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The overlapping-ion model proposed by Kondo and Yamashita to explain the magnetic shielding of
nuclei in alkali halides is extended to derive an expression for the shielding constant o. in terms of all the
important one- and two-center integrals in crystals with rocksalt structure. Using the results of Baron' s
pressure-dependence studies of the magnetic shielding in rubidium bromide in conjunction with our ex-
pression for 0-, and using available Hartree-Pock wave functions for the ions, we have determined the average
energy denominators 6+ and 6 for the Rb+ and Br ions. These values of b,+ and 6 are then used to cal-
culate the values of 0Rb and 0&, in the crystal with reference to the free ion. When these latter quantities are
combined with the experimental values of the chemical shifts with reference to dilute aqueous solution of
RbBr, one obtains

ORb'~'=0. 63X10~ and m, '&'= 1.94X10 '
for the shielding constants in dilute solution relative to the free ions.

INTRODUCTION

~

CHEMICAL shifts have been studied experimentally~ in a number of alkali halides' and more recently
pressure measurements have been performed' in some of
the heavier alkali halides. A theoretical interpretation of
this data would be expected to provide information on
the electronic wave functions and charge distributions in
the crystals. Thus, one could use available wave func-
tions to compute the nuclear magnetic shielding in the
crystal and use the nature of the agreement with experi-
mental data as a criterion for the accuracy of the wave
functions, as has already been done for some simple
molecules. ' lt would be best if one could use Bloch wave
functions for the valence bands of the alkali halides,
preferably for a number of internuclear distances. How-

ever, detailed band-structure and wave-function calcu-
lations have so far been performed4 ' in only two of the
lighter alkali halides, NaCl and KC1. The chemical
shifts in these light crystals are expected to be small for
both nuclei and have not been studied experimentally.
For the heavier crystals, where experimental data are in
greater abundance, one has therefore to take recourse to
less sophisticated models for interpreting the magnetic
shielding of the nuclei. Two models have been proposed
for the origin of the magnetic shielding based on the
perturbation-theory approach of Ramsey. ' The first
is the charge-transfer-covalency model due to Yosida
and Moriya~ and second the overlapping-ion model by
Kondo and Yamashita' (KY). The latter is analogous
to the model used by I owdin' for explaining the co-
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hesive energy of the alkali halides. Recent calculations
of the quadrupole coupling constants in diatomic-
alkali-halide molecules" clearlv indicate that there is
little, if any, covalent binding of the charge-transfer
type in these molecules. In the solid state, the inter-
nuclear distances are larger than in the free molecules
and the covalent binding should be even less significant.
It seems therefore that Kondo and Yamashita's model
is currently the only plausible one that one could use to
explain chemical shift data. In their paper, ' Kondo and
Yamashita considered the ratio of the shielding con-
stants for the positive- and negative-ion nuclei and since
no electronic wave functions were available for the ions
at that time they were obliged to make approximations
for the overlap and other integrals involved in their ex-
pressions. Recently, Watson and Freeman" have com-
puted Hartree-Fock wave functions for a number of
alkali and halogen ions. It is therefore possible now to
obtain a more quantitative evaluation of Kondo and
Yamashita's theory.

However, in comparing theoretical results with ex-
periments one runs into the difhculty that the experi-
mental shielding data are usually referred to a refer-
ence sample in which the shielding constants are not
known. The availability of data on the pressure varia-
tion of the magnetic shielding enables one to obviate
this difFiculty because the pressure variation of the
shielding is independent of the reference sample. In
addition one can evaluate from the pressure data, the
average-energy denominators 6+ and 6 for positive
and negative ions that occur in the Ramsey-Kondo-
Yamashita theory. These values of 6+ and 6 can then
be used to calculate the absolute values of the shielding
constants for the positive- and negative-ion nuclei. On
comparing these calculated shielding constants with
observed chemical shifts one can obtain the shielding
constants for the reference sample, namely, the dilute
aqueous solution. For our calculations we have chosen
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rubidium bromide because the chemical shift data in
this crystal have been obtained by a number of investi-
gators', and Baron' has recently studied the variation of
the magnetic shielding with pressure for both nuclei.

In Sec. II, we derive an expression for the shielding
constant in terms of all the nearest-neighbor overlaps
and other two-center integrals. In Sec. III, this equa-
tion is used to interpret both the pressure variation of

the magnetic shielding and the chemical shift data for
RbBr as outlined in the previous paragraph.

II. DERIVATION OF THE EXPRESSION
FOR SHIELDING CONSTANT

Ramsey' was the first to propose an explanation for
chemical shifts and obtain an expression for the shield-
ing using standard second-order perturbation theory:

(2)

where 6 is the average excitation energy.
Equation (2) involves only the ground-state wave

function +p. Since %p is a many-electron wave function,
for purposes of quantitative calculation, we have to ex-
pand it out in terms of one-electron wave functions.
Since for the alkali halides, we have a diamagnetic
system with doubly occupied states, %p can be expressed
in the form of a single determinant in the Hartree-Fock
approximation

%0——(2e!) '~'~fn(1)fqg(2) P„t(2N 1)g„g(2e)—~, (3)

where P„are one-electron wave functions. Also, since
we have cubic symmetry, the crystal axes are the princi-
pal axes of the magnetic shielding tensor e and
g„=o»=0„.In a powder, the effective shielding con-
stant is then

1/'
0 = 3(&xsm&yym&zz) = 0 xx= Oy j=&zz ~ (4)

'2 J. H. Van VIeck, Theory of E/ectric and Magnetic Suscepti-
bilities (Oxford University Press, London, 1932).

'3 H. J.Kolker and M. Karplus, J.Chem. Phys. 41, 1259 (1964).

The 6rst term on the right represents the diamagnetic
shielding while the second term represents the para-
magnetic effect analogous to the Van Vleck second-
order paramagnetism. "In Eq. (1), %0 and 4 represent
the many-electron ground- and excited-state wave
functions, and Ep and E are the ground- and excited-
state energies. For the molecules where calculations have
been performed, ' " it is found that the diamagnetic
shielding constant is always larger than the magnitude
of the paramagnetic shielding constant. However, for
the alkali halide crystals we are interested in the differ-
ence between the shielding constants for the crystal and
the free ions. In the appendix we shall show that the
contribution to this diGerence and its pressure de-
pendence from diamagnetic effects is only 10 '—10 ' as
effective as from paramagnetic effects. Since the excited-
state wave functions and energies are usually not known,
Ramsey introduced the average-energy denominator
approximation which leads to

We therefore need to calculate the shielding constant
along either the x, y„or s axis. Substituting Eq. (3) into
Eq. (2) we get the following expression for 0„:

t.,2

j j.
rpa

where we have expressed all the quantities on the right-
hand side of (5) in atomic units. Thus l,o the x com-
ponent of the angular momentum about the central
nucleus 0, is in units of k, lengths are in units of ap, 6 is
in Rydbergs (e'/2ao), and n is the 6ne-structure con-
stant (e')/(Ac). The next question we have to decide on
is the choice of the one-electron wave functions. One
choice is to use calculated Bloch wave functions and
integrate in momentum space over the various bands
that they refer to. Such a calculation would include
both the eGects of overlap and charge-transfer cova-
lency. However, as pointed out in the Introduction,
detailed band-structure calculations are available only
for two of the lighter alkali halides but not for the
h,eavier ones like RbBr. Further, we would like to test
the validity of Lowdin s orthogonalized-atomic-orbital
model for other properties besides the cohesive energy.
We shall therefore use the orthogonalized atomic orbitals
(OAO) for the one-electron wave functions in (5) as in
KY. There are a number of di6erent choices' that one
can make in constructing the OAO. We have chosen for
convenience the symmetric orthogonalization procedure
employed by I owdin. Since the inner-core orbitals are
very tightly bound and do not extend appreciably to the
region between the ions, we can assume that they are
completely spherical and cannot contribute to 0-, in
Eq. (5).Therefore, the only one-electron wave functions
that we have to use in (5) are the outermost s and p orbi-
tals for both the positive and negative ions. In our pres-
ent calculations we shall consider only the overlaps be-
tween orbitals on nearest neighbor ions, and obtain our
results correct to second order in these overlap integrals.
Also, we shall keep only those matrix elements of 1/ro'
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for which at least one of the wave functions in the matrix
element is on the central ion 0 since other matrix ele-
ments involving 1/rp' would be expected to be an order
of magnitude smaller. Under these conditions, the ex-
pression for o„is given by Eq. (6), the OAO &&4 fp„

fpw, and Pp, on ion 0 and P;„P;„P;w,and P,, on the six
nearest-neighbor ions j= 1, ,6 being listed in Eqs. (7).

diseet+O ex Iy& ex II+& ex III

where

2— 2 l 2 2 l 2

Py Oy Oz Oz js je jy jy jz jz

ex III
gS

4n2 l,p

4'pw 6 9'p Ii pI 4'pw)
fp'

Sn2 l.o leap

e ~ —,A. &0'ladle. &+ 6 —A')&A. I4 IA.&"6 fp fp

l.p l,p

+(A. —,i ' &e'I4 I A.&+ A. —,e ' &e '14 I A.&

fp fp

Sn2 lap l p l.p

A. —e ~ &A'I&. Iz'&+ e: —,e' &O'I&. Ie'&+ e' —,e')&O'I~ Ip'&"6 fp fp fp

(6)

P,„=&t'p„—-', Q (Sp'"'4'.+Sp'""4' )+-,' Q I (Sp;"'Sp;"+Sp,""5'p"')go.
~ ~ ~ 6 ~ ~ ~

I
4Jw 4zw 2

i =nearest neighbors of
j(nnO j)

+Sp 'w 5'p yp +(5 w 5 w+5 wws pww)y +5 w 5 y j
(Szi" &t&is+St i""&I&iw)+ 'p 2 L(sis"'S;;"+S,;"Ssr"')g;s

$ps 4'ps 2
1

i=1, ~ ~ ~, 6

+Sp,"'S,p' &t p.+(Sp; 'S;,' +5o;""5;o"")Po„+5„"'5;o'*go,],' '
(7)

(5 'y +S '*y. +S 'q +5 "y )+-' P L(so,'5;,"+5„"5;,*+5„'ws "
1 ~ ~ ~ 6

+Sp '*5'p")Pp +(Sp "5'p'*+ Spi'*Ssp**)Pp +(Sp "5p'"+ Sp '"5 'p"")4pw+ (Sp "Ss'p'*+Sp '*5 'p**)$p j,
fz s=g~' psP (S'ji 4is+Ss'i *&t&iz+Sz'i "&I&iw+Szi *t'iz)&+ p Z. P(sz'i Sij +Sz'i Siz' +Ssi "Siz'"

i=nnpj

+S, *S,;")P;,+(5,;"5;,"+5,;"5;;")P,,+(S,;"S; "+5,;*"S;,"")P;„+(5,;"5;,"+5; *5;;**)P;.].
In Eqs. (7), pp and p;s represent the unorthogonalized free-ion wave functions, and the overlap integrals Sp; o

are defined by
sp =(yp. Iy;p).

We next substitute Eqs. (7) in Eqs. (6) and neglect (a) terms which are of higher order than second in the overlap,
(b) terms like (&t; I1/rp'Ip; ), wherei, j/0, and (c) (pp I

1/rp'I&t&; ), (&t;, I
1/rp'I&t, ), and Q; I1/rp'I it&; ), where iis

a nearest neighbor of ion 0, but j is not. Under these conditions, Eqs. (6) lead to the following expressions, (9), (10),
(11),and (12), for o d'"", o,'"', o.„'"",and o. ,' '" in terms of the free-ion wave functions pp, and &t&,d

So,2 1 1z. —z. — r. »;"" z —z;. +»;" z. .—z;.)] s ~ ~ fp fp

~ ~ ~

1 1
I».' I (z,„—z,„+I»;"I z,„—z,„,&s&

fp fp

8o,2 1 1.:*'=+ z..—zs — Z»;"" e'. —zo, + ze —ee)
1 ~ ~ ~ 6 fp

x p (-'Is *
I

+-'Is '
I

+-'s 's ww+-'Is ' Ip+-is * Ip) (10
i j., ~ ~ ~,6
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So,'
')t'ou 4'iu (~oi ~oi )+ Cia 'Au +io

~ u ~ f0 fQ

Sa'
ex III

+ & you —,you (—IV'o'""I'+u~o'""~o'**—W ~o;u'~'), (11)
s=l ~ 6 fQ

(12)

In Eqs. (9)-(12), the summations in i extend over the six nearest neighbors of the central ion O. In deriving these
equations, the following relations are very helpful.

6&o,[4.[eo,)=—&/i= 9;,l~o. le;.),
(4 oui o.l4'.)= —(&/o)~o***.

From Eqs. (9)-(12), introd. ucing the o and u notations for p orbitals that are, respectively, symmetric with respect
to an internuclear axis and perpendicular to it and performing the summations over i using Fig. 1, we get the follow-
ing expressions for o.„o'""o„'x=o„'*~+a„'" '+o„'x " and total o„=o., "-'+e„'*'.

80.' 1

rQ' fQ fQ

—85Q; PQ
—P; Q„— Qy 45Q; ' 2 5Q," ' 2 SQ;' ', 14
r0 f Q

Sa'
-'*=+ 0 ~

—0 ~ + (—4»'- —4»'-) e'. —i .)rQ' r08

2

fQ

+2(»;"—»;") (i .—4'. — 4 ~
—i'. —2»'" 4 ~

—tt'. (M)
f03 f 3 fQ3

III. RESULTS AND DISCUSSION

Before considering the application of Eq. (16) to any
particular crystal we would like to emphasize that
second-order perturbation theory with an average
energy denominator cannot be used for a rigorous
quantitative test of the wave functions used for the
crystal. The reason for this is that the perturbation
theoretic expression (16) requires the knowledge of an
average energy denominator A. Since the latter is not a
constant for the system but depends on the property
that is being analyzed, vie cannot use the value of 6 ob-
tained from some other property —for example, electric
polarizability or magnetic susceptibility —and use it to
calculate magnetic shielding. Consequently, variational
methods have been developed to calculate nuclear mag-
netic shielding in molecules. It would be very desirable
to develop corresponding variational methods for the
solid state. There is at present a large body of experi-
mental data' ' available for the nuclear magnetic shield-

Fzo. 1.Orientation
of X, F, 'and s axes
on the central ion
and its six nearest
neighbors.

z
il X

ing in alkali halides. In the absence of suitable varia-
tional methods, it is imperative to at least obtain a semi-
quantitative understanding of these data by perturba-
tion theory. Further, the availability of Baron's pressure
data is particularly fortunate because it allows us to



A 826 D. I KENBERRY AN 0 T. P. DAS

obtain 6 from the pressure variation of the magnetic
shielding. Experimentally, one measures the chemical
shift with respect to a reference system, commonly a
dilute aqueous solution of the ion in question. To obtain
the absolute value of the shielding coeS.cient in the
crystal, one therefore requires a knowledge of this
shielding codhcient for the nucleus in the reference
sample. The pressure variation is, however, independent
of the reference sample and provides a good estimate of
6 through the use of Eq. (16) for different internuclear
distances. One can then use the value of 6 obtained
from pressure data to determine the absolute value of
the shielding constant from Eq. (16). This calculated
absolute value of r can be compared with the experi-
mentally observed chemical shift for the nucleus to ob-
tain information about the shieMing coefBcient in the
dilute solution.

In Table I we have tabulated for easy reference the

Tmzz I. List of values for the necessary one-center
and tv o-center integrals.

calculated values of the various integrals required in
Eq. (16) for RbBr as well as some others that are re-
quired for the diamagnetic contribution considered in
the Appendix. We hope these integrals wiH be helpful
for calculation of other properties of alkali halides. We
have considered two nearest-neighbor distances, 6.50 cp
and 6.425 ap, the former being the equilibrium distance
at atmospheric pressure and the latter is close to the
distance at which RbSr undergoes phase transition from
NaCl to CsCl structures. In regard to the electronic
wave functions for the two ions, we have used the
analytic Hartree-Fock wave functions of Freeman and
Watson. "The two center integrals were a11 calculated
using Lowdin s alpha-function technique. 9

Substituting the results of Table I into Eq. (16), we
can express o.„for the two distances and the two ions in
Rb3r in the form

6o.'
(2+I3+C+D+8),

Integr
ternuclear distance R

(Ao I1IAe)= (An I1IAn. )
(Bo I 1IBo)=(BeI1IBn)
(AsI1IAs)
(Bs I1IBs)

(Ao I 1/rn IAo) = (Ae I 1/rz I An. )
(As I 1/rz IAs)
(Bo I 1/rssIBe)=(BnI1/rnIBn)
(Bs I 1/rn I Bs)

&AeI 1/rn'IAe) = (»Il/r&nIAn)
&Be Il/rn'I Be&= &Be Il/rn' IBn&

6.425go

One-center
0.99859
0.99935
0.99891
0.99882
0.75447
0.87606
0.57619
0.73267

20.216
10.245

6.50uo
[$ .or~n Ig .nn)n 2g .or+ .nn

s=Wsw" —»'") (4o. —e;-)
fp

1
0

' 0' 0

fp ' ~0

Sinn =(Ae Be)
Snn'~=(Ao Be)
Snn *=&Ae Bs)
Snnl'= (AsIBo)
Snn**= (AsIBs)
(AeI1/rz IBe)
(Ao I 1/rg IBo)
(Ao I 1/rnIBs)
(As I 1/rn I Bo)
(As I 1/rg I

Bs)
(BeI1/rnIAe)
(Bo

I 1/rnIAe)
(Bo Ii/rnIAs)
(Bs I 1/rn I Ae)
(Bs I 1/rn I As)
(An 1/rn'I Be)
(Ao 1/rg'IBe&
(Ao: I 1/rn'IBs)
&Be I 1/rn' I Ae)
(BeI i/me IAe)
(Bo I

1/rn'IAs)

Tvw-center
0.019582 0.018385

—0.086116 —0.082182
0.028881 0.026900

-0.061519 —0.058275
0.012184 0.011243
0.007003 0.006554

—0.032721 —0.031089
0.009049 0.008373

—0.03033 —0.02867
0.005114 0.004704
0.004207 0.003903

—0.022810 -0.021463
0.012450 0.011636

—0.009350 —0.008613
0.003020 0.002750
0.001810 0.001688

-0.009081 —0.008582
0.001786 0.001639
0.000337 0.000305

—0.002540 —0.002328
0.000753 0.000684

a For brevity, A and 8 are used to denote the Rb+ and Br- ions, respec-
tive1y. The orbitgfs 4s, Q'1)r, and 4P~ on the iona are denoted by the symbols
g, q, ands,

In Eq. (17), E is the contribution from nonlocal terms
of the form (go ~1/ros~P; ) The va. lues of A, 8, C, D,
and E are tabulated in Table II. Kondo and Yamashita
in their formulation had neglected the contribution from
overlaps between n orbitals. From Table II, however, we
notice that the term C, which involves a product of 0.

and m overlaps, has a magnitude about half as large as
the A term which arises from the f7 overlaps alone. The
term 8 which involves only m overlaps is an order of
magnitude smaller than the A term. Kondo and
Vamashita had expected that the overlap between the
s orbital on the halogen ion and the p. orbital on the
metal ion would be important and the overlap integral
between the s orbital on the metal ion and the p,

TmLz IL Values of the quantities A, J3, P, D,
and B in Eq. &17).

erm in
Eq. (17) A a C D

Rb+ 0.134280 0.006830 0.06109Q 0.014620 0.002154
3r 0.068035 0.003462 0.030957 0.034791 0.000569
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orbital on the halogen ion would be small. However, it
can be seen from Table I that the reverse is true and the
latter overlap is three times the former. The above re-
sults give emphasis to the fact that one should be careful
about making assumptions as to the relative impor-
tance of various contributions to r and that a knowl-

edge of the Hartree-Fock wave functions is really
necessary.

From Table II one gets Eqs. (18) and (19) for the
change in the shielding constants over the two dis-
tances considered for rubidium and bromine nuclei.

0.20269—0.00215
~&Rb X10 4, (18)

0.12627—0.00113
ho-g, —— X10- .

Again it is apparent that the nonlocal term (second
term on the right) contributes negligibly to ho. The
linear dependence of o-~b and og, on E was veriied by
calculating the local terms at an additional value of
8=6.450. From the slope of 60- versus pressure ob-
tained by Baron, we deduce the values of AORb and
Ao-» as 0.32135X10 ' and 0.22781X10—', respectively.
Using these values in conjunction with (18) and (19)
we obtain'4 +=0.8838 Ry, 6 =0.3935 Ry.

The value of 6 is seen to be comparable in magnitude
but somewhat smaller than the energy differences"
from the top of the Br valence band to both the lowest
exciton levels (0.4771 Ry) and the bottom of the con-
duction band. (0.5872 Ry). If one had used standard
second-order perturbation theory, one would have ob-
tained the array of terms on the right-hand side of
Eq. (20).

B//~= Bt//~t+~s//~s+ no/~p+ (20)

' In obtaining the values of 5+ and 6 we have ignored the vari-
ation of 6+ and 6 with E in Eqs. (18) and (19).This neglect cor-
responds to ignoring an additional term in bo. Thus, from {27),
if we write symbolically o =Lf(s) j/Lnog(s) j where /(s) and g (s)
are functions of the overlap integrals, the variation in 0. due to
change in distance can be expressed as

f(s0)bs f(s0)Bs Bg

hog (so) hoLg (so) g' Bs

Unfortunately, we have no way of obtaining (Bg/Bs), and hence
of estimating how serious its e6ect is on 80. We are currently in-
vestigating some other alkali halides to study the consistency of
the results obtained by neglecting the Bg/Bs term in all cases.
Further, a variational calculation would not require any knowledge
of excitation energies and would hence obviate this particular error
in the perturbation treatment.

"N. F. Mott and R. Gurney, Electronic Processes ie ionic
Crystals (Dover Publications, Inc., New York, 1964), p. 96.

In Eq. (20), 6t, hs, , represent the excitation energies
for the excited states and the continuous spectrum of
states in the conduction band. The quantities u&, a2,
represent products of the matrix elements of the opera-
tors, P,, 1;p and Ps lsp/rpps between ground and excited
states. The left-hand side represents the result of the

average energy approximation. If a~, a2, are com-
parable in magnitude, an examination of Eq. (20) indi-
cates that 6 can be either smaller or larger than 6».

For the average energy for the positive ion 6+, the
choice of excitation energies to compare with is un-
certain. A possible reference is the ionization energy of
the positive ion which has been estimated" to be
2.006 Ry, which is again larger than the calculated 6+.

When we substitute the calculated values of 6+ and
into Eq. (16), we obtain for the equilibrium distance

at atmospheric pressure

Op, =2.99X10 ', |Tab= 2.14X10-'. (21)

The most recent experimental values of the chemical
shifts are

Og, '"I'= 1.05X10 4=(TB,—Op, 'q

gab' I'= 1.51X10 '= fTRb —tTRb'~.

A combination of Eqs. (21) and (22) yields

(22)

o, a=1.94X10 4, or 'p=0.63X10 4. (23)

It is interesting that the o-Rb'q is smaller than a~,'&.

This result could be used as a check on any model that
one assumes for the aqueous solution. We should, how-

ever, point out that our result is based on the neglect of
the effects of the Lamb diamagnetic term. We estimate
in the Appendix that the effects of overlap on the dia-
magnetic term are only about one-tenth or less than on
the paramagnetic term. We do not therefore believe
that the neglect of diamagnetic eGects is a substantial
source of error in the estimation of the variation of 0

with pressure or in its absolute magnitude. '~

Itoh and Vamagata" have obtained a value for
o.z'&=6.0X10 ' for I ions in aqueous solution from a
combination of relaxation time data and chemical shift
data as a function of concentration. They have also re-
ported" that a measurement for Rb+ and Br ions led to
smaller values for O.g,'q and O.gb'~. We hope that our
findings for 0-Rb & and O.p,'q will stimulate further careful
measurements for Rb+ and Br and other ions. Un-
fortunately, no Hartree-Fock wave functions have yet
been published for I, so we cannot at present apply
our Eq. (16) to obtain pro& from Baron's pressure data in
RbBr to compare with Itoh's value for |Tp&.

~6 J. E. Mayer, J. Chem. Phys. 7, 270 (1933).
» We should remark that the word "absolute" that we have

used is somewhat a misnomer, since our quoted results for 0 are
really with reference to the free ion. If we wanted to get the total
&, we would have always to add the constant diamagnetic term
for the free ion in each case.

'o J.Itoh and V. Yamagata, J.Phys. Soc. Japan 13, 11g2 (195g).

IV. CONCLUSION

Our calculations indicate that the overlap mecha-
nism proposed by Kondo and Yamashita' can give a
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reasonable explanation of the magnetic shielding in
alkali halides and in particular its dependence on
pressure. It is signi6cant that the bromine paramagnetic
shielding factor for Br in aqueous solution comes out
larger than the rubidium shielding factor for Rb+ in
solution. This result should be tested using suitable
models for the configuration of water molecules around
the ions in solution. In order to use magnetic shielding
data as a rigorous quantitative criterion for the correct-
ness of wave functions in ionic crystals, one requires
variational methods which would obviate the use of an
average energy denominator.

APPENDIX

From Ref. 6, the diamagnetic shielding factor 0 is
given by
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The necessary integrals in (A3) are available in Table I.
Substituting the necessary integrals from Table I, we

get the values of 0 g," and o-Rb" at r= 6.50uo and 50~,"
and&drab" in Eq. (A4).

Expressing this result in terms of one-electron wave
functions and, making use of Eq. (4), we get (taking
account of a factor of 2 due to spin multiplicity)

O.s,"(8=6.50ao) = —0.007638X10 4,

0 ab~(R = 6.50ao) = —0.001382X10 ',
hoar"=+0.001049X10 ',
60 ab"=+0.000391X10-'.

(A4)

where ro is taken in units of ao. Summing over the OAO
in Eq. (7) in the same manner as we did in the para-
magnetic shielding factor we get for the overlap-

It is seen that these values are more than an order of
magnitude smaller than the corresponding paramag-
netic terms in Eqs. (18), (19), and (21).


