result nuclei in state ~+-', &, go only
into

~

——,')p.
+ +1/2 ~+ -1/2 (13a)

and similarly

(13b)

where g, ,
b+'/2 are the populations in the respective

states. One can therefore write the rate equations for
the populations in a

/pi 1/2/d( P1/P —I/ppi —I/2 —
P

—I/P I/oN I/P

dpi 1/2/(Q P
—I/2 1/2N—pl/2 P

—1/2 —
1/Ppp —I/P (14)

and similar equa, tions for b. It is obvious from the
symmetry of the problem that the transition proba-
bilities are symmetric so that

~ 1/2 —I/O ~ j./2 —1/2 ~1/2,—1/2

p
-I/O I/O —

p
-I/2 I/O p-I/2. 1/2

p'/' '/' is the transition probability for field reversal
when the nucleus goes from the low-energy state

~

——,') to the high-energy state ~+-,') and p-I/'"'
describes the reverse transition. For a thermal process
there is obviously a Boltzmann factor between these
two probabilities. The magnetic field is more likely to
reverse when the reversal is favored by its interaction

where y and I are the nuclear gyromagnetic ratio and
vector spin operator, respectively, and a and b are unit
vectors along the two directions of the magnetic Geld.
The nucleus feels the Hamiltonian H when the Geld
points along a and Ho when the field has the direction b.
As the magnetic field reverses its directions onc has

a= —b.

with the nucleus. AVC could, e.g., write:

p1/P —I/O ~ (1/T)e-yPp/o/pT

p-I/O I/P (1/T)s+yIip/2kT («)
where 1/T would be the transition probability of the
field if the nuclear energy did not change.

Substituting («) in (14) and subtracting the thermal
equilibrium populations (e~/'), o one gets in the high-
temperature approximation

For the magnetizations

M., o=-,'y(pi. , o
—'/' —n oI/')

this gives:

dM, 2 1= ——(M —Mo)+-(M —M o),

drab 2 1= —-(M p
—Mo)+—(M o

—M.),
d$

where Mo is the thermal equilibrium magnetization.
It is thus seen that we have a very CKcient spin-

lattice relaxation mechanism

1/T1 2/T——

and. also cross relaxation between the magnetizations
in e and b. The latter obviously became important only
when M and Mb are affected differently by external
perturbations.

B. General Considerations of the Re1axation
Mechanism

The rotation of a molecule or molecular group in a
crystal consists of transitions between a discrete num-
ber of equilibrium posltlons. Thc I'clatlon bctwccn these
equilibrium positions is in most cases clear from geo-
metric considerations. They are separated by high
potential barriers. As a result the molecular motion
is characterized by two distinct and essentially inde-
pendent tlIIlcs. Thcsc Rlc thc lcsldencc time ncRI' thc
potential minima (T„) and the transition time between
them (Tp) Clearly.

so that one never observes the molecule during the
'tl'aIlsltloI1 (1.c. 111 lntcHIlcdiatc posItlolls).

The molecular rotation affects the quadrupole reso-
nance directly when the Geld gradients seen by R

deGnite nucleus are changed by the molecular rotation.
The most important CRect, for our purposes, is the
rotation of the field gradients in space. The magnitude
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of the gradients is usually similar for the diferent
positions but their principal axes have different orien-
tations. We are interested in the slow-rotation case
where the nonsecular part of the quadrupole Hamil-
tonian contributes to the observed frequencies. We
therefore assume that the molecule stays for a long
time at its equilibrium positions; i.e.,

co@7 „»I, (22)

where ~@ is a typical transition frequency. The nuclear
polarization" is then changed only by the fast transi-
tions between equilibrium positions.

There are two possibilities:
When

coq7 &»1, (23)

i
p.v p

~

~p.v'/~ 2~ 2 (24)

where I';"' and I'~" are the nuclear spin polarizations
at site v' before the jump and at v after the jump,
respectively. The probability per unit time that a jump
occurs is obviously I/r„. One therefore has for the
longitudinal relaxation time (2'~)

T)~cog Tg 7 7. (25)

The proportionality factor in (25) depends on the
details of the transition process.

The situation is much simpler when v& is sufficiently
short so that

the transition is essentially adiabatic. A nucleus which
was in a definite eigenstate of the local Hamiltonian
H„before the rotation will mainly end up in the
corresponding eigenstate of the new, rotated, Hamil-
tonian (H„). When this happens there is no change in
the nuclear polarization. There is, however, a small
probability for a real transition in which the spin
polarization changes. One can show (see Appendix A)
that

given by the square of its coeKcient in this expansion
(~us"' "~'). For a thermal process these probabilities
should be weighted by the proper thermal factors. We
can thus set up the rate equations for the populations
in the spin states and calculate the longitudinal relaxa-
tion times.

It is important to realize that both in case (23) and
in case (26) the relaxation process is nonresonant. As
the "static" Hamiltonian itself is changing one cannot
consider the transitions as induced by the Fourier
component at the resonance frequency of a time-
dependent perturbation. Among other things this is
reQected in the fact that there is no minimum of the
relaxation times when cog'& 1.

In practice it seems that the "slow" jump case (23)
has little practical interest for molecular rotations. One
would expect the transition time (r,) to be of the same
order as the time a molecule spends in a state near the
top of the barrier and therefore

/ g EE/kr— (28)

which makes ~& very short for the portential barriers
usually encountered. We discuss the "slow" jump case

briefly in Appendix A.
For fast jumps our considerations are sufficiently

detailed to get a complete description of the eRect
of rotations on the resonance. The most convenient
general procedure is probably to apply a density-
matrix formalism. The problem is formally very similar
to that of exchange in high-resolution nuclear magnetic
resonance" and can be treated in the same way. This
would give both the longitudinal relaxation and the
eRect on the linewidth. Here we are only interested in
longitudinal relaxation and it is therefore sufhcient to
set up the rate equations for the populations in the
various eigenstates.

GO@7 ggi ~ (26) C. The Rate Equations

the transition can then be treated as sudden, i.e.,
the Hamiltonian changes but the nuclear-spin wave
function remains unchanged. As a result the eRect on
the polarization can be calculated from simple geo-
metrical considerations. Essentially the nucleus reaches
the new position (v) in an eigenstate of the old Hamil-
tonian (H„), for example, the state ~P)„.. This state
can be described by a linear combination of the eigen-
states (~n)„) of the new Hamiltonian (H„).

I p)"=2»"'."In). , (27)

where the Np"' " are the elements of a unitary trans-
formation matrix. The probability of finding the nucleus
after the jump in any new eigenstate (~n)„) is simply

"The intensity of a pqr signal is proportional to the diRerence
in population between the two relevant energy levels (or doublets).
Throughout this paper we use the term nuclear spin polarization
{P)to describe this quantity. This usage is not quite accurate but
stresses the analogy with nuclear magnetic resonance.

We can now set up the rate equations for the oc-
cupation number of the eigenstates at the diRerent
sites, e.g. , the occupation n " of the state ~n)„:

Js
=2 Z (p.V'~s"' p~"'-"~-")—

P

(29)

where the summation is over all the alternative sites
(v') which are directly interchanged with v by molec-
ular rotation and over all eigenstates ~P)„of the
local Hamiltonians at these sites (H„). The ~n)„and
~P)„are related by a unitary transformation with
elements Ns"' " (27). For fast jumps the transition proba-
bilities p "s"' in Eq. (29) are

v v' , ) I v v'
) 2&(Ep—Erz)/2kT

v' v ~, [ I v' v
~ 2&

—(Ep-Erz)/2kT
7 (3o)

"J.Kaplan, J. Chem. Phys. 29, 462 (1958); S. Alexander, ibid.
37, 967 (1962).
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and therefore from unitarity
p p I2 —I~ p @f2 (32)

It should be noted that there are in general
no selection rules for the transition probabilities
(Iu "e"'I'; p "e"'). In particular one is not restricted to
transitions with hm= +1 and Am= &2.

Equations (29) and (30) describe the whole eBect of
the rotations on n ". As in the magnetic case there are
two types of relaxation effects. The first is proper
spin-lattice relaxation which depends on the deviation
of the occupation numbers from thermal equilibrium.
The second eftect describes the transfer of polarization
from v' to v and is therefore a sort of cross relaxation
between the different sites. It is convenient to rewrite
(29) in a form which exhibits this clearly.

As usual we start by subtracting the thermal equilib-
rium solutions (m "),~. Using (30) and (32) this gives

d(n "—(e ").,) = 2 I
~-"e"' I'

69 ~', p

X (w,. (ep"' —(ep"').,)—w, , (m "—(e.")„)) (33)

to first order in A&so/kT. To separate the cross relaxa-
tion terms we shall assume that the energies of the
local Hamiltonians (H„; H„) are similar. There is then
a simple correspondence between the states at i (IP)„)
and at v' (IP), ). One can then add and subtract a
term

2 w". I
I-Y'I'(~e" (Ne")")—(34)

to the right-hand side of Eq. (33) and rewrite the rate
equations in a different form:

d(n. "—(e ")„)
=PIN "p"'I'(w„„,np"' w„.„np")—

dt
—Z (2 w". IN-Y'I')

p v'

X((~."-~ ")-((~.").,-(~ ")„)), (35)
"E.Wigner, Grolp Theory (Academic Press Inc. , New York,

1959), p. 166-169.

where we have chosen a symmetric form for the
nuclear Boltzmann factors (edge z &/'~r) and w„„ is the
transition probability of the molecule from a position in
which a given nucleus is at v to a position in which it
is at v when no change in the nuclear spin energy
occurs. When the molecule has different energies for
i (E,) and v' (E„) one obviously has

w„„./w„„=e &z

The transformation matrices U""' can be calculated
easily if one knows the structure of the eigenstates of
H„and the angles between the principal axis of the
field gradients at v and v'. For cylindrically symmetric
gradients they reduce to the Wigner D matrices. '0 It
is obvious from the definition of the U that

U""' U"'"=1

when. one remembers that w„„.(ns"')~=w„.(ee")~, be-
cause of detailed balance, even when m„„/m, „.

The first term on the right-hand side of (35) de-
scribes the transfer of spin polarization between v and
v'. It is effective only when the populations at v and at
v' have been disturbed in diferent ways. The second
term can be regarded as spin-lattice relaxation of the
nuclei at v.

So far our discussion has been quite general and is
valid for cases where the molecule has dift'erent energies
for different orientations (w„„Ww„„) and for nuclei of
arbitrary spin. In a pqr experiment we are concerned
with the polarization connected with a definite transi-
tion, i.e., with the population difference between a
definite pair of levels (or Kramers doublets). The re-
laxation equations for such a polarization can be found
from (35) when p" is expressed in terms of the n ". It
can be seen from (35) that the resulting equations will

always involve the polarizations at the other sites
(P"'). When there is more than one pqr transition the
populations in energy levels which are not connected
with the observed transition will also appear. It is
obvious that the solution of such a system of coupled
equations cannot be described by a single relaxation
time (Ti). Instead one has a series of relaxation and
cross relaxation times for the different polarizations.
We will show below that the problem may not be as
serious as it appears and can be solved completely in
simple cases. Quite generally it is, however, clear from
(35) that all the relaxation rates are simply propor-
tional to the m„„.The temperature dependence of the

can therefore be determined from the over-all
behavior of the system. For symmetric molecules one
frequently has situations where all positions (v) have
the same energy and there is only one relevant type of
transition. One then has:

wvv' =wv'~ = 1/r (36)

for all transitions which appear in (35). In this case
all the relaxation times are proportional to r.

P"=xi"+e i"—2eo", (37)

where we have chosen eigenstates of the component of
the nuclear-spin vector operator (I) along the local
cylindrical axis (z„) to describe the spin states.

Similarly for spin ~3.

'/i3/2 ++—3/2 '+i/2 I-1/2 ~ (38)

One could now use (35) to derive the rate equations
for I'". It turns out, however, that in these two cases
there is a much simpler way to derive the result.

D. Nuclei of Spin 1 and Spin —,
' with

Cylindrical Symmetry

In both cases there is only one pqr transition and the
calculation is particularly simple.

For spin 1 the polarization (P") can be written:
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One notes that in both cases P" is proportional to
the thermal expectation value of the energy (H„)
which has the simple operational form (for cylindrical
symmetry)

H„=A (3I, '—P). (39)

We can therefore use the well-known transformation
properties of the quantity on the right-hand side of
(39). Whenever a nucleus leaves site v all the polariza-
tion is lost. On the other hand, when a nucleus jumps
from v' to v we only gain the projection of P„on the
direction s„, i.e. ,

L2 (3 cos'8 —1)]P"', (40)

—$ P w„„(1—cos'8„„)(P" (P") ), —(42)

where the 6rst term on the right-hand side is a cross
relaxation term and the second one describes thermal
spin-lattice relaxation. A direct calculation using Eqs,
(35) and (37) or (38) leads to the same result.

Equation (1) of Ref. 1 is a special case of Eq. (42).
The simple d.erivation which led to (40) is only valid

for nuclei of spin 1 or —, md cylindrically symmetrical
6eld gradients. These are the only cases where the
polarization observed in pqr is proportional to (3I,'—I ).

E. Longitudinal Relaxation in Hexamethylene
Tetramine

In the case of HIT there are three conditions which
greatly simplify the calculation:

(1) The molecule has tetrahedral symmetry so that
all orientations and all transitions are equally probable.

(2) The 6eld gradient has cylindrical symmetry.
(3) The nucleus (N'4) has spin 1.

We can therefore use Eq. (42). Moreover, because of
the symmetry,

wvv' =wv'v= 1/r y

(P") = (P"'), =Po; cos8„„=—, (43)

for any two positions of the nucleus (v and v'). Thus
Eq. (42) becomes

d(P"—Po) 1 4
=—Z (P"'—P")—(P"—Po) (44)

3r v' r

where 8„„ is the angle between 3'„and s„. %e can
therefore immediately write the rate equation corre-
sponding to Eq. (33):
d(P"—(P") ) =Q (w„„(-',(3 cos'a„„.—1)]

dt

X(P"-(P")„)-...(P -(P).,)). (41)

This can be rewritten in the more convenient form:

d(P"-(P")")
=Q t:,'(3 cos'8„„—1)j(w„„P"'—w„„P")

The general solution of the four coupled Eqs. (44)
has the form:

P"(t)—Po —— Ae —44'+B„e '"'
where

—A =x, P (P"(0)—Po); P B,=O.

The shorter relaxation time (4~r) thus describes the
approach of the tota/ nuclear polarization of a molecule
to its thermal equilibrium value. The second term is
due to cross relaxation between the P" at the different
apexes. In a pqr experiment we never affect the nuclei
at the four apexes in the same way. Both exponentials
will therefore contribute to the observed relaxation rate.

III. STEADY-STATE PULSE METHOD FOR
MEASURING LONGITUDINAL RE-

LAXATION TIMES

Longitudinal relaxation times are best measured by
pulse techniques. The accepted technique in pqr is to
apply two 90' (i.e., maximum amplitude) pulses and
to measure the ratio of the amplitudes of the two free
precession signals as a function of the pulse spacing.
We found this technique rather inconvenient mainly
because one has to wait for a long time (compared to
T~) before one can repeat the measurement.

It is much more convenient experimentally to use a
steady-state technique where the measured signals are
repeated periodically. This also makes it easier to use
a boxcar integrator. %e therefore repeat the 90' pulses
indefinitely with a fixed pulse separation. We measure
the amplitude of the free precession signals after the
pulses under these steady-state conditions. This ampli-
tude obviously depends on the pulse separation and
one can determine the longitudinal relaxation time
from this dependence. This technique is applicable
when T&&T2. With our setup we could easily measure
relaxation times between 10 sec and 1 msec.

The algebra involved in interpreting the experimental
results is somewhat confusing and formally leads to
integrals which cannot be evaluated in closed form.
When the calculation is done properly it can however
be seen that the interpretation of the results is quite
simple. It seems useful to go through the calculations
in detail.

%e will 6rst calculate the signal amplitude when the
longitudinal relaxation is simply exponential. Clearly,

(P(t) —P )=(P(0)—Po)e "", (47)

where P(t) is the nuclear spin polarization at time t

and Po its thermal equilibrium value. On the other
hand, one has the effect of the pulses:

P~=P; cos+,

where P; is the spin polarization before the pulse, Pf
the polarization after the pulse and 4 can be regarded
as a precession angle. For a cylindrically symmetric
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field gradient one has

%=%(tl) =cr sin8, (49)

j l I J I

where 0 is the angle between the rf 6eld and the s
axis of the electric-field gradient. The constant 0.
depends on the rf level, pulse length, nuclear gyro-
magnetic ratio, and transition matrix element (see,
e.g., Ref. 11).

Under steady-state conditions, P; and Pf are also
connected by the free relaxation equations:

(P;—Pp) = (Pf Pp)e- (5o)

where t„ is the pulse separation. Combining Eqs. (48)
and (50) gives
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(P;—Pp) = (P; cos4 —Pp)e '"'r'. (51)

For a fixed angle 8 the observed free precession
signal after the pulse is proportional to

P, sin%(tl) sin8. (52)

In a powdered sample one therefore has for the
signal (S)

S=S(t„)= P, (8,t,) sin+ sin'Ddt'fdic (53)

except for irrelevant proportionality factors. One could
now solve Eq. (51) for P; and substitute this in Kq.
(53). The result is, however, simpler if one retains the
implicit from (51) and integrates both sides. This gives

S—Sp ——(S—Sp) s—'ir& (54)

where S is the signal given by Kq. (53), Sp the signal
for zero repetition rate (P,=Pp) and the correction
term S is given by

P;cos%' sin%' sin%-dele

P, sin2%' sin'tldtldP.
2

S is thus half the signal one would obtain if one applied
a pulse of amplitude 2cr Lsee Kq. (49)$. For a de6nite
direction (tl) one can cause S to vanish by choosing o.

so that 4'=-, m. This is not possible for all directions in
a powdered sample. It is, however, clear physically
that S is never going to be very large.

One can rewrite Eq. (54) in the form:

(Sp—S)/Sp ——(1—S/Sp) s—'fr', (56)

the correction term on the right-hand side (S/Sp) is
small when 0. —,'x. It can be neglected if one restricts
oneself to intermediate repetition rates so that

S/S«1. (57)

We have for example calculated that S/Sp 0.01 for

F&G. j.. Plot of the logarithm of the steady-state degree of
saturation LlniiSp —Sl/Sp)g as a function of the pulse separation
(t,) at 273'K. The deviations from linearity for large pulse
separations are mainly due to experimental inaccuracy in de-

terminations. For small separations, S/S~1 and the correction
terms in (56) become important.

P" P= Ae '"'+8 e——"I'
It is therefore immediately obvious that the expression
for the signal S(t„) depends on t, and r only through
the ratio t,/r. One can therefore write

(Sp S)/S p F(t„/r)—, —— (58)

where P depends only on t„/r as long as the pulse
amplitude (cr) is constant. This is in fact sufhcient to
determine an activation energy. For every tempera-
ture (T) one measures the repetition time t„(T) for
which the ratio (Sp(T) —S(T))/Sp(T) has a de6nite
constant value, e.g.,

(So(T)—S(T))/S (T)= l. (59)

It now follows from Kq. (58) that

where
t, (T) =Cr(T),

P(C)=s

(60)

(61)

The activation energy can thus be determined directly
from t, (T) without calculating F.

rr = rsrr and t„/Tr 1. This is——completely negligible with
standard experimental accuracy.

One can therefore determine T» from the slope of a
plot of ln(Sp —S)/Sp versus t„. Such a plot can be seen
in Fig. I.

The interpretation is a little more complicated for
the rotational relaxation mechanism discussed in Sec.
II because of the cross relaxation terms. The behavior
of P—Po cannot be described by a single exponential.
This leads to rather complicated expressions for the
signal. In practice one can, however, avoid much of
the labor involved.

We will again discuss the case of HMT but similar
arguments should be applicable fairly generally. The
general solution of Eq. (44) has the form (45):
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FIG. 2. Temperature dependence of the rotational correlation
time of hexamethylene tetramine. The experimental points were
obtained from our measurements using Eq. (68) and the heavy
line is a least-squares 6t to the six high-temperature points. The
two light lines describe the limits on & from Eq. (66). The results
of Smith's (Ref. 16) nmr measurements (72) are described by a
broken line.

IV. EXPERIMENTAL TECHNIQUES AND RESULTS
ON HEXAMETHYLENE TETRAMINE

A. Ayparatus and Experimental Technique

The rf gate was essentially that developed by Blume"
tuned to the frequencies of interest. Because of the
small spin and moment of N' we used very little
damping on the tank circuit. Another modification we
found useful was to feed the power into the tank
circuit through a capacitive tap. This steps up the
rf voltage and we could get voltages up to 2000 V peak
to peak with the Type 5763 output tubes used by
Blume and a power supply of 450 V dc. The gate is fed

by a General Radio type 1001-A Standard signal gen-
erator, and amplified pulses from a Tektronix 163 pulse
generator.

The receiver was a broad band amplifier consisting

"R.J. Blume, Rev. Sci. Instr. 32, 554 (1961).

One can also estimate the constant C fairly easily.
It is clear from Eq. (45) that the behavior of I'„ is
intermediate between that one would have for T~= ~g
and that Tt=3r/8, i.e., from (56):

4~,f~gp(i /~)~& s—~,lsr—(62)

at least when S/S((1. These are fairly narrow limits
on a logarithmic plot (see Fig. 2) and for most purposes
should be sufhcient. In Appendix B we calculate I'

explicitly.

of 4 identical stages of 6AKS tubes with a 6AL5 de-
tector." The only protection against overload was a
pair of crossed diodes" across the anode load of the
first stage. The recovery time of the amplifier depended
on the damping of the tank circuit. With proper
damping one could get down to 10@sec. Because of
the small signal of N" we retained a high Q and the
recovery time was in practice 40—50 psec.

The detector was operated as a phase detector at
the rf frequency by introducing leakage from the
signal generator into the amplifier. With this arrange-
ment the amplifier was very sensitive and most of the
noise observed originated in the tank circuit. The pqr
signals of HMT were observed directly on a Tektronix
type 545 Oscilloscope with a signal to noise ratio of

50 at liquid-nitrogen temperatures and 5—10 at room
temperature.

Temperature control was achieved by a technique
suggested by Abe."The sample and coil were enclosed
in a closed copper cylinder. At low temperatures the
temperature was determined by the height of this
cylinder above the liquid-nitrogen surface in a Dewar.
Above room temperature we used a small heating
element wound on a glass tube surrounding the copper
cylinder. This arrangement guaranteed sufhcient homo-
geneity of the sample temperature and we did not ob-
serve any line broadening due to temperature gradients.
Temperatures were measured with a copper constantan
thermocouple attached directly to the sample.

The material was a powdered sample of HMT
supplied by Fluka.

B. Determination of T, in Hexamethylene
Tetrarnine

The technique used for measuring the longitudinal
relaxation was that described in Sec. III. The pulses
were adjusted for maximum signal. In our setup these
were pulses of 50@sec and 1700 V peak to peak.
The maximum signal adjustment is not sharp and the
signal changes very little from 30 to 70 @sec. The exact
value is, however, not critical for our purposes as long
as one uses the same pulses at all temperatures.

For each tempera, ture (T) the pulse separation (t,)
was varied to determine the value:

$„(T)= $t/s (63)

1.1 Tg= tg(3. (65)

At most temperatures we only adjusted t„carefully to
determine the single value (tres). At two temperatures

ss W. G. proctor (private communication).
23 W. G. Clark, Rev. Sci. Instr. 35, 316 (1964).
~ Y. Abe, J. Phys. Soc. Japan 18, 1804 (1963).

for which
(Ss—S(4)s))/So= s . (64)

The longitudinal relaxation time Tj can then be de-
termined from Eq. (56) neglecting S/Ss. This gives
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(273 and 297'K) more careful measurements over a
wide range of values of t„were done. The results at
273'K are shown in Fig. 1, where we plot ln((Sp —S)/Ss)
as a function of t„.

At the two lowest temperatures 77 and 150'K we
used a different technique for measuring Tj. The
signal was saturated by a series of pulses and the
recovery of the polarization afterwards was measured
directly.

The values of Tt determined in this way, Eq. (65)
are given in Table I, together with the pqr frequencies
measured.

77'
150'
181'
213'
248'
258'
273'
286'
292.5'
297
317'
3270

TI (sec)

17.0
4.2
1.8
1.2
0.64
0.35
0.10
0.027
0.018
0.010
0.0023
0.0009

f (kc/sec)

3406.8
3378.5
3364.0
3348.0
3332.0
3327.5
3320.0
3314.0
3310.5
3308.0
3297.5
3292.0

TABLE I. Longitudinal relaxation times (T&) and pqr frequencies.
T~ was determined from Eq. (65)—(Tr = Iraq/1. 1).
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Fxc. 4. pqr frequency of N" in HMT as a
function of temperature.

2.4tg/3( r &3.6t j/3. (66)

A more accurate result can be found if one uses the
results of Appendix B. The calculation there shows
that near (Se—S)/Ss ———', one hs, s

(Ss S)/So= 0—.285e """'+0.715e""

which gives with very good accuracy

(67)

region. The behavior is intermediate between that for
Tt 3r/8 and——that for Tt=srr. This gives for r the
limits:

7 =3.3/y/3. (68)

At low temperatures the longitudinal relaxation is
dominated by vibrations and has approximately a T'
temperature dependence. 4' This is shown in Fig. 3
where 1/Tt is plotted as a function of T'.

The pqr frequency is almost linear in temperature
over the whole temperature range covered (see Fig. 4).
The temperature coefficient is —485 cps/'K.

C. Measurement of Molecular Rotations

Above 250'K molecular rotations become important
and T& changes very rapidly with temperature. We
have shown in Sec. II that the longitudinal relaxation
cannot be described by a single exponential in this

0

0 I I 1 I I

0 IOOI I 50 I 75I 200 225 250* 275
' T~ (~K~)

FIG. 3. Low-temperature results. 1/TI is plotted
as a function of T'.

where

vp=7. 6 10"sec

hE = 15.6 kcal/mole,

1/~ —p e sE/BF—
(69)

(70)

It is of interest to relate our correlation time v to
the actual probabilities for a transition of the molecule
between two different positions.

HMT is a tetrahedral molecule and therefore has 12
distinct but crystographically equivalent positions in
the crystal. We have defined 1/r as the probability of
a transition of the field gradient between two definite
orientations, e.g., between its direction at 1 and that
at 2 in Fig. 5. This is of course the transition proba-
bility of a nucleus at 1 into 2. There are three ways of
doing this, namely: a rotation which keeps nucleus 3
fixed, a rotation which keeps nucleus 4 Axed and
6nally the rotation which permutes 1 with 2 and simul-
taneously 3 with 4. It seems reasonable to assume that
the last type of rotation has a considerably higher
potential barrier than the other two and is therefore

25 In Ref. 1 we used r =3.5tI/3.

In Fig. 2 we have plotted lnr as a function of 1/T.
r was determin. ed from Eq. (68)."We also show the
limiting values one would obtain from Eq. (66). It is
clear from the figure that these limits are marrow
enough for most purposes.

A least-squares 6t of the six high-temperature points
for which the vibrational relaxation can be neglected,
gives
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FIG. 5. Schematic description of the positions of the N'4 nuclei
in the tetrahedral molecule hexamethylene tetramine. The posi-
tions of the nuclei are numbered. The directions of the axis of the
local Geld-gradient tensors (Z„) are indicated by broken arrows.

unimportant. One then has

(71)

where 1/r, &, is the molecular transition probability for
a transition in which one apex of the tetraheder re-
mains fi.xed.

Smith" has carried out a detailed investigation of
the proton nmr in HMT. He was able to determine the
correlation time for molecular rotations both from
linewidth measurements and from measurements of
Tr. He 6nds for the correlation frequency (v,)

v, =/. 5 10"sec ',
AE= 18.7 kcal/mole, (72)

from linewidth measurements between 340 and 400'K.
Tj measurements between 320 and 440'K give"

v, =8.6 10'4 sec '

hE= 17.9 kcal/mole. (73)

There is thus a considerable difference between the
activation energies and frequency factors given by the
two types of measurements.

A detailed quantitative comparison is complicated by
the fact that there is some arbitrariness in determining
the absolute value of the rotational correlation time

(r,) from nmr measurements. There is also a numerical

factor between the correlation time for discrete jumps
we measure and the correlation time for continuous
rotations used in interpreting the nmr results. This
factor could of course be calculated.

In Fig. 2 we have somewhat arbitrarily assumed"

1/r.-v,

and Smith's results LEq. (72)) are then represented by
the broken line. It can be seen that there is then very

"G.W. Smith, J. Chem. Phys. (to be published).
'7 In fact Smith (Ref. 26) has pointed out that it seems more

reasonable to set 1/v =~,= 2m v& which does not give quantitative
agreement.

good quantitative agreement between the absolute
values of the correlation times determined by the two
techniques but this is probably fortuitous. Our results
for the absolute value of the correlation time are
certainly more reliable because they do not involve
any independent parameters. We believe that a com-
parison of the absolute values will only be justified
if the arbitrariness in determining them from nmr can
be removed. Smith" has apparently reached the same
conclusions.

In determining the activation energy the accuracy
of the nmr T~ measurement is comparable to our
accuracy. The difference between our value (15.6 kcal)
and the nmr value (17.9 kcal) at higher temperatures
may therefore be real and represent a charge of hE
with temperature. This would not be very surprising.
We believe however that the experimental evidence for
such a charge is not very strong because the errors in
determining hE are rather large in both cases.

In any case the agreement between the two inde-
pendent measurements is quite satisfactory and it is
clear that the two techniques measure the same dy-
namic process.

APPENDIX A: RELAXATION BY SLOW JUMPS

As pointed out in Sec. II this case

(oping&pi

(A1)

probably has little practical interest for molecular rota-
tions. It may, however, be applicable to other physical
processes. It is also, in a sense, intermediate between
the usual magnetic resonance relaxation processes where
one assumes continuous rotation and the discontinuous
processes we investigate in Sec. II.

We want to calculate the change in the nuclear spin
polarization because of a single rotational jump.

The nuclei feel a perturbation for a time v ~ and the
Fourier component at the resonance frequency is
therefore

rg/(~q'r P+1) . (A2)

In general one would now multiply this by the square
of the matrix element of the time-dependent perturba-
tion. In our case the whole Hamiltonian (Ho) is
changing. We are interested in transitions with respect
to the chaegieg Hamiltonian H@. It is most convenient
to transform to a (time-dependent) coordinate system
in which Hq is stationary. The changes in polarization
in this frame are, in fact, the relaxation processes we
are looking for.

Before a jump this H@ coordinate system is, of
course, fixed in space and after the jump it is a new
rotated fixed system. During the jump it is, however,
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a rotating system, in the usual sense, rotating with an
angular frequency 22r/rt. One could thus say that
the nuclei (in the Po system) feel an effective magnetic
held

during the rotation. This 6eld induces transitions rela-
tive to IIg. The transition probability during the jump
is therefore, from (A2) and (A3),

Elimination of B„gives

P v P —g (e St—r/Sr e 4tr-/r)

+ (P'" cos@.—Po)e 8'" '. (85)

Integration of both sides now leads to the expression
analogous to (56)

(So S)/S—p F(~„-/r) = {1-~)e

8/Sr+-

Re~~'/ (S/S—,)e «/8,-(86)

r 2 o/OSr 2+.1 4pOSr 8

This is essentially the result we gave in Eq. (5).
As this perturbation is only effective for a fraction

rt/r„of the time one finally gets

(AS)

SSK= 2 (2/, p) sin@ sin22/tgtMtft.

1—cos%'v 1—cos%'„e 4"~'

~ 1—cos%'„e '"I"

From the definition of 2 (31) and (35) one Gnds

{BS)

T1 GO@ T] Vg

The argument can of course be made more precise
if one follows the behavior of the spin polarization in
the rotating frame in detail. The calculation is exactly
analogous to that one would use in describing the
effect of a changing magnetic 6eld on the nuclear
magnetization.

This sort of calculation is not restricted to the slow

jump limit. At least in principle it is possible to calcu-
late the eGect of arbitrary rates of rotation. For very
fast jumps one could justify the sudden approximation
in this way.

APPENDIX 8: CALCULATION OP THE COKRELATION
TIME FOR ROTATIONS (s)

The solution of Eq. (44) was given in (45)

Pv(/I) P — ge 4t/r+3 e St/Sr--
3=4 Q (Po—P"(0)); Q 8„=0

P~v~ jP .v (311)
At moderate repetition rates this direction is not satu-
rated and therefore,

As the repetition rate is increased A slowly increases
to Po. One therefore expects E to be approximately
constant

By definition 3 is the deviation of the average polariza-
tion of the molecule from its thermal equilibrium value
(Po), i.e.,

~ =-' Z. (Po—P/") (39)
This quantity is not sensitive to the direction and
magnitude of the rf Geld as long as e ~~x. Roughly one
could say that three directions in the tetrahedra are
always approximately perpendicular to the rf field and
therefore,

and I'f" 0, (810)

independent of the repetition rate. The fourth direction
is near the rf Geld (%„0)and therefore,

(32)
and found

I'y"=I' " cos4

E 0 75. (313)
and the summation is over all apexes of the tetraheder.

The effect of the pulses is of course described by (49) ~e have valuat d + umerically Lusing {37) and

as before: {38))for

rI

P; Pp P," cose „P—o
——&+B., — ———

p, v p ge—4tr/r+B e Str/Sr—
E=0.7j.5, (814)

(33)
which is the value used in the interpretation of our

(34) experimental results.


